
Copyright © 2013 Elsevier B.V. 
 
This version available http://nora.nerc.ac.uk/502553/ 
 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
NOTICE: this is the author’s version of a work that was accepted for 
publication in Journal of Theoretical Biology. Changes resulting from the 
publishing process, such as peer review, editing, corrections, structural 
formatting, and other quality control mechanisms may not be reflected in this 
document. Changes may have been made to this work since it was 
submitted for publication. A definitive version was subsequently published in 
Journal of Theoretical Biology, 331. 78-90. 10.1016/j.jtbi.2013.04.014   
 
www.elsevier.com/   
 

   
 
 
Article (refereed) - postprint 
 
 
 

Seirin Lee, S. ; Baker, R.E.; Gaffney, E.A.; White, S.M. 2013. Modelling 
Aedes aegypti mosquito control via transgenic and sterile insect 
techniques: endemics and emerging outbreaks. Journal of Theoretical 
Biology, 331. 78-90. 10.1016/j.jtbi.2013.04.014  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Contact CEH NORA team at  
noraceh@ceh.ac.uk 

 
 

The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

http://nora.nerc.ac.uk/502553/
http://nora.nerc.ac.uk/policies.html#access
http://dx.doi.org/10.1016/j.jtbi.2013.04.014
http://www.elsevier.com/
http://dx.doi.org/10.1016/j.jtbi.2013.04.014
mailto:nora@ceh.ac.uk


Modelling Aedes aegypti mosquito control via transgenic and sterile

insect techniques: endemics and emerging outbreaks

S. Seirin Leea,1 , R. E. Bakerb , E. A. Gaffneyb , S. M. Whiteb,c

a Center for Developmental Biology, RIKEN, Kobe 650-0047, JAPAN (Email: seirin@cdb.riken.jp)

b Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK (Email:
E.A. Gaffney (gaffney@maths.ox.ac.uk), R.E. Baker (ruth.baker@maths.ox.ac.uk))

c Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB,
UK (Email: smwhit@ceh.ac.uk)

Abstract

The invasion of pest insects often changes or destroys a native ecosystem, and can result in
food shortages and disease endemics. Issues such as the environmental effects of chemical control
methods, the economic burden of maintaining control strategies and the risk of pest resistance still
remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries,
infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito
control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies
on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative
transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is
to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic
case and an emerging outbreak. We investigate how the release rate and size of release region
influence both the potential for control success and the resources needed to achieve it, under a
range of conditions and control strategies, and we discuss advantageous strategies with respect to
reducing the release resources and strategy costs (in terms of control mosquito numbers) required
to achieve complete eradication of wild-type mosquitoes.

Keywords: Biological control, Aedes aegypti, RIDL, SIT, transgenic insects.

1. Introduction1

The history of pest control is as old as human agriculture or disease. The invasion of pest2

insects often changes or destroys a native ecosystem, and can result in food shortages and disease3

endemics. As a result, the development of biological control methods has received widespread4

attention and, in some cases, they have been successful (Benedict and Robinson 2003; Dyck et al.5

2005; Vreysen et al. 2007). However, issues such as the environmental effects of chemical control6

methods, the economic burden of maintaining control strategies and the risk of pest resistance still7

remain, and mosquito-borne diseases such as Malaria and Dengue fever prevail in many countries8

1Corresponding author. E-mail: seirin.lee@gmail.com; seirin@cdb.riken.jp. Tel: +81 70 6504 6136. Fax: +81
78 306 3262.
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in East Asia, South America and Africa, infecting over 100 million and killing at least half a9

million in 2010 (WHO 2012a,b,c). Furthermore, repeated invasions are observed in regions where10

the vector mosquitoes have been eradicated completely in the past. For example, Aedes aegypti11

and Aedes albopictus are observed in Northern European countries as well as Asia (Hulden and12

Hulden 2008; Paupy et al. 2012). Global warming and the human transportation system also13

promote such situations (Enserink 2010). As such, continued research into the development of14

better pest control methods remains vital (Dyck et al. 2005; Pimentel 2011).15

One environmentally friendly alternative for mosquito control is the sterile insect technique,16

SIT (Knipling 1955). This species-specific method of insect control relies on the mass rearing,17

sterilization and release of large numbers of sterile insects, preferably males (Dyck, Hendrichs,18

and Robinson 2005), which, it is hoped, mate with wild-type insects, thereby reducing their19

reproductive output and, potentially, the pest population abundance (see Black et al. (2011) and20

Wilke et al. (2012) for recent reviews). Mixed-sex sterile releases are avoided where practical as21

they are generally less efficient and, for species such as mosquitoes, it is only the females that bite.22

This means that their release could potentially aid disease spread in the short-term (see Alphey23

et al. (2010) for a recent review).24

Other transgenic technologies have recently been developed to improve SIT control (Benedict25

and Robinson 2003; Wimmer 2003; Alphey et al. 2010); these include genetic sexing (Robinson26

et al. 1999), genetic marking (Peloquin et al. 2000) and genetic female-specific lethality (Seawright27

et al. 1978). One such transgenic strategy is RIDL, i.e. “Release of Insects carrying a Dominant28

Lethal” (Thomas et al. 2000; Phuc et al. 2007). Here the released transgenic males are homozygous29

for a dominant lethal gene that is expressed in both male and female (bisex) progeny that result30

from mating with wild-type insects. Female-specific RIDL strategies have also been developed (Fu31

et al. 2010), but here we focus on bisex RIDL control strategies. Hereafter, we use the terms SIT32

and sterile to refer to early-acting lethality of the progeny of released insects, for example classical33

SIT using radiation-induced sterility, and the terms RIDL and transgenic to refer to late-acting34

lethality in both sexes.35

We note also that the developmental stage at which the dominant lethal gene is expressed, for36

instance the embryonic or the larval stages, can have a substantial effect on the control strategy.37

In particular, late acting genes, which induce death after the density-dependent larval stage, have38

a significant advantage over SIT strategies because of an additional reduction in pest abundance39

that arises as a result of larval competition (Atkinson et al. 2007; Phuc et al. 2007; White et al.40

2010).41

The details of mosquito dispersal behaviour are not completely understood (Reiter et al. 1995;42

Harrington et al. 2005), though there have been mathematical modelling studies highlighting that43

Ae. aegypti invasion rates have a critical influence on the success of the control strategy (Lewis and44

Driessche 1993; Takahashi et al. 2004; Yakob et al. 2008; Magori et al. 2009; Seirin-Lee et al. 2013).45

