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9 Abstract 
 

10 Given observed trends in the concentration of DOC in surface waters in northern hemisphere 
 

11 the degradation of DOC to CO2  could represent a major and increasing source of greenhouse 
 

12 gas to the atmosphere. However, studies of DOC turnover in rivers have been predominantly 
 

13 based upon mass balance studies and empirical studies have focused upon lakes and estuaries 
 

14 which have far longer residence times than would be the case for transit via rivers. The study 
 

15 measured DOC loss in unfiltered river water samples across an 818 km2  catchment every 
 

16 month for a year and considered total loss, photo and aphotic degradation as well as the rates 
 

17 of each process. The study found: 
 
 

18 i) Rate of total DOC change in daylight varied from loss of 30.1 mg C/l/day to an 
 

19 increase of 3.5 mg C/l/day: the average loss was 73% over 10 days. 
 

20 ii) Rate of change due to photic processes varied from decrease of 19.4 mg C/l/day to an 
 

21 increase of 6 mg C/l/day, i.e. net photo-induced production was possible. 
 

22 iii) Activation energy of the degradation was estimated as 2.6 ± 1.2 kJ/gC. 
 

23 iv) The apparent quantum yield varied from 9.6 and -1.7 mmol C/mol photons. 
 
 
 
 

1 Corresponding author:c.s.moody@durham.ac.uk; tel.no. +44 (0)191 334 2300; fax no. +44 (0)191 334 2301. 
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24 v) Coupling models of total loss of DOC with estimates of in-stream residence times 
 

25 showed  that  annual  loss  rates  of  DOC  across  the  818  km2   catchment  would  be 
 

26 between 48 and 69%, in line with estimates from mass balance studies, implying that 
 

27 in-stream DOC degradation represents a large, indirect source of CO2  emissions from 
 

28 peats and other organic soils. 
 

29 vi) Annual rate of removal was increasing in line with increasing loss of DOC at source, 
 

30 implying that observed DOC trends are leading to increased CO2 emissions. 
 
 

31 
 
 

32 Introduction 
 

33 The flux of dissolved organic carbon (DOC) from the terrestrial biosphere to the world’s 
 

34 oceans has now been widely recognised as an important component of terrestrial carbon 
 

35 budgets particularly from highly organic soils, e.g. peats (Aitkenhead et al., 2007). Several 
 

36 attempts have been made to estimate the flux of DOC from the terrestrial biosphere. Meybeck 
 

37 (1993) estimated that the global river flux of DOC was 200 Mtonnes C/yr. Ludwig et al 
 

38 (1996) used a spatially-explicit model of global fluvial C fluxes to obtain an estimate of 400 
 

39 Mtonnes C/yr, with a split of approximately 40:20:20 for DOC:POC:DIC. Harrison et al. 
 

40 (2005) estimated global river flux of DOC as 170 Mtonnes C/yr. For individual environments 
 

41 the export of DOC varies considerably: for lowland arable environments estimates of 0.9 and 
 

42 1.9 tonnes C/km2/yr have been reported (Royer and David (2005), Dalzell et al. (2007)); for 
 

43 lowland grassland 0.8 and 5.5 tonnes C/km2/yr (Don and Schulze, 2008); and for forested 
 

44 sites of between 1.5 and 5.3 tonnes C/km2/yr (Hope et al., 1997). Worrall et al. (2012) 
 

45 gathered information from 33 peat-covered catchments (all less than 40 km2) from across the 
 

46 UK and found DOC export varied from 10.3 to 95.6 tonnes C/km2/yr. Most studies calculate 
 

47 flux of DOC at the outlet of catchments, which may range from < 1 km2  to 818 km2. In 
 

48 general the rivers can be considered conduits rather than sources of DOC, since in-stream 
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49 (autochthonous) production is commonly low in peat streams relative to the soil source 
 

50 (Eatherall et al., 2000).  By calculating the flux at the river output, the calculation ignores any 
 

51 processing that may have occurred prior to that point. Loss of DIC through degassing of CO2 
 

52 from lakes, reservoirs and streams can represent an exceptionally high loss of terrestrial C. 
 

