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The Early Jurassic Epoch was a predominantly greenhouse phase of Earth history, but a comprehensive
understanding of its climate dynamics is hampered by a lack of high resolution multi-proxy environmental
records. Here we report a geologically brief (approximately several hundred thousand years) negative carbon
isotope excursion (CIE) of 2–3‰ in both marine and terrestrial materials, recognised for the first time for the
Late Sinemurian Substage (Early Jurassic, ~194 Ma) of eastern England. The Late Sinemurian carbon isotope
excursion, which is termed the S-CIE herein, is accompanied by peaks in the abundance of the pollen grain
Classopollis classoides and the dinoflagellate cyst Liasidium variabile. Classopollis classoides was thermophilic
and is a reliable proxy for hot/warm climatic conditions. Liasidium variabile is interpreted as thermophilic
and eutrophic using multivariate statistics, its fluorescence properties being similar to living heterotrophic
dinoflagellate cysts, and its association with C. classoides. Moreover, the morphological and ecological simi-
larities of L. variabile to the Cenozoic genus Apectodinium are noteworthy. The co-occurrence of the acmes of
C. classoides and L. variabile with a negative CIE is interpreted here as having wide geographical significance
due to the marine and terrestrial carbon isotope signals being precisely in phase within an open marine
setting. This is consistent with an oceanic–atmospheric injection of isotopically-light carbon, coupled with
global warming and increased marginal marine nutrient supply, possibly the result of increased precipitation
due to an enhanced hydrological cycle or a seasonally-stratified water column. A probable sea level rise of at
least regional extent has been identified at the L. variabile event in other records, which supports this putative
phase of global warming. All these features are common to the Paleocene/Eocene thermal maximum (PETM,
~56 Ma), and there are also similarities with the Early Toarcian oceanic anoxic event (T-OAE, ~182 Ma).

© 2012 Natural Environment Research Council. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Jurassic Period was a mainly greenhouse phase of Earth history,
characterised by global palaeotemperatures that were 5–10 °C higher
than modern levels based on palaeo-modelling results (Chandler
et al., 1992; Rees et al., 1999; Sellwood and Valdes, 2008). During the
Early Jurassic the supercontinent Pangaea fragmented into Laurasia
and Gondwana, creating major seaways including the proto Central
Atlantic Ocean and marine connections between western Tethys and
the north polar region (Fig. 1). Sea levels rose steadily throughout
the Early Jurassic (Haq et al., 1987, 1988) and much of Europe and
surrounding areas in the northern hemisphere were covered by
warm, relatively shallow and stable epicontinental seas (summary in
Coward et al., 2003). Sedimentation was dominated by rhythmic cycles
of fossiliferous marine shelfal muds with subordinate carbonates and
+44 115 9363200.
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sands within large fault-bounded basins that were created by crustal
extension. Northwest Europe probably lay around 10° south of its
present latitude (Bradshawet al., 1992). British Lower Jurassic stratigra-
phy has been summarised by Cope et al. (1980) and Simms et al. (2004).

The Early Toarcian oceanic anoxic event (T-OAE, ~182 Ma according
to the timescale of Gradstein et al., 2012) was a short-lived major phase
of global warming during the late Early Jurassic, and is marked by a
significant negative carbon isotope (δ13C) excursion (CIE) (Jenkyns,
2010). The T-OAE and other large CIEs have been interpreted as being
due to the release of isotopically-light, largely biogenic methane from
sub-seafloor accumulations of methane clathrate (Hesselbo et al., 2000;
Kemp et al., 2005; Cohen et al., 2007). Similar, but smaller scale, events
have also been recognised in the Early Jurassic at the Pliensbachian–
Toarcian boundary (~183 Ma; Hesselbo et al., 2007; Bodin et al., 2010;
Littler et al., 2010), and at the Sinemurian–Pliensbachian boundary
(~191 Ma; Korte and Hesselbo, 2011).

In this study of a succession from eastern England, we report geo-
chemical and palynological data which are consistent with another
y Elsevier B.V. All rights reserved.
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Fig. 1. A palaeogeographical map of eastern North America and northwestern Eurasia
for the Late Sinemurian (adapted from Smith et al., 1994) with the locations of records
of Liasidium variabile indicated by the 12 filled circles. The locations were taken from
Brittain et al. (2010). Continental areas are indicated in grey, and the black lines depict
selected modern coastlines.
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Early Jurassic warming event in the Late Sinemurian (~194 Ma). This
evidence comprises a significant negative CIE (termed herein the
S-CIE) which is temporally coincident with abundance acmes of
the terrestrially-derived pollen grain Classopollis classoides and the
marine dinoflagellate cyst Liasidium variabile (Figs. 2, 3). Both these
taxa were thermophilic, and L. variabile has a narrow stratigraphical
range.
Fig. 2. The Copper Hill Borehole between ~200 m and 150 m, with the Sinemurian ammon
range and acme of Liasidium variabile in the samples studied; the data are expressed as p
percentages of Classopollis classoides expressed as percentages of the terrestrially-derived pa
carbon, grey: carbonate). The light grey shading indicates the extent of the S-CIE. The dashed
is coincident with the second δ13C pulse. The right hand column is a lithological summar
lithostratigraphical units.
The Mesozoic gymnosperm pollen Classopollis was produced by
plants belonging to the family Cheirolepidiaceae. This genus is
interpreted as being thermophilic and xerophytic and hence a proxy
for hot/warm palaeotemperatures (e.g. Pocock and Jansonius, 1961;
Srivastava, 1976). Classopollis-producing plants have been interpreted
to have preferred both coastal and upland slope habitats (Batten,
1975; Filatoff, 1975).

The distinctive dinoflagellate cyst L. variabile is an index fossil for the
Late Sinemurian of the northern hemisphere and is the oldest known
peridinialean species (Brittain et al., 2010). In an interval characterised
by extremely low dinoflagellate cyst diversities, L. variabile suddenly
appeared, became abundant and abruptly disappeared. The range of
L. variabile is typically entirelywithin theOxynoticeras oxynotum ammo-
nite Biozone, and this taxon has also been interpreted as a warm water
species using multivariate statistics (Riding and Hubbard, 1999). Be-
cause of some similarities to the apparently thermophilic dinoflagellate
cyst genus Apectodinium Costa and Downie, 1976, L. variabile has been
suggested to have tracked warmer water polewards (Feist-Burkhardt,
2009).