Nonetheless, studies that explore the effects of Ae. aegypti invasive dynamics upon the efficacy46

of SIT and RIDL control strategies in eliminating mosquitoes are limited to those by Yakob47

et al. (2008) and Yakob and Bonsall (2009), which consider the interplay of stage structuring48

and dispersion on a lattice with a small control region that is embedded within an established49

pest population. These investigations a reveal complex dynamics and focus on the differences50

between SIT and RIDL control strategies for a very limited variation in spatial parameters, other51

than dispersal rates. However, firstly, it is not clear whether a strategy aimed at eliminating an52
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established pest is appropriate for eradicating an emergent, invading, outbreak. In addition, the53

influence of systematically varying the size of the region in which control insects are released is54

an aspect of spatially heterogeneous models that is essentially unexplored and merits detailed55

study, given the concern that spatial dynamics such as mosquito invasion is becoming a critical56

issue on global scale (Benedict et al. 2007; Jansen and Beebe 2010). Furthermore, such detailed57

investigations are facilitated in the continuum modelling approach considered here, which allows58

the ready prediction of scaling laws, as illustrated below for the influence of dispersal rates. More59

generally the continuum approach is typically an appropriate and efficient framework, and thus60

often advantageous, when the lengthscale and timescale under consideration are large compared61

to those describing the population’s individuals.62

Our objective is thus to consider control strategies for two control scenarios via SIT and RIDL:63

an endemic case and an emerging outbreak for a mosquito vector. In the former case, a mosquito64

vector is endemic. In contrast, in the latter case invading mosquitoes establish and cause a local65

outbreak in a previously mosquito-free region; see Fig 1. An important question is how such66

differences in the initial scenario induce different response to variations in control strategies with67

SIT and RIDL. In particular, we are concerned with how these responses are influenced by spatial68

parameters such as dispersal rates and especially the lengthscales of the regions in which control69

insects are released. Thus for the two contrasting scenarios, we investigate how varying the release70

rate in conjunction with the size of release region influence both the potential for control success71

and the resources needed to achieve it, in terms of control mosquito numbers, under a range of72

conditions. We thus discuss the relationships between the size of the control zone, the mosquito73

dispersal rate and advantageous strategies with respect to reducing control insect numbers and74

thus improving the strategy costs required to achieve eradication of mosquitoes. Finally, we briefly75

note that in the emerging outbreak case, we explore release efforts and strategy-costs with a control76

strategy that can eradicate the wild-type females. This is in distinct contrast to halting the spread77

of an outbreak using a barrier zone method of our previous study (Seirin-Lee et al. 2013).78

2. Materials and Methods79

2.1. Mathematical models80

We build upon the temporal model of mosquito population dynamics developed by Dye (1984),81

which was validated on data for the larval and adult ecology of Ae. aegypti in Wat Samphaya,82

Bangkok, Thailand, published in Sheppard et al. (1969) and Southwood et al. (1972), and from83

unpublished reports of the World Health Organization’s Aedes Research Unit (ARU) in Bangkok84

[ibid].85

The densities of wild-type female mosquitoes and sterile/transgenic male mosquitoes at time86

t are respectively denoted by N(t), S(t). Following Dye (1984) we firstly assume that mosquito87

proliferation proceeds via a stage-structured process approximated by a delayed density-dependent88

mortality acting on a pre-adult developmental stage, reflecting larval competition. In addition,89

equal numbers of male and female wild-type mosquitoes are assumed, and it is taken that wild-type90

females mate in proportion to their relative abundance (Knipling 1955; Phuc et al. 2007), at a rate91

given by N(t)/(N(t) + cS(t)) where 0 < c ≤ 1 represents the reduced mating competitive ability92

of sterile male or transgenic male mosquitoes. We also impose the same per capita death rate,93

denoted µ below, for the female wild-type and male sterile/transgenic mosquitoes. In addition,94
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the control framework is modelled by the release of sterile or transgenic male mosquitoes at a95

constant rate, denoted κ = θN∗, where N∗ is the control-free equilibrium density of wild-type96

mosquitoes and θ is defined as the release rate ratio.97

By balancing mosquito numbers, these assumptions yield the following equations:98

dN(t)

dt
= rN(t− T )

(
N(t− T )

N(t− T ) + cS(t− T )

)
Φ(t)− µN(t),

dS(t)

dt
= κ− µS(t).

(1)

Here Φ(t) captures density-dependent competition in the larval stage, the delay time, T , represents99

the mosquito developmental time in the stage-structuring and, finally, the egg production rate per100

adult female is denoted by r and is multiplied by a corrective factor to account for futile matings101

with steriles and imperfect survival while reaching the adult stage.102

The late-acting lethal induced by RIDL is anticipated to participate in larval competition103

and thus Φ is unaffected by the perturbations induced by such control strategies and hence104

is independent of transgenic mosquitoes. Following the classical insect population dynamics of105

Gurney et al. (1980), we therefore have106

Φ(t) = exp
[
− αEβNβ(t− T )

]
, (2)

with RIDL control. Here β is a parameter representing the strength of density-dependent com-107

petition that facilitates fitting with field data, as detailed by Dye (1984). Note that α, E occur108

only in the parameter grouping αEβ and thus one cannot separate the interpretation of these109

two parameters. They are distinct here to maintain notational similarity with Dye’s (1984) model110

formulation, where 1/α is interpreted as the size at which the wild-type female mosquito population111

reproduces at maximum rate and E is the egg production rate of adult mosquitoes. Nonetheless,112

below we treat αEβ as a single parameter grouping.113

For SIT, the matings with control mosquitoes do not give rise to any offspring, and thus114

larval competition is reduced in proportion to the number of futile matings. Hence, for SIT, we115

have (Phuc et al. 2007; White et al. 2010; Seirin-Lee et al. 2013)116

Φ(t) = exp

[
− αEβ

(
N(t− T )

(
N(t− T )

N(t− T ) + cS(t− T )

))β]
, (3)

thus accounting for how the SIT interventions interfere with larval competition. The general117

extent to which such models concur with alternative representations of stage structure in mosquito118

dynamics, for instance the models based on the framework of Focks et al. (1993a,b) such as119

Erickson et al. (2010), is an open question that we do not address here.120

We proceed to generalise the temporal model (1)–(3) to consider spatial dynamics in a one-121

dimensional homogeneous domain (See Fig. 1 for a schematic). The larvae are not motile and122

hence there is no dispersive kernel linking the stages of mosquito maturation, though the adults123

are taken to diffuse at constant rate. Hence, for t > 0 we have124

∂N(x, t)

∂t
= D

∂2N(x, t)

∂x2
+ rN(x, t− T )

(
N(x, t− T )

N(x, t− T ) + cS(x, t− T )

)
Φ(x, t)− µN(x, t),

∂S(x, t)

∂t
= D

∂2S(x, t)

∂x2
+ κ(x)− µS(x, t),

(4)
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where x ∈ Ω, the spatial domain, with D denoting the diffusion rate of both wild-type females
and sterile/transgenic males. The competition term, Φ(x, t), is given by (2) or (3) by simply
exchanging S(t) and N(t) for S(x, t) and N(x, t) respectively. We also assume the boundary of
region Ω does not permit mosquito transport and thus we have zero flux boundary conditions,

∂N

∂x
=
∂S

∂x
= 0, x ∈ ∂Ω.