53 Kempe (1982, 1984) recognised that many surface freshwater bodies were saturated with 
 

54 respect to CO2   and would therefore be sources of CO2   to the atmosphere. Not only is 
 

55 dissolved CO2 lost in transit within the river system, but DOC will also be mineralised within 
 

56 the river system from its source to the river outlet (Richey et al. 2002): there will also be the 
 

57 possibility of autochthonous production of DOC within the river network although in peat 
 

58 covered catchments it is generally found to be not as great as the amount of allochthonous 
 

59 DOC  (Eatherall  et  al.,  2000).  Therefore  measuring  DOC  flux  solely at  the  river  outlet 
 

60 provides  a  likely  underestimate  of  the  loss  of  carbon  (and  therefore  greenhouse  gas 
 

61 emissions) from the terrestrial biosphere. Cole et al. (2007) have estimated that at a global 
 

62 scale 1.9 Pg C/yr enters rivers of which 0.8 Pg C/yr (42% of the input) is returned to the 
 

63 atmosphere, while Battin et al. (2009) suggested a lower limit of 21% removal of DOC in- 
 

64 stream. The IPCC now include an estimate of global DOC flux (Solomon et al., 2007) but do 
 

65 not yet consider any losses of DOC in-stream and so this flux value has no direct impact upon 
 

66 atmospheric greenhouse gases. 
 

67 In-stream  processing  of  DOC  and  POC  is  often  referred  to  or  invoked  as  an 
 

68 explanation or implication of the research in the literature, but is rarely quantified. Within 
 

69 streams there are a range of processes that could remove, degrade or add DOC to the flux 
 

70 (Fig. 1). The concept of the river spiralling and the continuum (Newbold et al., 1982) deals 
 

71 with the fate of all carbon (and nutrients) within a river system, but does not address the fate 
 

72 of individual components of the total carbon flux. However, in-stream fauna can utilise DOC 
 

73 and biodegradation interacts with light to speed up degradation (Moran and Zepp, 1997). The 
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74 stream  fauna  and  flora  have  the  potential  for  autochthonous  DOC  production  and 
 

75 autochthonous DOC has been reported as less prone to biodegradation and less prone to 
 

76 photosensitisation to biodegradation, i.e. they are resistant to biodegradation and the action of 
 

77 light does not make them biodegradable (Obernosterer and Benner, 2004). Sunlight and 
 

78 especially ultraviolet radiation will oxidise DOC to CO2  and CO as well as lower weight 
 

79 molecular  organic  compounds.  Rates  of  photodecomposition  in  the  field  are  generally 
 

80 reported for long residence time systems, e.g.  lakes (Kopacek  et al.,  2003) or estuaries 
 

81 (Moran et al., 2000): rates of approximately, 9 x 10-3 – 0.4 mg C/l/day have been reported in 
 

82 lakes (e.g. Graneli et al., 1996). Photodecomposition can be catalysed by the presence of 
 

83 other chemical species, especially   Fe, and cannot be considered independent of 
 

84 biodegradation (e.g. Anesio et al., 2005). Flocculation with Fe and Al can remove DOC from 
 

85 solution (Sharp et al., 2006) or at least   facilitate photoaggregation (Maurice et al., 2002). 
 

86 Peat-hosted streams, which are such significant sources of DOC (Aitkenhead et al., 2007), 
 

87 tend to be acidic, and although generally low in ionic strength  this can permit Fe and Al to 
 

88 be mobilised, with a consequential potential for flocculation and as steam pH rises through a 
 

89 catchment causing Fe and Al-oxyhydroxides to precipitate out of solution; McKnight et al. 
 

90 (1992) showed that such mixing of streams resulted in an average 40% removal of DOC. 
 

91 Equally, the solubility of DOC increases with increasing pH (Lumsden et al., 2001; Evans et 
 

92 al., 2012) and so DOC could desorb from POC if stream pH increased across a catchment. 
 

93 The work that has been done has mostly concentrated on ‘old’ DOC and biodegradation, and 
 

94 has looked at the efflux of CO2 rather than the decrease in DOC concentrations (e.g. Algesten 
 

95 et al., 2004) and in systems where the residence time of the water would be months (e.g. 
 

96 lakes), rather than hours and days as is the case in rivers. 
 