These three linked phenomena are interpreted here as being con-
sistent with a major biogeochemical perturbation associated with a
brief phase of significant ocean/atmosphere carbon injection and global
warming ~8 Ma prior to the T-OAE.
2. Material and methods

The Copper Hill Borehole was an exploratory stratigraphical borehole
drilled by the British Geological Survey (BGS) during 1991 in Copper Hill
Quarry, near Ancaster, Lincolnshire, eastern England; the national grid
reference is SK 9787 4265 (Fig. 4; Berridge et al., 1999, fig. 19). The
Lower and Middle Jurassic (Sinemurian to Bajocian) palynology of the
Copper Hill Borehole was described by Riding (1992). The palynology
sampleswere prepared using the standard acid digestionmethod includ-
ing mild oxidation with cold nitric acid (Wood et al., 1996), and the rock
samples, prepared organic residues, andmicroscope slides are all housed
ite biozones (left) and the lithostratigraphy (right). The left hand curve illustrates the
ercentages of the entire marine palynofloras. To the immediate right of this are the
lynomorphs. The remaining four curves depict the stable isotope records (black: organic
line in the centre of the light grey shading indicates the range base of L. variabilewhich

y from the unpublished core description of N.G. Berridge, together with the principal
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Fig. 3. A lowmagnification view of the palynomorph residue from 177 m in the Copper
Hill Borehole illustrating the prominence of Liasidium variabile and Classopollis classoides
in this sample. The scale bar represents 50 μm.
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in the collections of the British Geological Survey, Keyworth, Nottingham
NG12 5GG, United Kingdom.

For the carbon isotope analysis on the bulk and palynomorph
concentrates, the samples were homogenised and treated with
5% hydrochloric acid to remove any calcite. 13C/12C analyses were
Fig. 4. The location of the Copper Hill Borehole, near Anca
performed by combustion in a Costech Elemental Analyser (EA)
on-line to a VG TripleTrap and Optima dual-inlet mass spectrometer,
with δ13C values calculated to the VPDB scale using within-run labora-
tory standards calibrated against NBS18, NBS-19 and NBS-22. Replicate
analysis ofwell-mixed samples indicated a precision of±b0.1‰ (1 SD).
For the belemnite carbon and oxygen isotope analysis, approximately
50 μg of carbonate was used for isotope analysis using a GV IsoPrime
mass spectrometer plus Multiprep device. The isotope values (δ13C,
δ18O) are reported as per mille (‰) deviations of the isotopic ratios
(13C/12C, 18O/16O) calculated to the VPDB scale using a within-run
laboratory standard calibrated against NBS standards. Analytical
reproducibility of the standard calcite (KCM) is b0.1‰ for δ13C and
δ18O.

The interval studied in the Copper Hill Borehole is relatively
fossiliferous and the standard ammonite biozones and biosubzones
have been determined (Tables 1–3). The ammonite biostratigraphy,
however, is of limited utility in terms of identifying the duration of
relatively short-lived palaeoclimatic events such as the S-CIE. The
S-CIE is not currently well-constrained chronostratigraphically be-
cause there are no accurate estimates for the absolute age ranges
of the three Late Sinemurian ammonite biozones as suitable cyclic
sedimentary successions have not been studied. A cyclostratigraphical
calibration of the long-term decline in seawater 87Sr/86Sr values
throughout the Early Jurassic gives an estimate for ammonite biozone
duration of ~1 Ma each (Weedon and Jenkyns, 1999; Gradstein et al.,
2012). This means that the S-CIE may have lasted a few hundred
ster, Lincolnshire, eastern England, United Kingdom.
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Table 2
Raw data on carbon and oxygen isotopes and the percentages of Liasdium variabile and Classopollis classoides between 200 m and 150 m in the Copper Hill Borehole. The geochem-
ical data comprise δ13Corg measured on the bulk organic carbon for 37 samples, δ13Cbel and δ18Obel measured from five belemnite specimens and δ13Cpalynomorph concentrate measured
on the organic residues from eight samples. The figures for L. variabile and C. classoides are percentages of the overall palynoflora. In the ammonite stratigraphy column, the am-
monite biozones and biosubzones have been abbreviated; A.s. = Arnioceras semicostatum, E.r. = Euagassiceras resupinatum, C. tur. = Caenisites turneri, ?As.o. = ?Asteroceras
obtusum, Ox.ox.= Oxynoticeras oxynotum, Ox.si.= Oxynoticeras simpsoni, E. rar.= Echioceras raricostatum, E. rari.= Echioceras raricostatoides and L.m.= Leptechioceras macdonnelli.

Substage Ammonite biozones Depth
(m)

Bulk organic C Belemnites Paly. conc.
δ13Cpaly.conc.

L. variabile
(%)

C. classoides
(%)

δ13Corg δ13Cbel δ18Obel

Upper Sinemurian E.rar./L.m 150 −25.3 … 2.9
153 −25.2 +2.00 −1.13
155 −25.2 … 5.4
158 −24.8
160 −24.5 −24.8 … 4.7
163 −24.5
165 −23.9 … 9.5
166 −23.9

E.r./E.r. 167 −23.6 −24.3 … 7.6
168 −24.4 +3.42 −1.81
169 −24.7 … 10.5
170 −24.4
171 −24.2 −24.3 … 10.1
172 −24.5 4.2 15.6

Ox.ox./Ox.ox. 173 −24.6 8.6 15.5
174 −24.5 15.2 15.5
175 −25.1 11.3 15
176 −25.7 18.1 15
177 −25.8 −25.5 21.3 24.3

Ox.ox./Ox.si. 178 −25.6 +1.24 −1.50 7.3 23
179 −26.0 4.3 16.2
180 −25.9 −25.7 9.9 13.1
181 −25.8 3.4 14.5
182 −25.1 3.6 19.2