To model control strategies we consider the continuous release of sterile/transgenic males within125

the delivery region at a constant rate per unit length, θN∗, which defines θ given N∗ denotes the126

control free equilibrium pest insect density. This is described in detail via the release function127

κ(x) = θN∗χ(x), χ(x) =

{
1 x ∈ A
0 x ∈ Ω\A , (5)

where A is the region of Ω in which sterile/transgenic males are released at rate θN∗. In Fig. 1,128

A becomes the interval [x̄, x̄ + γs]. We use this general functional form to explore two different129

scenarios and their respective control strategies.130

2.2. Scenarios and control strategies131

We consider two scenarios. The first is an endemic case in which female mosquitoes are132

widespread over an isolated region Ω, so that the width of the wild-type female habitat, γN , is133

equal to |Ω|. The control is applied by releasing sterile/transgenic males locally within the region134

(Fig. 1(a)). The second scenario is an emerging outbreak case, in which female mosquitoes are135

invading a new environment. In this case, Ω is large enough so that γN � |Ω| (Fig. 1(b)). For136

both cases, control success will mean a complete eradication of wild-type female mosquitoes rather137

than just an invasion arrest or a decrease in pest population density.138

2.2.1. Endemic outbreaks and the local release strategy139

This scenario is described in Fig. 1(a) in detail and we call it the local release strategy. We140

assume that the female wild-type mosquito population has already approached carrying capacity141

in an isolated homogeneous region. The simplest control strategy for complete eradication in this142

scenario is the release of a sufficiently large number of sterile/transgenic males over the whole143

region, γS = γN , where γS is the width of the release region. The success of this control method144

can be explored in a straightforward manner via the temporal model, (1), because success depends145

only on the release rate of sterile/transgenic males per unit time. We obtain a minimal release146

ratio for complete eradication, as in Phuc et al. (2007) and Seirin-Lee et al. (2013). However, it is147

not clear how the minimal release ratios change when release is over only a portion of the region,148

γS < γN , nor how critically this ratio depends on the mosquito dispersal rate. Hence, we explore a149

measure of the resource cost required for the successful eradication of female mosquitoes, namely150

the product of the release region size and the release ratio, which below we refer to as the release151

effort, [EF ]loc. This measure therefore is the total number of released sterile/transgenic males per152

unit time, and is given mathematically by153

[EF ]loc = γSθN
∗. (6)
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Figure 1: Control strategy scenarios. (a) Endemic case. Wild-type female mosquitoes are distributed uniformly on
an isolated region and the sterile/transgenic male mosquitoes are released locally. (b) Emerging outbreak case. The
wild-type female mosquitoes form a wave, invading pest-free territory in both directions, whose spatial variation
can be determined from the solutions of the model in the absence of control. The spatial extent of this wave,
denoted γN , requires a detection (or tolerance) threshold density, which is denoted by ε̄. Thus γN is the size of the
region for which, at initial time, the mosquito density is above threshold, N > ε̄. In the model, the total spatial
region considered is of size |Ω|, with the assumption |Ω| � γN . In attemptive control, the release region of the
sterile/transgenic mosquitoes is denoted represented by the interval [x̄, x̄+ γS ].
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As mentioned in the Introduction, the indefinite release of sterile/transgenic mosquitoes im-154

poses a heavy economic burden, and hence we estimate the time to complete eradication, in155

particular because many of the insects involved are likely to be influenced either seasonally or by156

climate change (Purse et al. 2005; White et al. 2010). The time required for complete control157

will also be a very important issue in determining improved strategies. Thus we also define the158

strategy-cost as the product (release effort × time to eradication). Mathematically, this is given159

by160

[SC]loc = [EF ]loc × Tex, (7)

where Tex is the extinction time of the wild-type female mosquito population, which requires161

definition in terms of a tolerance (or detection threshold), characterised by ε below. In particular,162

Tex is the smallest time such that whenever t > Tex we have,163

1

|Ω|

∫
Ω

N(x, t)

N∗
dx < ε� 1. (8)

Typically in our simulations we take ε = 10−2. The strategy-cost is therefore the total number of164

sterile/transgenic males released up until effective eradication of the wild-type female mosquito165

population.166

2.2.2. Emerging outbreaks and the wavefront cover strategy167

In the modern era of developed human transport systems, the transmission of disease over168

several thousands of kilometres by vector insects is common (Shigesada and Kawasaki 1997;169

Enserink 2010). We expect, with a uniform environment, mosquitoes will disperse in a wave-170

like manner away from their initial site of invasion, with the population approaching its carrying171

capacity behind the wave. We suppose that sterile/transgenic males are released over a single172

region of length γS, as depicted in Fig. 1(b), which covers the invasive wavefront.173

As a measure of cost resource, we define the release effort by174

[EF ]cov =
γSθN

∗

γN
, (9)

where γN denotes the above-threshold region which wild-type female mosquitoes have invaded175

when control is initiated. Noting the invasive profile is unimodal, as depicted in Fig. 1(b), we176

have γN satisfies the constraint N(x̂, 0)/N∗ = N(x̂ + γN , 0)/N∗ = ε̄ where ε̄ is the threshold and177

thus an extremely small density (which the results are insensitive to).178

However, note that γN is defined differently for parameter sets A and B in the numerical179

simulation, as these induce invasive waves with different spatial profiles. Thus the release effort180

function (9) has been defined per unit length and the release effort for an emerging outbreak (9)181

constitutes the average number of sterile/transgenic males released per unit time and per unit182

length of the initial above-threshold outbreak domain. With the extinction time given by (8) the183

strategy-cost is184

[SC]cov = [EF ]cov × Tex × γN = γSθN
∗ × Tex, (10)

which is the total number of sterile/transgenic males released during the control period.185
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2.3. Parameter values186

As with many other studies (e.g. Phuc et al. (2007); Yakob et al. (2008); White et al. (2010)) we187

use Dye’s (1984) estimates for the life-history parameter values for Ae. aegypti, which incorporate a188

range of values for the intrinsic birth rate, r, and the density-dependent coefficient, β. As presented189

in Table 1, we focus on two sets of parameters which represent the extremes of r and β (White190

et al. 2010; Seirin-Lee et al. 2013), with the grouping αEβ chosen so that the equilibrium density,191