97 Several attempts have been made to quantify the loss of DOC across a catchment. 
 

98 Worrall et al. (2006) used a mass balance approach to calculate the DOC export at a range of 
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99 scales to show an average net loss of 40% of DOC from source to outlet across an 818 km2 
 

100 catchment. Worrall et al. (2007) used nationally-collected monitoring data for biochemical 
 

101 
 

102 

oxygen demand (BOD) as a measure of DOC turnover and found an average 31% loss across 
 
the UK fluvial network – equivalent to an additional release of 1 tonne C/km2/yr across the 

 
103 entire UK land surface. However, in basing their approach upon BOD data a fixed fluvial 

 
104 residence time of 5 days was assumed – a long residence time for the short, relatively- 

 
105 unimpounded rivers of the UK (although in the peatland areas surface water storage in 

 
106 reservoirs is more common). What is more, BOD tends to be measured low down in the 

 
107 fluvial network and away from sources of fresh more readily degraded DOC. Alternatively, 

 
108 Worrall et al. (2012) used empirical and structural modelling of the DOC export from over 

 
109 194 catchments across the UK, across 7 years and in comparison to the soil, land-use and 

 
110 hydro-climatic  characteristics  of  each  catchment  to  assess  net  watershed  losses. A  net 

 
111 

 
112 

watershed loss of DOC up to 78% was found, equivalent to between 9.0 and 12.7 tonnes 
 
C/km2  of UK land area/yr. These figures are comparatively large when compared to other 

 
113 studies and did not include actual DOC measurements. Wickland et al. (2007) observed 

 
114 measured 6-15% conversion of pore-water DOC to CO2 , and 10-90% conversion of the 

 
115 vegetation-derived DOC, during one-month dark incubations, and del  Georgio and Pace 

 
116 (2008) measured rates of loss as low as 0.4%/day, but again for dark incubations of fluvial 

 
117 DOC. The latter study was also for samples from near the tidal limit of the Hudson River, i.e. 

 
118 samples that would already have been in the river for many days. Jonsson et al. (2007) 

 
119 estimated that around 50% of terrestrially-derived organic carbon was mineralised but for a 

 
120 lake catchment where residence times would be long relative to the UK. Dawson et al. (2001) 

 
121 

 
122 

did consider a short river reach (2 km) in a peat headwater and estimated that 12-18% of 
 
DOC was removed. Wallin et al. (2013) considered a 67km2 boreal catchment and found that 

 
123 CO2  evasion from the streams represented 53% of the flux of carbon in the streams, some of 
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124 this CO2   evasion would be due to rapid turnover of DOC in low order streams. So the 
 

125 objectives of this study were to: measure the loss of DOC from source to sea along a short 
 

126 residence time river system (rather than in a long residence-time lake which receive DOC that 
 

127 may be several days old and so already refractory); assess the controls on DOC degradation 
 

128 
 
 

129 

and loss; and thus estimate the extent of loss of DOC across a catchment. 

 
130 Approach and Methodology 

 
131 This study conducted in situ degradation measurements of DOC from the headwater to the 

 
132 former tidal limit of a major UK river, the Tees, whose headwaters are peat-covered and 

 
133 where DOC fluxes have been extensively studied (e.g. Worrall et al., 2008). The in-situ 

 
134 experiments were conducted so that it was possible to measure total loss of DOC; loss of 

 
135 DOC in darkness (and therefore by difference the loss due to photolytic processes); and the 

 
136 rate of each of these processes. Results from degradation experiments were used to construct 

 
137 empirical rate laws that were combined with a time series of headwater DOC concentration 

 
138 and estimates of in-stream residence times so that estimates of total DOC loss from the 

 
139 

 
 

140 

catchment could be made. 

 
141 Study sites 

 
142 This study considers four sites along the River Tees, northern England (Figure 2 – Table 1). 

 
143 The River Tees flows 132 km from its source at Moor House National Nature Reserve, before 

 
144 draining in to the North Sea, although the estuary is cut off by a total exclusion tidal barrage. 

 
145 Four sites were chosen  from upstream of the barrage that differed by almost orders of 

 
146 magnitude in their upstream catchment area, each of which was co-located with a river flow 

 
147 gauging station. The two lowest order stream sites (CHS and TB – Table 1) are within the 

 
148 Moor  House  National  Nature  Reserve  (NNR),  the  most  extensively  studied  of  all  UK 
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149 peatlands (Billett et al., 2010), with 100% and 90% deep peat cover within their respective 
 

150 catchments. The Moor House   NNR is part of the Environmental Change Network (ECN) 
 

151 monitoring programme which means that DOC concentration has been monitored in the 
 

152 streamwater  at  these  sites  weekly  since  1993  (Worrall  et  al.,  2009).  Equally,  the  most 
 

153 downstream site (Broken Scar, DBS) is co-located with a water treatment works where water 
 

154 
 

155 

colour (not DOC concentration) has been measured daily since 1970 (Worrall et al., 2008). 