?As.o. 183 −24.6 … 5.4
184 −24.9 +2.05 −1.75
185 −25.1 … 4.3

Lower Sinemurian ? 186 −25.6 −24.8
187 −25.0 … 6.4

C. tur. 189 −24.5 … 6.9
191 −23.6 … 8.4
192 −23.6

A.s./E.r. 194 −23.4 −23.4 … 6.9
196 −23.8
198 −24.1 +3.24 −1.89 … 6.5
200 −23.8 … 3.8
201 −24.0 −24.0
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thousand years, which is comparable to the Paleocene/Eocene thermal
maximum (PETM, ~56 Ma). Other potentially analogous CIEs are at
the T-OAE, which has a poorly constrained duration of ~200–900 ka
(Suan et al., 2008; Kemp et al., 2011), and at the Selli Event in the
Early Aptian (~120 Ma). The Selli Event, or OAE 1a, was reported to
have lasted 1.11±0.11 Ma by Malinverno et al. (2010).

3. Palynomorph and kerogen assemblages

The palynofloras in 26 samples between 200 m and 150 m from the
Sinemurian of the Copper Hill Borehole are illustrated in Table 1. The
succession studied represents an open marine palaeoenvironment
within a geographically extensive seaway (Coward et al., 2003). All
the samples yielded abundant and well-preserved palynofloras of
relatively low taxonomic diversity. The floras are overwhelmingly
dominated by gymnospermous pollen grains, particularly bisaccate
forms including Vitreisporites pallidus, Classopollis classoides and
Perinopollenites elatoides. Classopollis classoides is a long-ranging species
and is present throughout the entire Sinemurian to Bajocian suc-
cession drilled by the Copper Hill Borehole (Riding, 1992). The
acme of this species is at 177 m, at which level it comprises 24.3%
of the entire palynoflora and 32.5% of the terrestrial palynomorphs
(Fig. 2; Tables 1, 2). This maximum is coincident with the lowest
percentage (26.6%) of P. elatoides (Table 1). Other pollen present
comprise Araucariacites australis, Cerebropollenites macroverrucosus
and Chasmatosporites spp. Pteridophyte spores are significantly
subordinate to gymnospermous pollen, and are dominated by simple,
smooth forms attributable to the genus Cyathidites. Other spores encoun-
tered include Baculatisporites/Osmundacidites spp., Concavissimisporites
verrucosus, Coronatispora valdensis, Dictyophyllidites spp., Duplexisporites
sp., Gleicheniidites senonicus, Ischyosporites variegatus, Kraeuselisporites
reissingeri, Neoraistrickia gristhorpensis, Retitriletes austroclavatidites,
Sestrosporites pseudoalveolatus, Todisporites spp. and Uvaesporites
argenteaeformis. Rare reworked Carboniferous sporeswere recognised;
these include Densosporites spp., Lycospora pusilla and Tripartites
vetustus. The freshwater/brackish alga Botryococcus is present in low
proportions (Table 1).

Marine palynomorphs are present in consistently lower propor-
tions than terrestrially-derived taxa. Liasidium variabile is the only
dinoflagellate cyst recognised and was recorded between 182 m
and 172 m, within the Upper Sinemurian part of the Brant Mudstone
Formation, where it is largely confined to the O. oxynotum ammonite
Biozone (Fig. 2; Tables 1–3). The acme of L. variabile is at 177 m,
at which level it comprises 21.3% of the entire palynoflora (Fig. 2;
Tables 1, 2). The marine acanthomorph acritarch genus Micrhystridium
is present throughout in significant proportions. Other marine
palynomorphs are present in low numbers; these are foraminiferal
test linings, Tasmanites spp. and Veryhachium sp. (Table 1). The
palynomorph species recognised in this study are listed, with author
citations, in Appendix 1. The palynology of the entire Lower and



Table 3
The percentages of the four main kerogen macerals (i.e. black wood, other plant tissues, palynomorphs and amorphous organic material—AOM) between 200 m and 150 m in the
Copper Hill Borehole. The percentages of terrestrially-derived and indigenous marine palynomorphs are also depicted. Note the consistent dominance of palynomorphs and
terrestrially-derived palynomorphs respectively. In the stratigraphy column, the ammonite biozones and biosubzones have been abbreviated; A.s. = Arnioceras semicostatum,
E.r. = Euagassiceras resupinatum, C. tur. = Caenisites turneri, ?As.o. = ?Asteroceras obtusum, Ox.ox. = Oxynoticeras oxynotum, Ox.si. = Oxynoticeras simpsoni, E. rar. = Echioceras
raricostatum, E. rari. = Echioceras raricostatoides and L.m. = Leptechioceras macdonnelli.

Stratigraphy Depth
(m)

Percentages of the principal kerogen macerals Palynomorphs

Black wood
(%)

Plant tissues
(%)

Palynomorphs
(%)

AOM
(%)

% terrestrial % marine

Upper Sinemurian E. rar./L. m. 150 18 15 57 10 95.2 4.8
155 8 17 70 5 96 4
160 18 18 60 4 94.6 5.4
165 12 12 70 6 94.7 5.3

E.rar./E.rari. 167 18 15 55 12 96.1 3.9
169 22 12 60 6 95.6 4.4
171 20 8 67 5 93.3 6.7
172 17 12 68 3 88 12

Ox.ox./Ox.ox. 173 8 12 77 3 83.5 16.5
174 12 16 70 2 80.9 19.1
175 12 8 73 7 84.6 15.4
176 12 12 70 6 76.3 23.7
177 12 15 68 5 74.8 25.2

Ox.ox./Ox.si. 178 8 7 75 10 86 14
179 15 10 43 32 90.7 9.3
180 10 12 63 15 81.4 18.6
181 18 14 50 18 91.6 8.4
182 15 12 65 8 91.8 8.2

?As.o. 183 17 15 47 21 89.2 10.8
185 15 13 64 8 76.3 23.7

Lower Sinemurian ? 187 12 13 70 5 82.6 17.4
C.tur. 189 23 18 44 15 84.1 15.9

191 22 25 42 11 91.5 8.5
A.s./E.r. 194 12 30 53 5 91.4 8.6

198 18 25 40 17 91.5 8.5
200 23 32 37 8 92.1 7.9
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Middle Jurassic (Sinemurian–Bajocian) succession cored by the Copper
Hill Borehole was documented by Riding (1992).