N∗, is the same for each parameter set and of the order of one million mosquitoes per kilometre192

for the spatial models. The first parameter set, denoted A, has a lower intrinsic birth rate, r, in193

combination with weaker density-dependent competition, β, and gives rise to a stable equilibrium194

which is approached monotonically in the absence of control strategies. In contrast, parameter195

set B has substantially larger birth rate, r, and higher density-dependent competition, β, which196

induces overcompensating density-dependent competition, giving rise to oscillatory dynamics in197

an uncontrolled population for the spatially homogeneous model. This dynamics arises as a198

peak in the adult population results in an increase in reproduction, leading to competition and199

a subsequent drop in the following generation. Population recovery then follows as a result of a200

drop in competition.201

These two parameter sets also result in very different predictions concerning the control of202

Ae. aegypti mosquitoes (see, for example, Phuc et al. (2007)). While SIT and RIDL control203

strategies give rise to similar results in decreasing the population wild-type female mosquitoes in204

the case of parameter set A, for parameter set B, a moderate release rate of sterile mosquitoes205

may undesirably increase the wild-type mosquito population due to a reduction in competition206

offsetting the reduced birth rate.207

It should be noted that we take the density-dependence parameters from Dye (1984), following208

many previous studies. However, Legros et al. (2009) has called these values into question by209

using an alternative technique, and finding different values. The qualitative results that follow210

do not change for these alternative values and we detail this further in the Discussion and both211

parameter sets are considered given the uncertainty in their estimates. Also, in the absence of212

explicit empirical estimates for the diffusion rates of sterile or transgenic Ae. aegypti mosquitoes213

(Reiter et al. 1995; Harrington et al. 2005), we assume that the sterile/transgenic mosquitoes have214

the same diffusion rate as wild-type mosquitoes, and this is varied across a broad range, from215

hundreds of square meters per day to several square kilometres per day.216

Recent studies in radiation dose optimisation has led to marked improvements in SIT in general,217

with some studies showing little competitive reduction from radiation (Mastrangelo et al. 2012;218

Oliva et al. 2012; Sow et al. 2012). Similarly, the mating competitiveness of genetically sterile219

RIDL male mosquitoes has been shown to comparable to that of their wild-type counterparts in220

semi-field conditions (Lee et al. 2013). Therefore we assume that, for both control strategies, the221

mating competition coefficient (c) is close to unity, reflecting a small fitness cost. An extensive222

investigation into this parameter can be found in White et al. (2010).223

Note that, although we present numerical results with representative diffusion rates and the
parameter sets in Table 1, simple parameter rescaling using nondimensionalisation leads to the
same results for a three-dimensional family of parameter choices so that our results are not
restricted to the parameters listed in Table 1. For instance the effect of variations in the parameter
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Figure 2: The effect of the local release strategy for an insufficient release of sterile/transgenic males. The wild-type
female habitat size is γN = 500 km and the release region size is γS = 250 km. The release rate ratio, θ, is 1.5.
The plots show the normalised female wild-type population and sterile/transgenic male population relative to the
wild-type female equilibrium, N∗.

grouping αEβ can be inferred from the fact the model equations are invariant under the mapping

αEβ → (αEβ)1 =
1

ζβ
αEβ, N → N1 = ζN, N∗ → N∗1 = ζN∗, S → S1 = ζS.

Finally, a detailed numerical scheme for the model given by equations (4)–(5) is described in224

Appendix A.225

3. Results226

3.1. Endemic outbreaks and the local release strategy227

We consider the local release strategy, asking two main questions: (i) To what extent does228

the dispersal rate affect the potential for eradicating female mosquitoes? (ii) If the local release229

strategy is effective, what is the minimal release region and how does it relate to the release rate230

ratio and dispersal rate? Our simulation results show that for some release regions and rates231

the local release strategy is not always successful in eradicating female wild-type mosquitoes (see232

Fig. 2). In particular, with parameter set B, application of a local release strategy using SITs in233

fact induces an increase in the total female population if the release rate is not large enough, as234

observed in spatially homogeneous modelling (Phuc et al. 2007). Below, we explore the relationship235

between duration for complete eradication, the release rate and the release region size, plus their236

influence in reducing resources, as measured via control mosquito numbers.237

3.1.1. Minimal release region size for complete eradication238

We denote the minimal release region size by γminS and define it as the release region size at239

which we are able to achieve complete eradication for a given release rate ratio, θ. In order to find240

the minimal release region size required for complete eradication of female wild-type mosquitoes241

we plot, in Fig. 3(a), the threshold values of (γS, θ) at which female mosquitoes become extinct242
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Table 1: The values of (r, β) associated with parameter sets A and B have been chosen from the parameter ranges
estimated by Dye (1984), as also used in other modelling investigations (Phuc et al. 2007; White et al. 2010).
The parameter grouping αEβ for parameter set B has been fixed to ensure the same control-free equilibrium of
approximately six million mosquitoes per kilometre.

Parameter Definition Value
/Variable
N Density/number of female wild-type mosquitoes
S Density/number of male sterile or transgenic mosquitoes
Ω Whole spatial region 500 km
γN Width of wild-type females habitat† (0, 500 km]
γS Width of sterile/transgenic male release region (0, 500 km]
D Diffusion coefficient for mosquitoes [0.01, 25] (km2/day)
T Mosquito development time 18.84 days
c Coefficient of reduced mating competitive ability of sterile/ 0.95

transgenic male mosquitoes
µ Death rate of wild-type adult females 0.12 days−1

κ Release rate of control strategy males θN∗ days−1 ††

θ Release rate ratio of control strategy males (0, 20](days−1)
Parameter set A

r Birth rate of adults corrected for egg to adult survival 0.367 days−1

β Density-dependent coefficient 0.302
αEβ Density-dependent coefficient 0.01 ††

N∗ Control-free female mosquito equilibrium 6.064×106 ††

([(1/α) ln(r/µ)]1/β/E)
Parameter set B

r Birth rate of adults corrected for egg to adult survival 1.31 days−1

β Density-dependent coefficient 1.0
αEβ Density-dependent coefficient 3.94×10−7 ††

N∗ Control-free female mosquito equilibrium 6.064×106 ††

† γN = |Ω| in the endemic scenario (Fig. 1(a)); γN is taken to satisfy

N(x̂, 0)/N∗ = N(x̂+ γN , 0)/N∗ = ε̄ such that ε̄ < O(1/N∗), (11)

in the emerging outbreak scenario (Fig. 1(b)).
†† For the spatial model, this value is given with appropriate length units, i.e. per (km)β for αEβ and per km for
N∗.
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Figure 3: Minimal release region size and release effort for complete eradication using the local release strategy in
the endemic scenario. For (b) and (c), the control release rate ratio, θ = 10, is fixed. Diffusion rates are 1 km2/day
except for (c). SIT-A and RIDL-A imply parameter set A, and SIT-B and RIDL-B imply parameter set B. (a)
The threshold curves for successful local release control strategies. The region above each curve is associated with
control success, whilst below each curve corresponds to control failure, with levels of normalised release effort given
by [EF ]loc/N

