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Abbreviations

AIC: Akaike information criterion; AEIL: Australian environmental investigation limit;

EBLUP: Empirical best linear unbiased predictor; ML: Maximum likelihood; pdf: prob-

ability density function; SSA: Spatial simulated annealing

Abstract

We develop an algorithm to optimize the design of multi-phase soil remediation surveys.

The locations of observations in later phases are selected to minimize the expected loss

incurred from misclassification of the local contamination status of the soil. In contrast

to existing multi-phase design methods, the location of multiple observations can be op-

timized simultaneously and the reduction in the expected loss can be forecast. Hence

rational decisions can be made regarding the resources which should be allocated to fur-

ther sampling. The geostatistical analysis uses a copula-based spatial model which can

represent general types of variation including distributions which include extreme values.

The algorithm is used to design a hypothetical second phase of a survey of soil lead in

Glebe, Sydney. Observations in this phase are generally dispersed on the boundaries

between areas which according to the first phase either require, or do not require, reme-

diation. The algorithm is initially used to make remediation decisions at the point scale

but we demonstrate how it can be used to inform over blocks.

1. Introduction

Human-health and environmental concerns require the remediation of contaminated soils
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near former industrial sites throughout the world. In many cases, thresholds have been

defined for the permissible concentration of metals and other contaminants in the soil (e.g.

[1]). If the contamination is localized then spatial surveys can be conducted to suggest

where concentrations are greater than these thresholds and hence remediation is required

[2]. Uncertainty is inevitably attached to the results of such surveys and geostatistical

techniques are used to assess the probability that a particular location is falsely designated

as contaminated or not contaminated. This information, combined with an understanding

of the costs of an incorrect remediation decision at a site, permit an informed decision

about the extent of the remediation.

The accuracy and cost of soil-remediation surveys increase with the number of ob-

servations made. It has previously been suggested (e.g. [2], [3], [4], [5]) that the efficiency

of surveys can be improved if they are split into a number of phases. The initial phase

yields a low-resolution map of soil contamination. It might show that no further mea-

surements are required in much of the study area where the soil can be designated with

great certainty as either contaminated or not contaminated. The later phases concentrate

observations in parts of the study region where the contamination status is in doubt. As

the survey progresses the resolution of the contamination map in these regions increases

until eventually it is suitable to select the locations which are to be remediated. Heuvelink

et al. [6] consider a related problem in the design of mobile radioactivity monitoring net-

works. Normally the network is fairly coarse but in the event of a nuclear accident more

sensors are required close to the accident site.

There are two key issues to address before such a multi-phase strategy can be used in

practice. The first is the amount of additional sampling. How many observations should
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be made, how should they be divided between phases and how should the practitioner

decide when a survey is adequate? The second issue is the selection of the locations of

observations within a single phase of the survey. We consider the situation where a phase

of sampling has been conducted and kriging [7] has been used to predict the contamination

across the study region. Two factors dictate whether further sampling is advantageous at a

particular location x. The first is how close the local prediction of the soil contamination

ẑ (x) is to the threshold zc. The second is the uncertainty of this prediction. This

uncertainty can be expressed in terms of the kriging variance σ2 (x). Juang et al. [8]

and van Meirvenne and Goovaerts [2] considered how the proximity of predictions to

the threshold could be incorporated into a design algorithm. They suggested that the

most beneficial locations to make additional observations are where |ẑ(x)−zc|/σ is small.

Thus they could order every potential observation location according to this criterion.

This approach led to clusters where it was desirable to observe the contamination because

existing observations were sparse and predictions were close to zc. However they could not

forecast the effect that additional sampling would have on this criterion because the new

value of ẑ(x) depended on the new observations. Therefore they had to make intuitive

decisions about the intensity with which each cluster was sampled and the total number

of observations.

Demougeot-Renard et al. [9] addressed this problem in a multi-phase survey of soil

contamination at a former smelter in France. Following the initial survey, they selected

additional sampling sites which greatly reduced the cost of misclassifying the remediation

requirements of the soil. They simulated an observation, conditional upon the existing

observations, at each site in their proposed design. They then used these simulated ob-
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servations to estimate the cost and to determine whether the design was fit-for-purpose.