The percentages of themain kerogenmacerals are given in Table 3.
The organic residues are generally dominated by palynomorphs. Black
wood and various plant tissues are subordinate to palynomorphs.
Amorphous organicmaterial (AOM) is largely relatively rare, although
it is most abundant at 179 m where it attained 32% (Table 3).
4. Carbon and oxygen isotope geochemistry

Carbon isotope values were obtained from bulk organic matter,
palynomorph concentrates and belemnite fragments between 201 m
and 150 m in the Copper Hill Borehole; these geochemical data are
given in Table 2. This interval includes the acme of Classopollis classoides
and is within and adjacent to the range of L. variabile (Table 2). Thema-
terials analysed are both terrestrial and marine and thus allow a test as
to whether any carbon isotope perturbation affected the global carbon
cycle. Specifically, the palynomorph concentrates are dominated by
terrestrial materials and the belemnite fragments represent the marine
realm. A consistent negative CIE of 2–3‰ occurs in the Copper Hill Bore-
hole (Fig. 2). The CIE as defined by the bulk sample δ13CTOC is broadly
symmetrical, and is recorded between 187 m and 176 m. There are
two separate peaks; an older one at 186 m and a younger, larger one
at 179 m (Fig. 2). The negative CIE is also recorded in the δ13C of
palynomorph concentrates, which are overwhelmingly dominated by
terrestrial material such as wood fragments, pollen and spores, and
hence in part reflect isotopic changes in atmospheric CO2, in addition
to a potentially minor unknown contribution from changing vegetation
types. The δ13C values of the only five belemnites (nekto-benthic ma-
rine molluscs) recovered in this interval also show a negative CIE. The
peak excursion of all three materials is temporally coincident with the
acmes of Classopollis classoides and L. variabile (Fig. 2).
In contrast to the carbon isotope record, the δ18Obelemnite values
are relatively uniform (Fig. 2; Table 2) (mean δ18O=−1.6±0.3‰).
Although the negative CIE and the coincident Classopollis classoides
and L. variabile peaks are inferred here to represent a period of global
warming, the lack of a clear warming signal from belemnites may
represent the effect of sea level rise due to thermal expansion of sea-
water, and hence locally deeper cooler water, as has recently also
been suggested for the Sinemurian–Pliensbachian boundary (Korte
and Hesselbo, 2011). Alternatively, water column stratification and/
or local upwelling of cool intermediate waters may have increased.
It is not possible to use TEX86 or MBT/CBT as temperature proxies
because the succession studied here is too thermally mature. Indeed,
most Triassic and Jurassic successions have been too thermally
altered for these methods, which have been used successfully on
Early Cretaceous to modern material (Kuypers et al., 2001; Schouten
et al., 2002).

5. Palaeoecology

5.1. The pollen genus Classopollis

The gymnospermous pollen genus Classopollis, also known illegit-
imately as Corollina (see Traverse, 2004; McNeill et al., 2006, appen-
dix 3 F), is present throughout much of the Mesozoic. It ranges from
the Norian to the Turonian (Srivastava, 1976, 1978; Morbey, 1978;
Helby et al., 1987). Classopollis pollen was produced by plants belong-
ing to the extinct gymnosperm conifer family Cheirolepidiaceae
(Francis, 1983), which were superficially similar to the extant family
Cupressaceae. Classopollis is considered to be a reliable proxy for hot/
warm palaeoclimates (Pocock and Jansonius, 1961; Pocock, 1972;
Srivastava, 1976; Vakhrameev, 1978, 1981, 1987, 1991; Volkheimer
et al., 2008). The abundance of Classopollis in the Jurassic and Creta-
ceous of Russia decreased markedly northwards, i.e. towards higher
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and cooler palaeolatitudes (Vakhrameev, 1981). A similar distribution
pattern was observed in North America by Pocock (1972).

There hasbeen considerable debate as to the precise palaeoecological
preference of Classopollis-producing plants. The genus has been reported
in high proportions from near-coastal settings such as sandy bars
or coastal islands with well-drained soils (Batten, 1975; Srivastava,
1976; Alvin, 1982; Abbink, 1998). This distribution led Batten and
MacLennan (1984) to propose that the family Cheirolepidiaceae were
possibly salt marsh shrubs or trees resembling modern mangroves.
However Filatoff (1975, fig. 10) and Vakhrameev and Doludenko
(1977) suggested that the Cheirolepidiaceae preferred upland slope
habitats, and that the abundant Classopollis pollen preserved in
nearshore palaeoenvironments was therefore allochthonous. Further-
more, several authors, such as Vakhrameev (1970), considered the
Cheirolepidiaceae to be drought-resistant, thermophilous, xerophytic
shrubs and trees which resembled modern juniper bushes.

The occurrence of abundant Classopollis during a global warming
event is somewhat inconsistent with this genus being a proxy for
dry (semiarid to arid) conditions as suggested by, for example,
Pocock and Jansonius (1961), Pocock (1972 and Vakhrameev 1991).
This is because global warming events are normally associated with
an enhanced hydrological cycle, and Classopollis has an extremely
wide geographical distribution. Hence the conclusions of Batten and
MacLennan (1984) that the parent plants of Classopollis were salt
marsh or mangrove shrubs/trees are supported herein. However, it
is possible that the Cheirolepidiaceae lived in a wide variety of habi-
tats and that they could also survive in semiarid to arid conditions.