 
156 Degradation measurement 

 
157 The degradation measurements were made outside of the laboratory in ambient light and 

 
158 temperature conditions  (rather than  indoors  under artificially controlled  conditions).  The 

 
159 study  considered  degradation  in  light  and  dark  so  as  to  distinguish  between  possible 

 
160 components of degradation (eg. photo-induced degradation), and measured degradation over 

 
161 timescales relevant to river residence times. Experiments were conducted each month on each 

 
162 site over the course of a year in order to experience a range of both meteorological conditions 

 
163 and DOC concentrations and compositions. The samples were not pre-filtered to exclude 

 
164 particulates, because this meant that the study considered the net fate of DOC and could 

 
165 include production from POC or adsorption by it. 

 
166 Water samples were taken on a monthly basis from the 4 sites on the River Tees 

 
167 (Table 1). December and January samples were only obtained from two sites; poor weather 

 
168 conditions prevented the two sites within the Moor House NNR from being visited. Each 

 
169 degradation experiment spanned 10 days with sacrificial sampling taking place on day 0, 1, 2, 

 
170 5 and 10, and light and dark treatments for each site. Replicates were included within each 

 
171 degradation experiment and over the course of the year all combination of factors were 

 
172 replicated. No day 0 samples were replicated, but 44% of all other measurements were 

 
173 replicates (285 of 646 samples). Replication was limited by practical constraints of the 
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174 number of quartz tubes available and the time taken to process DOC analysis.  The water was 
 

175 then poured in to acid-washed, quartz glass tubes, stoppered with a rubber bung at the 
 

176 bottom, and loosely stoppered at the top.  Quartz glass allows all light wavelengths to pass 
 

177 through it.   Dark samples were wrapped in foil to prevent exposure to light.   All samples 
 

178 were put outside in trays, with all tubes lying at an angle to prevent rainfall entering and the 
 

179 sample evaporating or pouring out.  The angling of the tubes also stopped the light samples 
 

180 being shaded by the top bung and exposed a larger surface area of water to light. The 
 

181 samples were moved to different positions daily to avoid any bias in shading from nearby 
 

182 trees. 
 

183 A   data   logger   with   a   PAR   (photosynthetically   active   radiation)   meter   and 
 

184 thermocouple  recorded  the  radiation  levels  and  air  temperature  at  15  minute  intervals 
 

185 throughout  the  10  day  period  of  each  month’s  experiment.  Radiation  and  temperature 
 

186 conditions were summarised as the average conditions over the period for each sample and 
 

187 PAR measurements were summed to give the total radiation experienced by a sample. These 
 

188 were treated in this way because a sample after 10 days may have experienced the same 
 

189 average radiation as a sample after 1 day but will have received a larger total radiation dose. 
 

190 By including radiation and temperature variables it was possible to estimate the apparent 
 

191 
 

192 

quantum yield and the activation energy for DOC photodegradation. 

 
193 Sample analysis 

 
194 Upon each day of sampling the respective quartz tube for each site, each treatment and 

 
195 replicates,  where  appropriate,  were  sacrificially  sampled  and  sub-samples  frozen  for 

 
196 subsequent analysis for DOC concentration: it is assumed that the freezing and thawing of 

 
197 samples did not alter DOC concentrations. Samples for DOC analysis were defrosted and 

 
198 filtered to 0.45 µm and the DOC concentration measured using the wet oxidation method 
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199 
 

200 

described in Bartlett and Ross (1988).  DOC concentrations were calibrated using standards 
 
of oxalic acid with known concentrations, and only calibration curves with an R2 of 0.95 or 

 
201 above were used.  The Bartlett and Ross method is accurate between 2 and 60 mg/l DOC and 

 
202 samples were diluted so as to be within this range.  Samples with a higher DOC concentration 

 
203 were diluted using deionised water which was also used as a blank.  Absorbance at 400, 465 

 
204 and 665 nm was measured and the ‘E4:E6’ ratio (abs at 465 nm/ abs at 665 nm) recorded. 