However, because their updated objective function was calculated from a single realization

of the new design they could not determine the uncertainty associated with it or know if

it was truly representative of the proposed design. Also rather than using a numerical al-

gorithm to optimize their additional sampling they compared the values of their objective

function for different designs which were selected according to intuitive rules.

We develop a Monte-Carlo multi-phase sampling strategy. Later phases of the survey

are optimized to minimize the expected total loss from misclassifications of the contami-

nation status of the soil. The expected total loss is estimated through multiple conditional

simulations from a parametric model of spatial variation that is fitted to available data.

The expected loss is referred to as the objective function of the optimization and it is

minimized by a numerical procedure called spatial simulated annealing (SSA; [10]). Our

algorithm is an advance upon existing techniques for the optimization of multiphase sur-

veys since it ensures that the effect of the proposed phase of sampling upon the objective

function can be forecast and because the objective function is a direct measure of the

effectiveness of the survey rather than an arbitrarily selected measure of the uncertainty

or accuracy. Therefore it is possible to optimize simultaneously the locations of multi-

ple observations and to assess whether it is cost-effective to conduct additional phases of

different sizes.

The strategy is tested on a survey of soil lead contamination in Glebe, Sydney [11].

Parametric models of spatial variation commonly assume a Gaussian marginal distribu-

tion but this is not appropriate in this case since the distribution of the observed lead

concentrations is highly skewed. It is known that the misspecification of a spatial model
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can cause simulations from it to poorly reflect the actual variation of the observed prop-

erty [12]. Therefore a logarithmic or Box-Cox transform is often applied to skewed data

prior to analysis. In this paper we fit a parametric model of spatial variation to the data

within the more general copula framework [13]. Within this framework a range of models

with different assumed marginal distributions can be fitted and the quality of fit can be

compared according to the Akaike Information Criterion (AIC) [14]. A similar model

could have been fitted using a trans-Gaussian kriging framework [15], [16]. The prob-

lems of sample design have previously been addressed for copula [17] and trans-Gaussian

models [18].

Initially we optimize the survey design to map lead contamination and make remedi-

ation decisions at the point-scale. However remediation is generally conducted over larger

blocks and the methodology should be up-scaled. For Gaussian properties this up-scaling

could be achieved through block kriging [7]. We up-scale the non-Gaussian lead model

by averaging multiple point-scale simulations from within each block. We demonstrate

that surveys for block-scale recommendations can be achieved by this method although

considerable computation time is required.

2. Materials and Methods

2.1 The Glebe survey of soil lead.

The data used in this study were 438 observations of topsoil lead extracted from sites

within the Sydney suburb of Glebe in 1993 [19]. Glebe was first established as a residential

area in 1828 and by the time of the survey had developed into a high density inner-city
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suburb surrounded by major roads and industry [20]. Industrial sites within Glebe and

its surrounds have included tanneries, piggeries, abattoirs, jam factories metal foundries,

coppersmiths, paint manufacturers and various timber industries [21], [22].

The observation sites in the survey were chosen by a stratified random sampling

design (Figure 1). The study area was divided into 227 square cells of 100-m length. One

location was randomly selected from the sites with accessible soil within each cell. No

observations were collected from eight of the cells where soil was absent. At each selected

site, two soil samples were extracted 1 m apart and analyzed separately. The total soil lead

content of each sample was determined by flame atomic absorption spectrophotometry on

a Varian (Melbourne, Australia) SpectrAA-20 with background correction. Full details

of the laboratory procedures are given by Markus and McBratney [20].

These data have previously been analyzed by Cattle et al. [11]. They compared

the relative merits of different kriging methods to predict whether the lead concentration

at non-sampled sites exceeded the Australian Environmental Investigation Limit (AEIL)

of 300 mg kg−1. They found that multiple indicator kriging yielded the most accurate

delineation although the copula methodology was not available at that time.

3. Theory

3.1 Non-Gaussian geostatistical models

Conventional geostatistical methods assume that the property of interest is a realization

of a second order stationary random variable. A model which describes the spatial corre-

lation of the random function is fitted to the n observed data, z = (z1, z2, . . . , zn), where
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zi = z (xi) at location xi. Then this model is used to predict the property across the

region by kriging. Kriging yields both a prediction of the property at a particular site and

an associated prediction variance referred to as the kriging variance. If the spatial model

is fitted by the conventional method of moments [7] then no explicit assumption about

the statistical distribution of the random variable is required. However, the method of

moments estimator is known to be inefficient if the data are highly skewed [23], and a

distributional assumption is required to determine a probability density function (pdf)

of the property at each site and to determine the probability that it exceeds a critical

threshold.