∗ = θ× γS . (b) The relation between the female habitat size, γN , and the minimal release region size
γminS . For parameter set A, γN − γmins ≈ 30 km in both SIT and RIDL for γN sufficiently large, with the small
γN < 35 km behaviour illustrated for the SIT strategy in the inset and is analogous for RIDL. (c) The dependence
of γminS on diffusion rates for γN = 500 km. (d) The release effort as a function of release rate ratio, (6), while
restricted to the curve γs = γmins . The values for SIT-A and RIDL-A are very similar so that the points overlap.
The release effort values in all cases increase monotonically.
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Figure 4: Extinction time and strategy-cost using the local release strategy in the endemic scenario. Diffusion rates
are 1 km2/day. γs = γmins here, given by Fig. 3(a). (a)–(b) Extinction time as measured by the equation (8) for
data restricted to the curve γs = γminS , Fig. 3(a). (c)–(d) The normalised strategy-cost [SC]loc/N

∗, where [SC]loc
is given by equation (7), is plotted as a function of the release rate ratio. The white points (◦, �) in (d) show how
the strategy cost, [SC]loc, sensitively changes with the size of the release rate ratio. The black points (•, �) in (d)
are calculated by the threshold values of (γminS , θ) for complete eradication and each eradication time given in (b).
The white points are calculated for these parameter values except that the release rate ratio is increased by a very
small amount, 0.05.
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throughout the entire habitat. Note that we have assumed in our calculations that complete243

eradication is achieved when the constraint (8) is satisfied.244

Regardless of the control strategy and parameter choice, when the release rate ratio is small, the245

size of release region required for successful eradication of female mosquitoes depends sensitively246

on the release rate ratio. However, for large release rate ratios the minimum size of release region247

becomes insensitive to changes in the release rate, as shown in Fig. 3(a), although the size of release248

rate ratio at which this insensitivity arises, and the size of release region there, are dependent on249

the control strategy and parameters chosen.250

We explore the dependence of the minimal release region size upon γN for a fixed release251

rate ratio in Fig. 3(b). The results highlight that the minimal release region size increases with252

female habitat size but, surprisingly, γN − γminS (
def
= δopt) is constant (approximately 30 km for253

parameter set A) when γN is sufficiently large; however, γN − γminS decreases and tends to zero254

as γN is reduced to zero. This enables us to suggest an intuitive result, that the local release255

strategy is more effective for a small habitat than a large one. For example, when the female256

habitat is very large, we need to release sterile/transgenic males over a very wide region to achieve257

eradication. In contrast, when the habitat is very close in size to δopt or less than it, release in258

a very small region compared to γN will be sufficient to eradicate the female population over259

the whole habitat. Furthermore, we note that this result is not highly sensitive to the choice of260

parameter set or control strategy.261

The sensitivity of δopt to the diffusion rate is shown in Fig. 3(c) where we see the, again, intuitive262

result that γminS decreases as the diffusion rate increases. Further, as detailed in Appendix B, a263

scaling relation exists for the variation of the minimal release region size with the diffusion rate:264

γminS (D) =
C√
D
− δopt, (12)

where C is a constant given by C =
√
D0γ

0
N with D0, γ0

N denoting a fixed diffusion rate and habitat265

size of wild-type females, respectively. Since the choice of optimal release region is highly sensitive266

to the value of the diffusion rate, one would require careful experimental measurement of mosquito267

diffusion rates in order to be able to minimise the release effort. Nonetheless, the local release268

strategy is potentially applicable to small endemic regions, regardless of the parameter values and269

control method used.270

3.1.2. Release effort and strategy-cost271

In Fig. 3(d), we plot the release effort for each strategy and parameter set on restriction to the272

threshold curve, Fig. 3(a). Note that the minimal release effort is given at the minimal release rate273

ratio and the release effort increases monotonically as the release rate ratio increases, regardless274

of the choice of SIT and RIDL, or parameter set.275

Further, the extinction time of the wild-type female mosquitoes at points (θ, γminS ) taken from276

Fig. 3(a) is fairly constant except for small release rate ratios or sufficiently large release rate277

ratios, as shown in Fig. 4(a), (b). The reason that the extinction time is almost constant for278

intermediate release rate ratios is that it is governed by the invasion timescale of the control279

mosquito for the domain, given γmins is approximately constant. Once the minimal release region280

size, γminS , becomes insensitive to increases in the release rate ratio (for example, around θ = 8.0281

in Fig. 4(a)), the extinction time decreases as the release rate ratio increases. This is because282
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the extinction time for wild-type females on Ω\γminS decreases as the number of sterile/transgenic283

males migrating into Ω\γminS increases, which is promoted when the sterile/transgenic males are284

released as quickly as possible. In contrast, with very small numbers of released males, a long285

time is required for the sterile males to reach each boundary of the female habitat, so that the286

eradication time of the females increases.287

For smaller release rates, we obtain a monotonically increasing strategy-cost, [SC]loc, as a288

function of the release rate ratio, as illustrated in Fig. 4(c). This is because the value of the289

release effort at small release rates is small enough to counteract the influence of any increase290

in extinction time in the strategy-cost, equation (7), so that the strategy-cost monotonically291

increases as a function of the release rate ratio, as shown in Fig. 4(c), (d). However, the strategy292

cost, [SC]loc, slightly decreases around θ = 8.0 because the extinction time decreases with a large293

release rate ratio, as shown in Fig. 4(a).294

Although the strategy cost, [SC]loc, decreases with reductions in the release rate ratio, θ, the295

eradication time is, in fact, sensitive to the fact we are working with the minimum release range,296

γminS of Fig. 3(a). The white points (◦, �) in Fig. 4(d) illustrate this: the strategy cost, [SC]loc,297

of the white points has been calculated with the extinction time for the same release range but298

a very slightly elevated release rate ratio compared to the black points (•, �). Obviously, the299

strategy-costs for the white points are smaller than the respective black points, a result of the300

decrease in Tex. We thus can reduce strategy-costs by selecting higher release rate ratios than the301

threshold value, at which elimination just occurs.302

3.1.3. Sensitivity of the surviving population of wild-type females to the diffusion rate and release303

rate ratio304

In the endemic scenario, γN is always greater than γS so that if one does not choose the release305

region size greater than γminS , complete eradication of wild-type female mosquitoes will not be306

achieved. However, one can still achieve local eradication, as shown in Fig. 2. In what follows, we307

explore how mosquito dispersal rates and release rates affect the decrease in the wild-type female308

population. The numerical results are shown in Fig. 5 where the average number of surviving wild-309

type female mosquitoes is plotted as a function of both the mosquito dispersal rate and release310

rate ratio. The former has a negligible effect when the release rate is small. In contrast, for a311

large enough release rate and parameter set A, we see that an increase in the dispersal rate causes312

a decrease in the new population equilibrium. This is because the dispersion of sterile/transgenic313

mosquitoes to outlying regions increases, though such an effect is negligible for diffusion rates314

on the order of hundreds m2/day. For parameter set B, an insufficient number of sterile males315

using SITs can lead to an increase in the female population as diffusion rates are increased (see316