5.2. Other pollen and spores

The remaining pollen and spore floras are typical of Sinemurian
terrestrial palynofloras from Europe (e.g. Srivastava, 1987). The
non-Classopollis gymnosperm pollen is dominated by coniferous plants
from the orders Pinales and Cycadales. For example Perinopollenites
elatoides belongs to the Family Cupressaceae (cypresses). These groups
are generally widely distributed, and hence are not especially
palaeoecologically significant. However, Chasmatosporites is a possible
representative of the Order Cycadales (see Pocock and Jansonius,
1969), and these forms are typical of subtropical and tropical regions
today. The majority of the spores are from ferns or club mosses.
These groups have extensive geographical extents today. However,
Ischyosporites variegatus belongs to the chiefly tropical Family
Schizaeaceae (see Couper, 1958). Therefore, the other pollen and spores
support the warm climate signal provided by Classopollis classoides, and
are entirely consistent with an equable, subtropical setting.

5.3. The dinoflagellate cyst L. variabile

The dinoflagellate cyst L. variabile was originally described from
the Upper Sinemurian strata of southwest Germany by Drugg
(1978). Despite relatively little being known concerning the tabula-
tion style of this species, the accepted view is that L. variabile is the
oldest known representative of the order Peridiniales (Bujak and
Davies, 1983, p. 56; Evitt, 1985, p. 176, 177; Fensome et al., 1993,
p. 121). Its morphology was thoroughly reviewed by Below (1987,
p. 128), who noted that the tabulation of this species is not fully
developed and that the size and shape of the archaeopyle differ
from most other peridinialean taxa in being unusually large. Further-
more the anterior margin of the archaeopyle is geniculate and it
lies near to the apex, encroaching on the apical horn (Below, 1987,
fig. 68). Riding and Hubbard (1999, p. 27) interpreted L. variabile
as a warm water species based on evidence derived from the study
of a comprehensive database of Jurassic dinoflagellate cysts using
principal component analysis.

Liasidium variabile is an excellentmarker for the Upper Sinemurian of
the northern hemisphere (Riding, 1987; Poulsen and Riding, 2003; Van
de Schootbrugge et al., 2005; Brittain et al., 2010). This species is
especially prominent in, and characteristic of, theO. oxynotum ammonite
Biozone (~192–191 Ma) of northwest Europe, and is confined to north-
west Europe and offshore eastern Canada (Williams et al., 1990) and has
not been reliably reported elsewhere (Fig. 1). Dinoflagellates have a
planktonic habit, some taxa also having a benthic resting cyst phase
(Taylor, 1987). Thus the apparent geographical restriction of L. variabile
to northwest Europe and offshore eastern Canada is deemed to reflect
the lack of suitable studies of the Lower Jurassic from Africa, the Middle
East, South America and southern Asia, coupled with the dominance of
non-marine facies in the Early Jurassic of regions such as, for example,
Russia and Australia (Riding et al., 1999, 2010).

Lower Jurassic dinoflagellate cyst assemblages have low species
richness, especially in the Hettangian to Lower Pliensbachian (Bujak
and Williams, 1979; Woollam and Riding, 1983; Fensome et al., 1996,
1999; MacRae et al., 1996). Upper Sinemurian successions yielding
L. variabile are frequently underlain and overlain by strata that are
entirely devoid of other dinoflagellate cysts (e.g. Riding, 1987, fig. 3).
Van de Schootbrugge et al. (2005, p. 87–88) discussed the highly un-
usual sudden appearance, abundance and disappearance of L. variabile
in Europe and eastern Canada, and explained this stratigraphically
isolated acme as being due to major palaeoceanographical change,
possibly linked to the opening and flooding of the Hispanic Corridor.
These authors suggested that L. variabile migrated into Europe and
eastern Canada from western Panthalassa through the Hispanic
Corridor into the western Tethys in response to changes in ocean
circulation during a sea-level highstand. This contention, however, is
somewhat speculative because there are no records of L. variabile
from Central America and the eastern Pacific area (Brittain et al.,
2010, p. 72). It is equally possible, however, that L. variabile migrated
northwestwards into Europe from western Tethys. This putative
northerly migration of L. variabile may be an indication that this
species tracked warmer water northwards. This contention is consis-
tent with the interpretation of L. variabile as a thermophilic species
by Riding and Hubbard (1999), and certain similarities between
L. variabile and the peridinioid genus Apectodinium.

Feist-Burkhardt (2009) suggested that the acme of L. variabile
in the Late Sinemurian is similar to the abundant occurrence of
Apectodinium at the PETM, and also demonstrated that some speci-
mens of L. variabile in unoxidised material exhibit dark brown-
pigmentation with low autofluorescence intensities (Fig. 5). No
pigmented forms were found in the Copper Hill Borehole material,
but these samples were all oxidised using nitric acid during the
preparation procedure which may have had a bleaching effect. Extant
pigmented dinoflagellate cysts, such as produced by Archaeperidinium,
Congruentidium and Protoperidinium, with little or no autofluorescence
are all heterotrophic (Head, 1994, 1996; Brenner and Biebow, 2001).
These characteristics led Feist-Burkhardt (2009) to conclude that
L. variabile may have been produced by a heterotrophic and ther-
mophilic dinoflagellate by analogy with extant floras, supposedly
like the (consistently non-pigmented) genus Apectodinium. However,
the peridinioid affinity of L. variabile is not prima facie evidence of
this species being indicative of elevated sea surface temperatures; as
with Apectodinium, palaeotemperature is one of several parameters
which controlled its distribution.

There are, however, possible alternatives to L. variabile being a
warm-water species. For example, a rise in sea level may have caused
salinity changes that led to the influx of L. variabile during the Late
Sinemurian. Alternatively, upwelling cold oceanic waters may have
introduced an influx of nutrients which caused the acme of L. variabile
at this time. The low-resolution but apparently invariant levels of
δ18O throughout the succession studied (Fig. 2; Korte and Hesselbo,
2011) would be consistent with this hypothesis. Despite these
caveats, multivariate statistical evidence based on principal compo-
nent analysis of the thermophilic nature of this species developed
by Riding and Hubbard (1999), together with the co-occurrence of
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abundant Classopollis classoides and the negative CIE, makes a com-
pelling case for L. variabile being thermophilic. Hence this indepen-
dent evidence for thermopyly in L. variabile, and the fact that the
evidence for heterotrophy in L. variabile is sporadic pigmentation,
means that the analogy to Apectodinium is not as strong as suggested
by Feist-Burkhardt (2009).