Model-based geostatistical methods [24] assume a particular distribution for the

random variable, most usually a multivariate Gaussian distribution. A function describing

the spatial correlation of the distribution is fitted by a likelihood method and when this

model is used in the kriging predictor it is referred to as the empirical best linear unbiased

predictor (EBLUP; [25]). Since the distribution of the prediction is known, the pdf can be

determined and used to calculate the probability that a threshold is exceeded. However

the assumption of a multivariate Gaussian distribution is very restrictive and is rarely

appropriate for surveys of soil metals around industrial sites where there tends to be a

mixture of diffuse underlying pollution and isolated hot spots or outliers.

Bárdossy and Li [26] and Kazianka and Pilz [27] showed that the assumption that

a property is a realization of a multivariate Gaussian distribution can be relaxed by use

of a copula-based model. In such a model, the marginal distribution and dependence

structure are specified separately. It is possible to specify a non-Gaussian dependence

structure which permits a different dependence between large and small values. However
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such dependence models require intensive computation [26] and are therefore beyond the

scope of this study. The specification of a non-Gaussian marginal distribution is itself a

marked generalization of the standard Gaussian geostatistical model.

If we denote the distribution function of a property by F the density by f and

the Gaussian distribution function with zero mean and unit variance as Φ0,1 and define

a =
[
Φ−10,1 {F (z1)} , . . . ,Φ−10,1 {F (zn)}

]
then for a property with a Gaussian dependence

structure, a is a realization of a multivariate Gaussian random variable and the log-

likelihood of the observed data is

l (θ) = −1

2
log |Q|+ 1

2
aT
(
In −Q−1

)
a +

n∑
i=1

log {f (zi)} . (1)

Here θ is the vector of parameters of both the marginal distribution and the correlation

model, Q is the correlation matrix of a, In is the n × n identity matrix and T denotes

the transpose of a matrix. The elements of the correlation matrix are determined from a

parameterized correlation function such as the Matérn function [28]

Q (h) = (1− s)
{

1

2ν−1Γ (ν)

(
h

d

)ν
Kν

(
h

d

)}
for h > 0,

Q (h) = 1 for h = 0, (2)

where h is the distance between two observations, s is the proportion of the variance

which is spatially uncorrelated, d is a spatial parameter, ν is a smoothness parameter, Kν

a modified Bessel function of the second kind of order ν and Γ is the gamma function.

The variance of a is equal to one because the variance of the property is accounted for in

the marginal distribution. The correlation function approaches one asymptotically and

hence does not have a finite range. We define the effective range de, which depends on d

and ν, as the lag at which Q(h) = 0.95(1− s).
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Thus a copula-based model with any specified distribution function F can be fitted

by finding θ̂ which maximizes Equation (1). The quality of the fit of models with different

marginal distributions can be compared by calculation of the AIC [14]:

AIC = 2p− 2l
(
θ̂
)
, (3)

where p is the total number of parameters in the model. The AIC weighs the likelihood

against the number of parameters with the smallest value corresponding to the model

which has appropriate complexity to describe the variation of the property. Marchant et

al. [13] applied copula-based models with Gaussian dependence structures to observations

of cadmium across France. They found that a model with a generalized extreme value

marginal distribution was a better fit than models with a Gaussian, log-Gaussian or Box-

Cox distribution.

Once the most appropriate model has been selected it can be used within a copula

kriging algorithm to predict the pdf of the property an any unobserved site. The density

of the prediction at a target site is

ft(z0|z,θ) =
f (z0)φêt,v̂t (a0)

φ0,1 (a0)
, (4)

where a0 = Φ−10,1 {F (z0)}, φm,v is the Gaussian density function with mean m and variance

v, êt is the prediction of the expectation of a = Φ−10,1 {F (z)} at the target site calculated by

simple kriging of a and v̂t is the corresponding ordinary kriging variance. The expectation

and kriging variance of a are calculated from

êt = QtoQ
−1a, (5)

v̂t =
(
1−QtoQ

−1Qot

)
. (6)
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Here Qto = Q∗ot denotes the unconditional correlation matrix between Z at the observation

and target locations. The conditional pdf of z(xt) can be determined by calculating

ft(z|z,θ) across the range of plausible z. The distribution function can be determined by

numerical integration of the density.