Fig. 5(c)). This is consistent with the results of the discrete model formulated by Yakob et al.317

(2008). In Fig. 5(d), we find that the RIDL method has a clear switch around θ = 1.0 but the318

average fraction of surviving wild-type females is not sensitive to the release rate ratio for a given319

diffusion rate.320

3.2. Emerging outbreaks and the wavefront cover strategy321

One finds four kinds of representative dynamics, determined by the release rate ratio, θ. Fig. 6322

illustrates results for SIT controls, whilst RIDL controls exhibit similar dynamics, except for the323

absence of an increase in the wild-type female population observed in Fig. 6(b), (c).324
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Figure 5: Average fraction of surviving wild-type females for different diffusion rates and release rate ratio with
γN = 500 km and γS = 250 km, whereby eradication is not feasible. The plots give the normalised equilibrium
female wild-type population in terms of θ, the control release rate ratio. The dotted line indicates 1.0 which is the
normalised equilibrium population of female mosquitoes before control.
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Figure 6: Control success/fail scenarios for the emerging outbreak scenario. (a)–(d) plot representative cases for
the SIT method with parameter set B. Similar dynamics are observed for the other parameter set or RIDL except
that local increases in female density are not observed in cases (b), (c). D = 1 km2/day. The initial value of γN in
the numerical simulations is 325.5 km and is obtained from equation (11). The release region size, γS , is 275 km
and the release rate ratio, θ, is varied. (a) θ = 8.0: the female population decreases monotonically over the habitat.
(b) θ = 7.5: the wave of females reverses direction and the wild-type female population becomes extinct. (c)
θ = 6.5: the female population increases over the habitat so that the control fails locally but succeeds in blocking
dispersion of the female mosquitoes. (d) θ = 6.0: not only does the wild-type female population increase but also
the wave escapes the control region and control fails completely.

In Fig. 6(a) a sufficiently large release rate ratio drives the wave of wild-type female mosquitoes325

extinct before it can extensively disperse outside of the sterile male release region, and successful326

control is established. In (b), with a decrease in the release rate ratio, the invading wave of female327

mosquitoes reverses its direction of travel (i.e. the infested region contracts) and eventually the328

population becomes, again, extinct, though the wild-type female population size increases on329

reversal using SIT with parameter set B. In (c), in contrast, the wave of female mosquitoes ceases330

contraction and, in the SIT case, the female population increases. Eradication is not achieved.331

Finally, in (d), with a further decrease in the release rate ratio we see that the female population332

wave is able to invade through the boundaries of the control region and eventually occupy the333

entire habitat. In cases (a) and (b), control is successful but in the cases (c) and (d), control fails.334

In what follows, we explore optimal strategies for control success.335

3.2.1. Minimal release region size needed for complete eradication336

Fig. 7 shows that the values of (θ, γminS /γN) are not sensitive to the choice of SIT or RIDL337

methods. For both parameter sets A and B, the variation in γminS /γN is very small for θ ∈ [0, 10].338

This implies that the minimal release region size, γminS , varies only within several kilometres on a339

dimensional scale. Hence, the sensitivity of the minimal release region size to the release rate ratio340

is much less than in the case of the local release strategy. Such insensitivity is observed regardless341

of diffusion rates (results not shown). Since γminS converges to a constant value as the release rate342
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Figure 7: Wavefront cover strategy in the emerging outbreak scenario. Release rate ratio and relative release region
size for complete eradication of the wild-type female mosquitoes. The threshold curve indicates successful control
strategies. Above the curve control is successful and below the curve control fails. In (a), the parameter regions for
the four representative dynamics of Fig. 6 are sketched. Similar parameter regions are also obtained in the case
of parameter set B (details not shown). D = 1 km2/day, γN = 373.5 km in (a) and γN = 325.5 km in (b). For
numerical simulations, we calculate γN using equation (11). As we take very small values for ε̄ in (11), the value
of γN used in our result is usually larger than γminS so that γminS /γN is less than 1.

ratio increases, once γS is less than the threshold of γminS , the sterile/transgenic males always fail343

to impede the female wild-type wave, even for large release rate ratios. However, if γS > γminS , the344

release rate ratio critically influences the dynamics of the wild-type females, as shown in Fig. 6345

and the parameter region sketches of Fig. 7, and it determines the extent of control success.346

In contrast to the results for the local release strategy, shown in Fig. 3(a), the threshold347

requirement of complete eradication for either the SIT or RIDL strategy induces relatively small348

changes in the minimal release region size even for parameter set B (Fig. 7(b)). In particular, the349

female wild-type population in the local release strategy for the endemic scenario remains at high350

levels and the density-dependency impacts strongly at the edges of the released sterile/transgenic351

male zone inducing different minimal release region sizes not only between SIT and RIDL but352

also between parameter sets. However, for wavefront covering strategies both edges of the female353

wild-type wave have low population density so that the effect of the density-dependence is slight,354

explaining the similarity of the behaviour of the SIT and RIDL strategies here.355

3.2.2. Time to extinction and release rate ratio356

In Fig. 8, we show the dependence of extinction time upon release rate ratio, given a sufficiently357

large and fixed release region size, γS. Since the extinction time is not measured precisely in the358

deterministic model, we define the extinction time for the female mosquitoes to be the minimal359

time satisfying equation (8). As expected, and also observed in a spatially homogeneous study360

by Atkinson et al. (2007), this eradication time increases drastically as the release rate ratio361

reduces towards the threshold. Indeed, for a release rate ratio on the order of the threshold value,362

and an eradication time of several years is predicted (Fig. 8(a),(c)). In contrast, release rate363
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Figure 8: The dependence of extinction time on release rate ratio using the wavefront cover strategy in the emerging
outbreak scenario given a fixed release region, γs, above γmins for all θ. The diffusion constant is D = 1 km2/day.
When the release rate ratio is small, the extinction time shows extreme sensitivity to the choice of control method.
(a)–(b): Parameter set A. (c)–(d): Parameter set B.

ratios significantly higher than threshold can reduce the time to extinction to the order of months364

(Fig. 8(b),(d)). Such predictions of the temporal dynamics can be made regardless of the choice365

of parameters or SIT/RIDL strategies. Nevertheless, the threshold release rate ratio for the RIDL366

technique is less than for SIT and RIDL always offers faster eradication, especially near threshold.367

3.2.3. Release effort and strategy-cost368

Before discussing results, we note that [EF ]cov and [SC]cov given by equations (9) and (10),369

respectively, depend on the initial size of the female mosquito wave, γN , which is determined370

slightly differently depending on parameter sets A and B because the initial size of the wild-type371

female wave is given by simulation data for an invasive wave, using equation (4) with S(x, t) ≡ 0.372