 
205 Absorbance at  400  nm  is  a basic (visible)  colour reading  and  the specific visible light 

 
206 absorbance was taken as the absorbance at 400nm divided by the DOC concentration of the 

 
207 sample. The E4/E6 ratio is a measure of DOC composition, with higher ratios indicating a 

 
208 greater degree of humification (Thurman, 1985).  All optical measurements were performed 

 
209 using a UV-Vis spectrophotometer, with a 1 cm cuvette.   Blanks of deionised water were 

 
210 used. 

 
211 Suspended  sediment  concentration  in  each  monthly experiment  was  measured  in 

 
212 

 

 
213 

samples on day 0 and day 10. Samples were filtered through pre-weighed, 0.45 µm glass 
 
fibre filters; dried to 105oC and the filter paper re-weighed to give the concentration of 

 
214 particulate matter. The composition of the particulate matter was not analysed and particulate 

 
215 concentrations were only measured in a sample of 50 ml volume. 

 
216 A number of additional water analyses were performed in order to provide covariate 

 
217 information. Alkalinity or acidity was measured by titration on day 0 and day 10. An acidity 

 
218 or alkalinity titration was carried out (in the field on day 0), titrating 20 ml of river water 

 
219 against either 0.1 M sodium hydroxide (NaOH) or 0.005 M hydrochloric acid (HCl), using 

 
220 five drops of phenolphthalein or bromophenol blue, respectively, as chemical indicators of 

 
221 pH change.   Three titrations were carried out for each site and treatment, and the average 

 
222 volume of acid/alkali used was recorded. Conductivity, pH, and water temperature of samples 

 
223 as it left each quartz glass vial were measured by electrode methods. Ion Chromatography 
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224 was used to measure the concentrations of certain anions: fluoride, bromide, chloride, nitrate, 
 

225 phosphate  and  sulphate.  Cations  such  as  Fe  and  Al  were  not  included  in  the  analysis. 
 

226 However, the stream water at Cottage Hill Sike is regularly sampled as part of the monitoring 
 

227 programme of the Environmental Change Network (www.ecn.ac.uk – Sykes and Lane, 1996). 
 

228 The  concentrations  of  DOC  and  the  specific  absorbance  were  analysed  in  both 
 

229 absolute and relative terms where the relative value for each sample in an experiment was 
 

230 expressed  as  the  ratio  of  the  measured  value  to  measurement  on  day  0  for  the  same 
 

231 
 

232 

experimental run. 

 
233 Statistical methodology 

 
234 The  design  of  the  experiment  incorporates  four  factors:  month,  sample  day,  site  and 

 
235 treatment.  Each factor has a number of levels: month has 12 levels (one for each calendar 

 
236 month): sample day has 5 levels (days 0, 1, 2, 5 and 10); site has 4 levels (CHS, TB, MIT and 

 
237 DBS); and treatment has 2 levels (light and dark). 

 
238 An analysis of variance (ANOVA) was used to assess the significance of all four 

 
239 factors  and  where  possible  the  interactions  between  the  factors  were  also  determined. 

 
240 Furthermore, the analysis was repeated including covariates (ANCOVA). The covariates 

 
241 were: pH, conductivity, absorbance at 400 nm, E4:E6 ratio; anion concentrations; and light 

 
242 and temperature variables. The instantaneous river flow at the time of sampling was not 

 
243 available to the study. The ANOVA and ANCOVA were performed separately so as to 

 
244 

 
245 

explore what effects existed and whether they could be explained by the available covariates. 
 
The magnitude of the effects, in this case generalized ω2 (Olejnik and Algina, 2003), of each 

 
246 significant factor and interaction were calculated.  Post-hoc testing of the results was made 

 
247 for pairwise comparisons between factor levels using the Tukey test in order to assess where 

 
248 significant differences lay. There are several assumptions associated with using the ANOVA 

http://www.ecn.ac.uk/
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249 approach.  Firstly, the Levene test was used to assess homogeneity of variance with respect to 
 

250 the factors in ANOVA; if this test failed then data were log-transformed.  It should be noted 
 

251 that ANOVA is robust against the assumptions of homogeneity of variance and normality of 
 

252 the data. Secondly,  the Anderson-Darling test  was  used  to  ensure that  the data were 
 

253 normally distributed; if not the data were log-transformed. Thirdly, to avoid type I errors all 
 

254 
 

255 

probability values are given even if significance was assessed at the 95% level. 