It is possible to generate simulations of z from the copula-based model. Simulations

of a at unobserved sites, conditional on the fitted covariance model parameters and the

observed a, can be generated by LU simulation [29]. If we denote a realization of spatially

correlated values of a at multiple locations by as then the quantiles of these values are us =

Φ0,1 (as) and the simulated z are zs = F−1 (us). Full details of the copula methodology

and its relation to other geostatistical models are given by Marchant et al. [13].

3.2 Optimization of sampling schemes.

Spatial simulated annealing [10] is a stochastic algorithm which may be used to optimize

the configuration of observation locations in a geostatistical survey. If a proposed survey

is to consist of n observations then SSA finds the length n vector X of sampling locations

which minimizes a specified objective function ρ(X). The algorithm has been used to

minimize various measures of the uncertainty associated with a geostatistical survey (e.g.

[30], [31]). The algorithm requires that the objective function can be calculated prior to

sampling i.e. it must not be a function of the value of the property of interest at the

proposed sample sites.

We note that, in contrast to design based surveys, there is no necessity for observa-

tions in geostatistical surveys to be randomly located. This is because in the geostatistical

model the assumption of randomness attaches to the realizations of the random function
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rather than the sample design [32]. However, biased model estimates can result if the se-

lected local sampling intensity is related to the expected value of the property [33]. Such

a situation can arise in a geostatistical survey if, for example, a survey of an ore body

is biased towards locations where large concentrations of the ore are expected. Then the

observations used to fit the model of variation will be unrepresentative of the true varia-

tion. Diggle et al. [33] proposed a model-based strategy to account for such preferential

sampling.

4. Calculation

4.1 Case study scenarios

Potential second phases of the Glebe lead survey were optimized to minimize the loss

because of misclassifications of remediation requirements. The Glebe survey was used

as an illustrative example. In reality, further sampling of the type discussed here would

not be appropriate because the initial survey was conducted in 1993 and the soil-lead

concentrations might well have changed because of factors such as land use change, soil

remediation and natural soil processes. We considered two situations. The first was where

a complete list of sites with exposed soil was available and the total loss function from

the survey was the sum of the loss function at each of these sites. We denote the vector

of locations with exposed soil as e = (e1, e2, . . . ene). Any of the sites with exposed soil

could be sampled. For the purpose of this illustrative example we assumed that exposed

soil is located on the 952 nodes of a 50-m grid across the study region. The second

situation was where the study region was divided into nb = 908 blocks of size 50× 50 m
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denoted b = (b1,b2, . . .bnb). The remediation decisions were based upon the mean lead

concentration within these blocks. Again any of the 952 exposed sites could be sampled.

4.2 Geostatistical analysis of existing data

Copula-based models with Gaussian dependence structure, Matérn spatial-correlation

structure and various marginal distribution functions were fitted to the lead observa-

tions by maximum likelihood. Prior to the model fitting the data were scaled such that

their variance was one, to reduce the probability of numerical instabilities occurring in

the calculation of the log-likelihood. The marginal distributions used were (i) the Gaus-

sian distribution (ii) the log-Gaussian distribution (iii) the Box-Cox distribution and (iv)

the generalized extreme value distribution. The formulae for the distribution and density

functions are included in the Appendix. The AIC (Equation 3) was calculated for each

fitted model and the model with the lowest AIC was used to represent the spatial variation

of lead.