This differs between parameter sets A and B. Thus, strictly, we cannot use these two strategy373

measures directly for comparing the influence of the choice of parameter set. However, these374

two measurements are effective for exploring the effectiveness of SIT or RIDL using the same375

parameter set.376
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Figure 9: Release effort and strategy-cost values. The diffusion rate is D = 1 km2/day and the release region is
the same as Fig 8, and thus fixed above γmins for all θ. (a)–(b) are the release effort values as a function of release
rate ratio, and (c)–(d) are the strategy cost values, as given by (10), for varying release rate ratio, θ

In Fig. 9 we present the results of a more detailed exploration of the release effort and strategy-377

cost for a fixed domain size γs, in excess of γmins for all release rates considered. The minimal378

effort values are subsequently given by the minimal release rate ratio regardless of the choice of379

SIT/RIDL strategies or parameter sets. Furthermore, as expected from Fig. 7, the release efforts380

using SIT and RIDL are identical. Nonetheless, we see non-trivial results for the strategy-cost,381

[SC]cov, as shown in Fig. 9(c)–(d). Note the eradication time decreases very rapidly once the release382

rate ratio is increased above the minimal release rate ratio required for complete eradication for383

the fixed value of γs used; furthermore, it becomes a constant as the release rate ratio increases,384

as shown in Fig. 8. Therefore, the minimal value of strategy-cost exists not at the minimal release385

rate ratio but at a slightly larger value than the minimum, and it increases monotonically as the386

release rate ratio is further increased.387

In general, the extinction time will decrease if we take a small initial size, γN . This means that388
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[SC]cov is dependent on γN and will decrease for smaller initial values of γN . Obviously, an earlier389

initiation of a control strategy will be economically beneficial in the emerging outbreak scenario.390

4. Discussion391

When the release region of sterile/transgenic insects is sufficiently large, a temporal model392

for sterile/transgenic technologies may be enough to understand the potential for controlling pest393

insect populations. However, in practical situations this requires the release of sterile or transgenic394

insects over a long lengthscale, and therefore results in a heavy economic burden (Vreysen et al.395

2007). Thus we are interested in finding the minimal value of the release region size, the release396

rate ratio (i.e. the number of sterile/transgenic males released per unit time) and time required for397

complete eradication. In particular, the minimal release region size is likely to be affected by the398

dispersal rate of the mosquitoes (Seirin-Lee et al. 2013). Thus a temporal model is insufficient and399

spatial models must be investigated carefully for a given invasion scenario. In addition, though400

an immediate difficulty in modelling studies is determining the levels of insect dispersal, with401

very limited empirical data and, potentially, a very wide range of estimates (Reiter et al. 1995;402

Harrington et al. 2005), a simple rescaling analysis can be used to account for the influence of403

dispersion in our modelling study, as illustrated in Appendix B.404

In the first scenario where the wild-type female mosquitoes are endemic, our study demon-405

strates that sterile/transgenic males released locally in the habitat of the wild-type female mosquitoes406

can eradicate the vector insects completely with a larger size of release region. Nonetheless such a407

local release strategy easily fails if the diffusion rate of sterile/transgenic males is not high enough408

to ensure dispersal over the entire habitat. This result is consistent with those of a previous409

discrete model (Yakob et al. 2008).410

Furthermore, our theoretical observations suggest that the local strategy is likely to be more411

applicable in a small region rather than a wide region because δopt = γN − γminS is determined412

independently of γN but depends on the diffusion rate. Furthermore, this difference in the size413

of the minimal release region relative to the region containing the established pest is predicted to414

be substantially larger than one might expect from the diffusive scale and the timescale of either415

mosquito reproduction or death. Hence a local release strategy is predicted to be more readily416

applicable than one might initially anticipate from the scales of mosquito population dynamics.417

Nonetheless, in the local release strategy, the mosquito diffusion rate is a critical parameter in418

determining the optimal release region size, though the relation is a simple scaling law that can be419

readily predicted (see Appendix B). In turn, this means that one must carefully estimate mosquito420

dispersal rates in order to reduce control costs. Finally, we note that minimal overall strategy421

costs, in terms of total released mosquito numbers, are not minimised at the threshold of mosquito422

extinction, as shown in Fig. 4(d). Hence, increases in the release efforts, i.e. the unit time rate of423

release of control insects, can reduce the overall strategy cost regardless of the influence of spatial424

heterogeneity.425

In the emerging outbreak scenario, our modelling study shows that several possible types of426

dynamics, depending on the release rate of sterile/transgenic males. However, the population427

dynamics is relatively insensitive to the release region size once the latter is larger than γminS for428

all release rates. Furthermore, control interventions with a smaller strategy-cost do not always429

correspond to values of (γS, θ) that induce smaller release efforts. This demonstrates that a longer430
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term picture, also considering eradication times, is required for efficient interventions aimed at431

eradicating an emerging outbreak.432

The detailed requirements for inducing cost effective controls are predicted to differ with these433

two scenarios of a stable endemic and an emerging outbreak. For the endemic, the mosquito434

diffusion rate critically influences the minimal release region size for complete eradication. In435

contrast, control success is not highly sensitive to the diffusion coefficient for an emerging outbreak;436

instead the release rate ratio is an important and relatively sensitive parameter in determining437

the dynamics of the wild-type female wave.438

Observations of the improved outcomes associated with RIDL strategies are inherited from439

the temporal model dynamics. In particular, once the suppression of larval competition by SIT440

interventions induces dynamically significant effects, as with parameter set B, RIDL strategies are441

substantially more effective in almost all aspects of control. Consequently, the typical conclusions442

that RIDL interventions are superior to SIT as a result of previous modelling (Atkinson et al. 2007;443

Phuc et al. 2007; White et al. 2010) do transfer in the context of local release and wavefront cover444

strategies. Similarly, local increases in pest populations can be associated with a SIT local release445

strategy or wavefront cover strategy, as observed in other contexts with overcompensating density-446

dependent competition (as in parameter set B) (Yakob et al. 2008; Yakob and Bonsall 2009).447

These conclusions hinge on the fact that SITs reduce larval populations, enhancing the survival of448

insects resulting from wild-type matings and thus offsetting the reductions in proliferation. Thus449

RIDL strategies are never inferior in either control scenario considered. Nonetheless, once the450

release rate is chosen sufficiently large, both SIT and RIDL perform similarly for wavefront cover451

strategies with either parameter set, indicating the governing dynamics of the model is then driven452

by the wild-type wavefront, where larval competition is minimal. This is in distinct contrast to453

predictions for control strategies designed to act as barriers to prevent the spread of mosquitoes454

into a pest-free region from an endemic area; here RIDL is predicted to be significantly superior455