5.4. The dinoflagellate cyst genus Apectodinium

The comparison of L. variabile to the Paleogene genus Apectodinium
by Feist-Burkhardt (2009) mentioned above in Section 5.3 is an
important one in the context of this contribution. Both these
peridinialean taxa have relatively transient acmes, and Apectodinium
has been considered to be both heterotrophic and thermophilic
(e.g. Crouch et al., 2003b). It should however be emphasised that,
other than a shared peridinalean affinity and therefore a probable
heterotrophic feeding strategy, similarities between these taxa are
relatively few. This is especially the case in terms of morphology.
Apectodinium has a subpentagonal outline, exhibits a quadra-style
archaeopyle, typically bears five horns, is cornucavate and is consis-
tently unpigmented (Costa and Downie, 1976, 1979; Harland, 1979).
By contrast, L. variabile is biconical, normally with two horns, acavate,
has a large, heptagonal anterior intercalary (type I) archaeopyle and is
occasionally pigmented (Drugg, 1978; Bucefalo Palliani and Riding,
2000, Figs. 5, 6; Feist-Burkhardt, 2009). The similarities between
L. variabile and Apectodinium are mostly autoecological, i.e. are related
to their similar geological settings. Both these taxa probably exploited
rising sea levels and warming climates that would have caused the
widespread development of water-column stratification on the conti-
nental shelves. These conditions may have caused algal blooms, there-
by providing a food source for the heterotrophic motile dinoflagellate
stages.

The palaeoecological preference of Apectodinium has recently been
extensively debated. It is known as a neritic genus that thrived in
estuarine settings (Crouch et al., 2003a; Sluijs et al., 2005). At low-mid
latitudes, Apectodinium typically comprises >40% of the dinoflagellate
cyst associations during the PETM (e.g. Crouch et al., 2003b; Sluijs
et al., 2007; Kender et al., 2012). By contrast, Apectodinium is less com-
mon (~20%) in the Arctic, where low salinity dinoflagellate cysts
Fig. 5. Transmitted light photomicrographs of Liasidium variabile from the Upper
Sinemurian Obtususton Formation (Oxynoticeras oxynotum ammonite Biozone) of
Aselfingen, southwest Germany. A—a specimen of L. variabile in unoxidised material
which has dark brown-pigmentation and a low autofluorescence intensity. Slide
SF902-oc-1, England Finder reference L59/3. B—an unpigmented specimen with high
autofluorescence intensity, similar to the other palynomorphs in this sample. Sample
SF901, slide NHM/10/03-10, England Finder reference O35/1-2. Both specimens are
from Feist-Burkhardt (2009, figs. 5H and 5A respectively) and the scale bars represent
10 μm.
increase (Sluijs et al., 2006; Harding et al., 2011). Several studies have
concluded that, due to the low latitude preference of Apectodinium, it
must have tracked warm water northwards during the PETM (e.g.
Crouch et al., 2003a). However, Canonical Correspondence Analysis
(CCA) data from the New Jersey Shelf indicates that Apectodinium has
only a weak correlation with palaeotemperature based on TEX86

(Sluijs and Brinkhuis, 2009, p. 1791). Furthermore, Sluijs et al. (2009)
found that Apectodinium is generally absent throughout another
hyperthermal event, the Eocene thermalmaximum2 (ETM2). Recently,
Sluijs et al. (2011, fig. 4) reported the main peak in abundance of
Apectodinium occurred well before the PETM at ODP Site 1172 on the
East Tasman Plateau. The principal acme of Apectodinium at this locality
attained >60% of the assemblage at ~0.8 m below the thermal peak of
the PETM. Following a decrease to around 2% there was a later peak of
Apectodinium, attaining ~30% of the assemblage, within the PETM
(Sluijs et al., 2011, fig. 3). The fact that the older, more significant,
acme of Apectodinium on the East Tasman Plateau is associated with
normal sea surface temperatures (~26 °C) clearly indicates that this
genus responded to variables other than simply temperature. For exam-
ple, abundant Apectodinium has been interpreted as being indicative
of elevated nutrient levels, water stratification and low salinities by
Crouch et al. (2003b), Sluijs et al. (2008) and Kender et al. (2012).
This is also consistent with a warming world and elevated fluvial
nutrient runoff from an associated enhanced hydrological cycle with
greater precipitation in mid-high latitudes (Pagani et al., 2006). In
conclusion, Apectodinium is normally abundant during the PETM,
but temperature is only one of several factors which controlled its
abundance.

Several authors have stated that the genus Apectodinium was
probably heterotrophic and fed on other plankton and/or organic
detritus (e.g. Brinkhuis et al., 1992, 1994; Crouch et al., 2003b; Sluijs
et al., 2005). This interpretation of trophic mode is based on the
morphological similarity of Apectodinium with modern cysts of
the unequivocally heterotrophic genus Protoperidinium (subfamily
Protoperidinioideae). The vast majority of living protoperidiniacean
dinoflagellates (including the diplopsalioideans) produces pigmented
cysts, thus indicating that pigmentation is connected to heterotrophy
in this group of dinoflagellates (Head, 1994, 1996; Rochon et al., 1999;
Brenner and Biebow, 2001). However, Apectodinium belongs to the
subfamily Wetzelielloideae (see Fensome et al., 1993). Apectodinium
and cysts of Protoperidinium are hence both members of the suborder
Peridiniineae, but there are substantial familial and subfamilial differ-
ences which are based on significant differences in tabulation style.
The subfamily Wetzelielloideae has, for example, a quadra-style 2a
plate, a stable epicystal tabulation and a fully subdivided cingulum. In
contrast, cysts of the subfamily Protoperidinioideae are characterised
by a highly variable cinctioid or bipesioid epicystal tabulation and a
largely undivided cingulum (Fensome et al., 1993). The subpentagonal
outline of Apectodinium is not a primary characteristic of the subfamily
Protoperidinioideae (see Fensome et al., 1993, fig. 142). Hence, the
evidence for heterotrophy in Apectodinium, based on similarities to
cysts of Protoperidinium at the suborder level, appears to be purely
circumstantial.