The fitted model was used to predict the pdf of lead across the study region by

copula kriging (Equation 4). The expected loss from conducting remediation at site ei

LR

(
ei|z, θ̂

)
=
∫ zc

z=0
fei
(
z|z, θ̂

)
L1 (z) dz, (7)

and the expected loss from not conducting remediation

LN

(
ei|z, θ̂

)
=
∫ ∞
z=zc

fei
(
z|z, θ̂

)
L2 (z) dz, (8)

was calculated at each prediction site. Here L1 and L2 are loss functions for wrongly

classifying soil as contaminated and not contaminated respectively.
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Cattle et al. [11] suggested such loss functions for the survey of lead in Glebe. One

of the false positive loss functions at site x was

L1 = zc − z (x) , (9)

and the corresponding false negative loss function was

L2 = α {z (x)− zc} , (10)

where zc was the AEIL and α a factor which weighs human health costs of false negatives

against the unnecessary remediation costs of false positives. Both of these loss functions

increased with the magnitude of the misclassification and the α was greater than one to

ensure that the loss from false negatives exceeded that from false positives.

Remediation is conducted at a site if and only if LR < LN. The expected total loss

from the entire remediation program conditional on the available observations was

LT =
ne∑
i=1

min
{
LR

(
ei|z, θ̂

)
, LN

(
ei|z, θ̂

)}
. (11)

Li et al. [16] consider how decisions can be made in terms of more general utility functions.

When the remediation decisions were made across blocks the loss functions were

estimated using 100 conditional realizations of z at 25 sites on a regular grid within each

block. The realizations were simulated by the LU method and we denote the simulated

value within realization r at site j as zb (i, j), r = 1, . . . , 100 and j = 1, . . . , 25. Then

LR

(
bi|z, θ̂

)
=

1

100

100∑
r=1

L1

 1

25

25∑
j=1

zb (r, j)

 , (12)

and

LN

(
bi|z, θ̂

)
=

1

100

100∑
r=1

L2

 1

25

25∑
j=1

zb (r, j)

 . (13)
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4.3 Optimization of a second phase of sampling.

The aim of a second phase of sampling is to reduce the expected loss from the remediation

programme as efficiently as possible and to ensure that the reduction in this loss exceeds

the cost of additional sampling. If the additional phase consists of n observations located

at sites s = (s1, s2, . . . , sn) then the density of z at each exposed site, and hence the loss

functions LR, LN and LT are conditional on s in addition to z and θ̂. One might expect

to re-estimate θ̂ subsequent to the additional sampling but the design of this sampling is

guided from the results of the first phase and hence depends on z so a re-estimate of θ̂

will be biased. In the Glebe survey the uncertainty associated with the θ̂ from the initial

survey should be small since it is based on more than 400 observations with more than

200 pairs separated by 1 m [34]. The expected loss function subsequent to additional

sampling is

E {LT (s)} =
ne∑
i=1

min

{∫
Z(s)

LR

(
ei|z, θ̂

)
dz (s),

∫
Z(s)

LN

(
ei|z, θ̂

)
dz (s)

}
, (14)

where Z (s) denotes the complete space of realizations of the random variable, conditional

upon the existing observations and at the proposed sampling locations. We approximate

Z (s) by nsim = 1000 realizations of z (s) generated by conditional LU simulation [30]. If

each of these realizations is denoted z (s)r then the total loss function becomes

E {LT (s)} =
1

nE

ne∑
i=1

min


nsim∑
j=1

LR

(
ei|z (s)j , z, θ̂

)
,
nsim∑
j=1

LN

(
ei|z (s)j , z, θ̂

) . (15)

We optimize the locations s of the observations in a new phase of sampling by SSA

with objective function ρ (s) = E {LT (s)}. This procedure was used to optimize second

phase surveys of 10, 20, 30, 40, 50 observations when remediation decisions were made at
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the point scale. The additional phases of sampling were initially optimized for the loss

functions (Equations 9-10) suggested by Cattle et al. [11]. The exercise was then repeated

with loss functions of the same form but the critical threshold increased to 1300 mg kg−1

to illustrate how the optimal schemes change as the proportion of the study region in

need of remediation changes. There was a substantial increase in the computation time

required when the remediation decisions were made across blocks. Therefore only one

illustrative second phase of 30 points was designed.