(Seirin-Lee et al. 2013), highlighting that the control strategies are highly context dependent.456

The timescale for a vector insect to become extinct is critical in terms of preventing a pandemic457

disease in a human society (Atkinson et al. 2007) and its increases are likely to induce serious458

fluctuations in insect populations by combining with external effects such as seasonality (Purse459

et al. 2005; Altizer et al. 2006; Yang et al. 2009; White et al. 2010). Large timescales are observed,460

in a spatially homogeneous modelling study on approaching the extinction threshold, by Atkinson461

et al. (2007) and we have analogous observations in our spatially heterogeneous setting. Thus,462

although a low release rate reduces the production costs of sterile/transgenic mosquitoes, it is also463

likely to be difficult to estimate or confirm control success in a situation where several years are464

required for eradication. Such long extinction times also drive our observation that the strategic465

cost illustrated in Fig. 9(d) for the emerging case has a local minimum, further reflecting the need466

to consider the longer term picture when designing interventions.467

Throughout this manuscript, we have used fecundity and density-dependence parameter values468

based upon Dye (1984), concentrating on the extreme best and worst case scenarios, following469

previous approaches (Phuc et al. 2007; Yakob et al. 2008; White et al. 2010; Seirin-Lee et al.470

2013). These parameters are derived from field data to which a simple regression is used to obtain471

the values. Legros et al. (2009) questioned this method and used a two-stage fitting method.472

They concluded that for their method a) when density-independent processes are taken into473

consideration they account for a large part of the mortality of immature stages and density-474
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dependence is much weaker than the Dye approach, b) the functional responses of the two475

approaches are significantly different for the range of densities in the study, and c) whilst both476

methods give reasonable accounts of the “characteristics of density-dependence”, they deviate477

when low densities are concerned, primarily due to the lack of data. Hence, it is critical that full478

life-table analyses are conducted in order to ensure that suitable estimates of these, and other (e.g.479

development periods, dispersal distances, differential density-dependent coefficients throughout480

the larval stages), life-history parameters be calculated, and at a local scale. For example, it has481

recently been shown that the dispersal ability of two lines of RIDL Ae. aegypti mosquitoes may482

be reduced compared to their wild-type counterparts in laboratory conditions (Bargielowski et al.483

2012). This is likely to have an impact of the effectiveness of barrier zone techniques for population484

control. However, the difference in diffusion rates of the transgenic and wild-type mosquitoes is485

likely to add greater model complexity (Billingham and King 2001). Furthermore, since it is likely486

that many additional biotic and abiotic factors may dynamically influence the life-histories of487

Ae. aegypti populations, both spatially and temporally (e.g. seasonality), further fine-tuning of488

control strategies will require these factors to be explicitly modelled. Extensions to our modelling489

approach could be adopted to incorporate these processes, but alternative approaches may also490

yield informative results, such as simulation models (e.g. Focks et al. (1993a,b)), additionally491

motivating a comparative study of differing modelling formulations.492

In summary, the dispersion of mosquitoes appears in various invasive scenarios and our mod-493

elling study suggests successful control strategies for each scenario. Our results show that the494

requirements for understanding control effectiveness and efficient control strategy vary depending495

on the invasive and endemic scenario. Furthermore, SIT control is never more effective though496

the difference between RIDL and SIT strategies can be weak in the emerging outbreak strategy as497

the dynamics is dictated by the wavefront where competition is weak. Finally, we note the long498

term picture is important in considering controls, due to the sensitivity of the extinction time for499

instance.500

Finally, although the focus of our models is the mosquito, Ae. aegypti, which can spread501

yellow fever, dengue fever and Chikungunya disease, our modelling approach and results can be502

applied more broadly to other species. A further generalisation would be the consideration of503

more realistic measures of economic cost rather than ones based on simply mosquito numbers.504

In addition, a pulsed releasing schedule for sterile/transgenic mosquitoes may be more pragmatic505

and thus merits study, generalising the spatially homogeneous study of White et al. (2010). This506

is in progress, along with comparing whether and when modelling predictions are sensitive to507

the detailed representation of stage structure, for example contrasting models built on Dye’s508

(1984) delay formulation on the one hand and ordinary differential equation representations of509

stage structure on the other (Focks et al. 1993a,b; Erickson et al. 2010). Questions concerning510

higher dimensional geometries are also relevant, including smaller scale, three-dimensional models511

in high-rise buildings’ water tanks. In general the eikonal approximation indicates that the local512

behaviour of wavefronts possess a curvature correction, which is sufficient to stabilise perturbations513

of a planar wave as well offering the prospect of complex global spatial dynamics such as spiral514

and scroll waves (Grindrod 1991); whether such behaviours exist in mosquito models is a further515

open question.516
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Appendix A. Numerical method524

The reaction-diffusion systems formulated in this paper were solved numerically via standard525

techniques, which can readily accommodate the time delay; in particular the kinetics are considered526

explicitly within a standard, fully implicit, finite difference treatment of the parabolic transport527

term (Morton and Mayers 1994). In particular, storing the history of the system for the duration528

of the time delay allows the generation of the kinetic terms within the numerical algorithm. A529

fully implicit treatment of the diffusive terms then generates a set of linear algebraic equations for530

the mosquito populations at each new timepoint, which may be solved using a choice of numerical531

techniques; we use an LU-decomposition. This numerical algorithm has been validated against532

independent code simulations, used in Seirin-Lee et al. (2010), and we have checked timestep and533

grid spacing refinements do not influence the results presented.534

Appendix B. Minimal release region size and diffusion rates535

To explore the effects of diffusion rate in the model we use a scaling argument. Let Dndim be536

a non-dimensionalised diffusion coefficient and define an arbitrary diffusion rate537

D = kD0, (B.1)

for a given diffusion rate D0 and arbitrary positive constant k. Then for a time scale T and a
given spatial length γ0

N , we have

Dndim =
DT

(γ0
N)2

=
kD0T

(γ0
N)2

=
D0T(
γ0N√
k

)2 .

From the above equation, we set a female habitat size, γN , to be an arbitrary value by taking538

γN = γ0
N/
√
k, (B.2)

instead of choosing the diffusion rates arbitrarily.539

On the one hand, from Fig. 3(b) we know the optimal release region size, δopt, is independent540

of the spatial length scale so that it is also independent of the diffusion rate. That is, we have541

δopt = γN(D)− γoptS (D). (B.3)

Hence, we obtain the relationship between the diffusion rate and the optimal release region size542

directly from equations (B.1), (B.2) and (B.3), as543

γoptS (D) = γN(D)− δopt =
γ0
N√
k
− δopt =

√
D0γ

0
N√

D
− δopt.

In Fig. 3(c), D0 = 1km2/day, γ0
N = 500 km and δopt = 30 km have been chosen.544
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