Several studies from marginal marine environments suggest an
elevation in levels of marine nutrients in shelf seas, possibly in re-
sponse to an intensification of increased weathering, terrestrial runoff
and/or water column stratification during the PETM (e.g. Crouch et al.,
2003b; Sluijs et al., 2006, 2007; Sluijs and Brinkhuis, 2009; Harding
et al., 2011; Kender et al., 2012). It is highly likely therefore that
the abundance of Apectodinium at or around the PETM is an indirect
response to higher global palaeotemperatures and/or eutrophication.

6. Similarities of the S-CIE to other environmental change events

The temporal coincidence of the highly restricted thermophilic/
neritic L. variabile and the thermophilic Classopollis acmes in the



Fig. 6. Comparisons of the δ13Corg profiles (black lines) of the S-CIE with the T-OAE and the PETM, and comparison of the δ13Ccarb profiles (grey lines) of the S-CIE with the PETM.
A—carbon isotope record from the T-OAE of the North Yorkshire coast, United Kingdom (summarised in Cohen et al., 2007). B—carbon isotope records from the PETM of the
Arctic Ocean (black), and the Southern Ocean (grey) (summarised in Cohen et al., 2007). C—carbon isotope records from the S-CIE of Lincolnshire, United Kingdom (this study).
The light grey shading indicates the extent of the three CIEs.
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Copper Hill Borehole, with a marked negative CIE (Fig. 2), suggests
that the inferred environmental changes were associated with a per-
turbation to the carbon cycle. This may have been global in nature
due to isotope excursions in both marine and terrestrial materials.
Furthermore, the palynological records appear to be at least regional
in extent. Van de Schootbrugge et al. (2005, table 3) also recorded
coincident abundances of Classopollis spp. and L. variabile in the
Late Sinemurian strata of the Mochras Borehole, northwest Wales.
Our new records are similar in some respects to other Mesozoic and
Cenozoic hyperthermal events such as the T-OAE and the PETM
(Cohen et al., 2007), which exhibit negative CIEs coeval with global
warming and major changes in marine palynomorph assemblages.
Furthermore, the S-CIE association with the peridiniacean dinoflagel-
late cyst L. variabile exhibits a striking similarity to the PETM. The
latter hyperthermal event, occurring ~56 Ma ago, is characterised
by a negative CIE and abundant levels of the peridiniacean genus
Apectodinium (e.g. Crouch et al., 2003b). During the PETM, the
proportion of isotopically-light carbon in the atmosphere and oceans
rapidly increased, hypothetically due to the catastrophic destabilisation
of methane clathrate, magmatic heating of organic-rich sediments
or direct volcanic outgassing (e.g. Dickens, 2011). The PETM is a partic-
ularly well-documented hyperthermal event ~56 Ma ago, that lasted
approximately 120–220 ka (Röhl et al., 2007; Murphy et al., 2010).
The duration of the S-CIE may have been a few hundred thousand
years, which is therefore comparable to the PETM and the T-OAE (see
above, Section 2).

The negative CIEs at the T-OAE, OAE 1a and the PETM are similar
in form to that of the S-CIE (Fig. 6; Gröcke et al., 1999; Mort et al.,
2007; Kuhnt et al., 2011). The 2–3‰ magnitude of the S-CIE is also
similar to that of carbonate records of OAE 1a (e.g. Mort et al., 2007;
Jenkyns, 2010). However, the magnitude of the S-CIE is smaller than
that of the organic PETM (~5‰; summary in McInerney and Wing,
2011) and many T-OAE records (6‰; e.g. Hesselbo et al., 2007;
Hermoso et al., 2009), suggesting either a smaller volume of injected
carbon and/or a heavier isotopic value. The pulsed onset of the S-CIE
is similar to those of the T-OAE, OAE 1a, and PETM (Fig. 6). However
the S-CIE is of a much longer duration (~1 Ma) at the Early–Late
Sinemurian transition in the Copper Hill Borehole, being perhaps
therefore closer in character to the excursion at the Pliensbachian–
Toarcian boundary followed by the T-OAE (Hesselbo et al., 2007).
Specifically, the δ13C (bulk) record of the S-CIE shows an initial isolated
spike at 186 m in the upper Caenisites turneri and Asteroceras obtusum
ammonite biozones, followed by a partial δ13C recovery towards
pre-S-CIE levels, before the main part of the S-CIE at 179 m (Fig. 2).
It is possible that the initial onset of the S-CIE at 190 m represents
an early phase of warming that was temporarily reversed, either by
a reduction in carbon injection and/or by negative feedbacks. It is
noteworthy that the range base of L. variabile and the onset of the
Classopollis classoides acme are coincident with the largest (second)
negative pulse at ~180 m (Fig. 2), whichwe therefore infer to represent
the largest environmental shift. In the Copper Hill Borehole, the onset
of this main phase of the S-CIE coincides with the Glebe Farm Bed,
an erosional horizon containing a concentration of bored carbonate
nodules (Fig. 2; Brandon et al., 1990) that also represents the base of
the O. oxynotum ammonite Biozone. Thus the record reported here is
interrupted by a hiatus and is unlikely to represent the full extent of
this palaeoenvironmental perturbation.

The aforementioned Toarcian, Aptian and Paleogene CIE events
have been hypothesised to be due to injections of isotopically-light
carbon into the ocean–atmosphere system (e.g. Dickens et al., 1997;
Hesselbo et al., 2000), and this is likely also to be the case for the
S-CIE. Another possible cause of a negative carbon excursion could
be a contracting biosphere due to cooling, but this would be evident
as major changes in biomes and very extensive glaciation for which
there is no evidence at this particular time (Sellwood and Valdes,
2008; Korte and Hesselbo, 2011). The coincident and transient nature
of the range and acme of L. variabile, the acme of Classopollis classoides
and the S-CIE is highly suggestive of a global warming event associ-
ated with carbon injection event.