5. Results

The histogram of observed lead concentrations in Glebe (Fig 1b) included extreme values

and was highly skewed (skew=6.44) and hence the Gaussian function was not suitable to

describe the marginal distribution. The fitted model with a Gaussian marginal had the

smallest log-likelihood and largest AIC of the four candidate models (Table 1). The model

with a Box-Cox marginal distribution had the largest log-likelihood and the smallest AIC

and was therefore used to predict the lead content across the study area. For this fitted

model, spatial correlation is evident up to an effective range of 234 m. The map of

the expected lead concentration (Fig. 2a) is dominated by one hotspot on the western

boundary where concentrations were almost 12 000 mg kg−1. The probability that the

AEIL threshold of 300 mg kg−1 is exceeded at this location is close to 1. The probability

of exceeding this threshold is greater than 0.8 for 12 % of sites in the study region. These

sites are generally located in the centre of the study area. For 12 % of sites, mostly located

on the northern, eastern and southern boundaries, the probability that the threshold is

exceeded is less than 0.2. The map of the loss function upon remediation (Fig. 3b) is
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roughly the inverse of the probability map.

The expected lead concentration is greater than the AEIL at 74 % of sites and the

probability that the AEIL is exceeded is greater than 0.5 at 53% of sites. The Monte

Carlo uncertainty analysis suggests that remediation should be conducted for 90 % of

the study region (Fig 4a) and the expected loss is 66.9 monetary units per site (Table

2). If the AEIL were raised to 1300 mg kg−1 remediation would only be cost-effective at

44% of sites (Fig 4c) with expected loss of 57.5 monetary units per site. The expected

concentration exceeds this modified threshold at 17 % of sites and the probability of

exceedance is greater than 0.5 at 2 % of sites.

Figures 4a and 4b show the optimized locations of 30 observations in second phase

surveys where the thresholds are 300 mg kg−1 and 1300 mg kg−1 respectively. Figure 5

shows a 30 point optimized design where remediation requirements are assessed over 50

m blocks rather than at the point scale. In all designs, observations are concentrated

upon the boundaries between where remediation is required and not required. For the

point scale surveys the 30 point second phase surveys reduced the expected loss to 63.5

monetary units when the threshold was 300 mg kg−1 and to 51.9 monetary units when

the threshold was 1300 mg kg−1 (Table 2). If the costs of sampling are known then this

information can be used to decide whether a second phase of sampling is cost-effective

and to determine the optimal size of this second phase.

6. Discussion and Conclusions

The copula framework was used to assess the relative suitability of various models of the

variation of lead around Glebe. The parametric form of the model meant that condi-
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tional simulations of lead could be easily generated. Hence it was possible to conduct

an uncertainty analysis of lead predictions, conditional on the observed data, and to ac-

count for the whole pdf when deciding whether remediation is required at a certain site.

This decision was based on a comparison of the expected losses from remediating and not

remediating.

Through the efficient use of LU simulation and copula-kriging it was also possible

to forecast the expected loss functions which would result from a proposed additional

phase of sampling. By comparison of the forecast reduction in the loss with the costs of

the extra sampling, an informed decision could be made about whether to conduct the

extra sampling. The forecast loss function was used in an SSA algorithm to optimize the

locations of observations within additional phases of the survey. These optimized surveys

located observations at the boundaries between areas which require and do not require

remediation. If additional phases of different sizes are optimized it is possible to select the

optimal number of observations. We note that for both thresholds considered, the areas

where remediation was recommended were substantially larger than the regions where the

probability of exceeding the threshold was greater than 0.5. This suggests that locating

additional observations at sites where the probability of exceedance is close to 0.5 is a

sub-optimal sampling approach.

The methodology described here is applicable for any specified loss function. How-

ever it does rely upon the availability of such a loss function. The loss function used in

this study was largely illustrative but more realistic functions have been used in other

studies. Ramsay et al. [35] developed loss functions for a number of specific contami-

nation sites to use within their optimized contaminated land investigation methodology.
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Demougeot-Renard et al. [9] derived a loss function for a survey of a former smelting

works. Brus et al. [36] showed how mathematical models can be used to quantify the

impact of soil metal pollution on crops and cattle and form the basis of loss functions.

The model of variation of the soil lead content is fitted to only the initial phases of

sampling. Updating the model after each phase of sampling could lead to bias because

areas where lead concentrations are expected to be close to the critical threshold are over-

represented in the additional phases. This was unlikely to be an issue with the Glebe

survey because the initial sampling consisted of more than 400 observations and a large

number of comparisons over short distances and was hence very suitable for geostatistical

model fitting [34]. However in circumstances where the initial model is too uncertain it

would be possible to account for the preferential sampling in the later phases [33] or to

design phases of sampling which do not depend on z(x) specifically to reduce the model

uncertainty [3]. Also an objective function which accounts for both variogram uncertainty

and the kriging variance could be used [34], [37]. Such a objective function tends to lead

to close pairs of sampling locations within the survey.