 
256 Empirical Modelling 

 
257 The statistical analysis was used to direct the development of empirical models of DOC loss. 

 
258 Multiple  linear  regression  was  used  to  develop  the  empirical  model  based  upon  terms 

 
259 identified from the ANOVA and including interaction terms. Only variables whose effect was 

 
260 significant at least at 95% probability of not being zero were included in the developed model 

 
261 

 
 

262 
 
 

263 

with the further caveat that final models were also chosen so as to be physically interpretable. 
 

The month factor was transformed into the sinusoidal function ( ) where 

m is the month  number (January = 1  to December = 12). Some of the variables were 
 

264 transformed  for  the  sake  of  physical-interpretability,  e.g.  reciprocal  of  the  absolute 
 

265 temperature.  When  statistically  significant  multiple  regression  equations  were  derived  a 
 

266 partial regression analysis was performed to assess the importance of each significant term. 
 

267 The  modelling  of  net  catchment  losses  required  an  estimate  of  the  in-stream 
 

268 residence, and therefore this study used the approach of Worrall et al. (2013) in order to 
 

269 calculate  the  in-stream  residence  time  from  source  to  a  monitoring  point  lower  in  the 
 

270 catchment. 
 

271 Flow  records  were  available  from  5  gauging  stations  throughout  the  River  Tees 
 

272 catchment  and  the  record  from  the  gauge  furthest  upstream  and  within  a  peat  covered 
 

273 catchment was used (Trout Beck – Figure 2). So as to coincide with available stream DOC 
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274 monitoring records, flows from 1994 to 2009 were considered. The in-stream residence time 
 

275 can be defined as the time that river water takes to transit from the point it entered the river to 
 

276 
 

277 
 
 

278 
 
 

279 

the point of interest (i.e. the point of monitoring): 
 
 
 
 

(i) 

 
280 where: tr  = the in-stream residence time; v = the cross-sectional average river velocity; xm  = 

 
281 the distance of the monitoring along the river from its source above the Trout Beck gauging 

 
282 station; and xe  = the expected length of the river for the monitoring point m, i.e. the length 

 
283 along the river at which all water at monitoring point can be assumed to have entered. 

 
284 The mean velocity of a river at any point can be estimated from Manning’s equation 

 
285 

 
286 

 
 

287 
 
 

288 

(Manning, 1891):  
 
 
 
 
 
 
(ii) 

 
289 where: A = cross-sectional area of the river at point x; p = the wetted perimeter; s = the water 

 
290 surface slope; and n = the Manning’s n coefficient. If equation (ii) is expressed in terms of x, 

 
291 i.e. distance along the river, then equation (i) can be solved. 

 
292 It is common for the longitudinal slope profile of a river to be expressed as an 

 
293 

 
294 

 
295 

 
 

296 

exponential function of river length using the Putzinger equation (Putzinger 1919): 
 
 
 
 

(iii) 
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297 Where: Sx  = the bed slope at point x; S0  = the bed slope at source; and ϕ = an empirical 
 

298 constant. It was assumed that bed slope was an approximation for the water surface slope in 
 

299 equation (ix). 
 

300 
 

301 
 
 

302 
 
 

303 

If it is assumed that the river has a rectangular cross-sectional area then: 
 
 
 
 

(iv) 

 
304 Where: d = river depth and w = river width. For a rectangular cross-section, the width of the 

 
305 river does not vary with discharge and so it is only necessary to find an expression for river 

 
306 depth change with river length. A rectangular section is the simplest possible section that we 

 
307 could consider and if justified it would be possible to replace this with a more complex 

 
308 representation of the channel cross-section. Dangerfield (1999) lists the bankfull width of 124 

 
309 UK rivers and these data were augmented with observations from the 5 gauging stations on 

 
310 the  River  Tees  (Figure  2);  the  River  Tees  was  not  part  of  the  original  data  set  from 

 
311 

 
312 

Dangerfield (1999). The data set of Dangerfield (1999) does not consider catchments less 
 
than 13 km2; this can only be marginally improved with data from the Tees to 11.4 km2