There is as yet no known major magmatic/volcanic event, or pre-
viously reported indication of significant global warmth, during the
Late Sinemurian. Furthermore, there are no known planktonic and/
or vegetational changes in the Late Sinemurian that could have signif-
icantly affected the bulk carbon isotope signal. However, there is
some evidence for a sea-level rise of at least regional scale over this
interval (Haq et al., 1988), which is consistent with a period of global
warmth. The upper part of the A. obtusum and the lower part of the
O. oxynotum ammonite biozones represent an interval of shale
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deposition associated with relative sea-level rise in the Cleveland
Basin, northern England (Hesselbo and Jenkyns, 1998; Van Buchem
and Knox, 1998). Similarly, the lithology of Late Sinemurian age strata
on Skye, in the Hebrides Basin, northwest Scotland, closely ap-
proaches black (i.e. organic-rich) shale in the O. oxynotum ammonite
Biozone (Hesselbo et al., 1998) and Brittain et al. (2010) reported
L. variabile from coeval strata on Raasay in the Inner Hebrides. As
well as indicating relative sea-level rise in this example, organic-rich
shale is typical of deposition in stratifiedmarinewaters during periods
of global warming and high nutrient levels such as the T-OAE, OAE 1a
and PETM. The Late Sinemurian is represented by hiatus concretions
and an omission surface on the Dorset coast in the Wessex Basin,
southern England (Coe and Hesselbo, 2000), interpreted by Haq
et al. (1988) and Hesselbo and Palmer (1992) to have resulted
from bioerosion during a period of regional sediment starvation caused
by sea-level rise (contra Hallam, 1999). The Glebe Farm Bed in the
Copper Hill Borehole (Fig. 2), overlain by mudstone, grading upwards
to sandstone, probably represents the same condensation phenomenon
brought about by sea-level rise and deepening (upper A. obtusum and
lower O. oxynotum ammonite biozones), followed by progradation and
shallowing (upper O. oxynotum ammonite Biozone) (Hesselbo, 2008).

7. Conclusions

This study demonstrates that a significant abundance of the ther-
mophilic pollen Classopollis classoides and the range and acme of the
thermophilic/eutrophic dinoflagellate cyst L. variabile are linked
with a marked coincident negative CIE (herein termed the S-CIE)
in the Late Sinemurian O. oxynotum ammonite Biozone (~194 Ma)
of eastern England (Fig. 2). The S-CIE reflects a perturbation to the
whole exchangeable carbon reservoir because terrestrially-derived
organic material (the palynomorph concentrate) and marine car-
bonate exhibit the same excursion (Fig. 2). The relatively brief re-
cord of L. variabile together with the transient acme of Classopollis
classoides and the negative S-CIE is highly suggestive of a major
climate-warming-driven biogeochemical perturbation, such as a car-
bon injection event, at ~194 Ma, and indicates that Jurassic climates
were relatively susceptible to significant and transient change. The level
of the S-CIE can be confidently delineated by the range and acme of
L. variabile. The S-CIE shares many characteristics with the global
negative CIE event at the PETM, a phase of abnormally high global
temperatures coincident with a peak in the apparently thermophilic/
eutrophic dinoflagellate cyst genus Apectodinium. The S-CIE also shares
similarities to negative carbon isotope excursions at the T-OAE and OAE
1a, which are other major phases of global warming.

The S-CIE has so far only been recorded from a single succession in
eastern England. However, the magnitude and remarkable synchro-
nicity of the geochemical and palynological data from the Copper
Hill Borehole indicate that the S-CIE probably represents a significant
environmental change event. Eastern England is known to have been
within an extensive, open seaway during the Early Jurassic (Coward
et al., 2003), and hence may be representative of a large part of the
Earth system at this time. It is considered that the marine and terres-
trial geochemical and palynological signals documented here are not
attributable to local factors, nor are they a result of background noise
or oscillations in the carbon cycle. However it is fully acknowledged
that more sections need to be studied to test our hypothesis. These
should include more complete successions and those from localities
outside Europe in order to verify this potentially important, apparent-
ly global, palaeoenvironmental change event.
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Appendix 1

This appendix lists all valid palynomorph taxa below generic level
which are mentioned in this contribution with full author citations.
The palynomorphs are listed alphabetically within three groups.

Dinoflagellate cyst:

Liasidium variabile Drugg, 1978

Gymnospermous pollen:

Araucariacites australis Cookson, 1947
Cerebropollenites macroverrucosus (Thiergart, 1949) Schulz, 1967
Classopollis classoides (Pflug, 1953) Pocock and Jansonius, 1961
Perinopollenites elatoides Couper, 1958
Vitreisporites pallidus (Reissinger, 1950) Nilsson, 1958

Pteridophyte spores:

Auritulinasporites scanicus Nilsson, 1958
Cibotiumspora juriensis (Balme, 1957) Filatoff, 1975
Concavissimisporites verrucosus Delcourt and Sprumont, 1955
Coronatispora valdensis (Couper, 1958) Dettmann, 1963
Cyathidites australis Couper, 1953
Cyathidites minor Couper, 1953
Gleicheniidites senonicus Ross, 1949
Ischyosporites variegatus (Couper, 1958) Schulz, 1967
Kraeuselisporites reissingeri (Harris, 1957) Morbey, 1975
Leptolepidites rotundus Tralau, 1968
Lycospora pusilla (Ibrahim, 1932) Schopf et al., 1944
Neoraistrickia gristhorpensis (Couper, 1958) Tralau, 1968
Osmundacidites wellmanii Couper, 1958
Retitriletes austroclavatidites (Cookson, 1953) Döring et al., 1963
Sestrosporites pseudoalveolatus (Couper, 1958) Dettmann, 1963
Todisporites major Couper, 1958
Todisporites minor Couper, 1958
Tripartites vetustus Schemel, 1950
Uvaesporites argenteaeformis (Bolkhovitina, 1953) Schulz, 1967
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