The methodology fits a model of variation to the observed data so it accounts for

both the uncertainty because of sampling and the uncertainty because of the laboratory

analysis of the samples. If multiple samples from the same site are analyzed then it is

possible to separate these components of uncertainty in the model (e.g. [38]). Then the

SSA approach could be used to explore the potential benefits of repeated analyses on soil

from the same site to reduce the analytical uncertainty.

From a geostatistical perspective the methodology is novel because it accounts for

both the uncertainty and expected concentration at each site and it can forecast the effect
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of multiple potential observations. The benefit from a practical perspective are that it

can calculate the expected loss function from existing observations and forecast what the

loss function will be if further phases of sampling are conducted. Hence it can be used to

make an informed decision about optimal remediation strategies and further sampling.
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ple, in: B.N. Petrov, F. Csáki (Eds.), Second International Symposium on Informa-
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Appendix

Distribution and density functions

The formulae for marginal distribution and density functions considered in this paper are:

Gaussian distribution

FG (z) = Φµ,σ2 =
1

2

{
1 + erf

(
z − µ
σ
√

2

)}
, fG (z) = φµ,σ2 =

1√
2πσ2

exp

{
−(z − µ)2

2σ2

}
,

(16)

where erf is the error function.

Log-Gaussian distribution

F L = FG(z∗), fL =
fG (z∗)

z
, (17)

where z∗ = log(z).

Box-Cox Gaussian distribution

FB = FG(z∗), fB =
fG (z∗)

z1−λ
, (18)

where z∗ = (zλ − 1)/λ.

Generalized Extreme Value distribution

FE = exp
(
−T−

1
ξ

)
, fE =

1

σ

(
T−

1
ξ
−1
)

exp
(
−T−

1
ξ

)
, (19)

where µ is the location parameter, σ the scale parameter, ξ the shape parameter, T =

1 + ξ(z − µ)/σ and the distribution exists for T > 0.
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Table 1: Fitted variogram parameters in scaled units, likelihoods and AIC values for
different marginal distributions.

Gaussian Log-Gaussian Box-Cox GEV
s 0.00 0.00 0.00 0.00
d m 712 119 114 615
ν 0.19 0.22 0.21 0.20
de 1404 250 234 1231
µ -0.11 -1.89 -2.00 -0.07
σ 0.34 1.36 1.40 0.99
λ - - -0.04 -
ξ - - - 0.01
L 359.1 406.0 408.2 394.7
AIC -708.2 -802.0 -804.4 -777.5

Table 2: Expected losses from misclassications after optimized second phase survey of
size N for different threshold values.

N zc = 300 zc = 1300
0 66.8700 57.5300
10 65.2139 55.3182
20 64.2117 53.5228
30 63.5089 51.8942
40 62.8680 50.4714
50 62.4028 48.9964
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Figure Captions

Figure 1: Sample scheme for 1993 survey of soil lead in Glebe, Australia with 100-m grid

used for stratification superimposed (left) and histogram of lead observations (right).

Figure 2: (left) Spatial prediction of expected concentration of soil lead in Glebe from

1993 survey. (right) Spatial prediction of the probability that the soil lead concentration

exceeds the AEIL Regulatory threshold of 300 mg kg−1.

Figure 3: Expected loss functions for 1993 Glebe survey if soil is (left) classified as not

contaminated or (right) classified as contaminated.

Figure 4: Optimized 30 observation second phase sample schemes superimposed upon

point-scale remediation recommendation from the 1993 Glebe survey. Remediation is

recommended for black regions and not for grey ones. Critical thresholds are 300 mg

kg−1 (left) and 1300 mg kg−1 (right).

Figure 5: Optimized 30 observation second phase sample schemes superimposed upon

block remediation recommendation from the 1993 Glebe survey. Remediation is recom-

mended for black regions and not for grey ones. Critical thresholds is 300 mg kg−1.
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