 
 

313 
 

314 

(Table 1) The evidence shows a significant linear correlation between river length and river 
 
width for catchments up to 11.4 km2  (5 km river length) but this equation suggested that 

 
315 rivers would be over 7m wide at source. In order to correct for this overestimation in small 

 
316 catchments, the following was assumed based upon observations of width from the test 

 
317 

 
318 

 
319 

 
320 

 
321 

catchment used in this study: 
 
 
 
 
For catchment area (C) > 11 km2

 
 
 
 
 

r2 = 0.61, n= 129 (v) 
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322 
 

323 
 

324 
 

325 
 
 

326 
 

327 

 
 
 
For catchment area (C) < 11 km2

 
 
 
 
 

          (vi) 
 
 
 
 
Where: C = catchment area (km2); and w0 = river width at source (m). A river will have finite 

 
328 width at source and as a default a value of 0.1 m was assumed here. 

 
329 River depth varies with flow and we propose the following form of equation based 

 
330 

 
331 

 
 

332 
 
 

333 
 

 
334 

 
 

335 
 
 

336 
 
 

337 

upon observed depth frequency curves: 
 
 
 
 

               (vii) 
 
 
 
 
where:  = depth at exceedance flow f (e.g. 10% exceedance) at river length x (m);  = 

depth of the river at the monitoring point m for exceedance flow f; and β, γ, δ = empirical 

constants where β approximates to  . 
 

 
The above approach was calibrated for the River Tees given data readily available for 

 
338 gauging  stations   in   the  UK   as   reported   within   the  National   River  Flow   Archive 

 
339 (www.nrfa.ac.uk) and the Flood Studies Report (NERC, 1975 - Table 2). The calibration of 

 
340 

 
341 

the above equations for the River Tees is discussed in Worrall et al. (2013). For Equation (iii) 
 
r2  = 0.93 and for Equation (vii) the root mean square error was 0.02%, i.e. the fit of this 

 
342 approach was excellent and limited any error in transit time prediction. The source of most of 

 
343 the DOC within the River Tees is in the headwaters associated with peat soils (Aitkenhead et 

 
344 al., 2007). A soil map of the Tees catchment shows that peat soils end at 10 km from the 

 
345 source along the main river length, approximately at the location of the Trout Beck gauging 

http://www.nrfa.ac.uk/
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346 station, and so the in-stream residence time at this point was calculated using an intermediate 
 

347 river length of 5 km, i.e. on average DOC enters halfway between the beginning of the stream 
 

348 and 10 km downstream 
 

349 Monitoring of stream water DOC concentration in the catchment headwaters was 
 

350 weekly, and so observed concentrations were paired with the flow measurement for the same 
 

351 time at the Trout beck, and then in-stream residence time calculated for that flow. Given the 
 

352 in-stream residence time for a given initial concentration of DOC it was possible to calculate 
 

353 the export from the DOC source and the expected loss to tidal limit of the study river, i.e. the 
 

354 
 

355 

point at which the river enters the estuary. 

 
356 Results and Discussion 

 
357 It was possible to generate a sample size of 690 DOC concentrations with complete covariate 

 
358 information and within the context of the factorial design. Summary of the water chemistry at 

 
359 the two sites at the extremes of the study catchment over the 10 days of the study period in 

 
360 daylight conditions is given in Table 3.   The Fe and Al concentrations for the headwater 

 
361 

 
362 

stream are below those reported for photoaggregation by Maurice et al. (2002). 

 
363 DOC concentrations 

 
364 For nearly every month of measurement the DOC concentration in both treatments decreased. 

 
365 The average DOC concentration over time over all sites showed a steep initial decline, 

 
366 although the rate of decline was still not zero after 10 days (Figure 3) suggesting that further 

 
367 decreases would have occurred in the experiments had continued for longer. The average 

 
368 decline in DOC concentration across all months for all sites for samples in daylight was from 

 
369 51 to 14 mg C/l after 10 days: when concentrations were judged relative to the day 0 

 
370 concentration at each site then the average decline over 10 days was 76%. For experiments 
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371 only in the dark the average decline over a 10 day period was 47%. The average difference 
 

372 across all sites and all times between samples in light and dark was 11.8 mg C/l with day 10 
 

373 DOC concentrations of samples kept in the light being on average 29% lower than those kept 
 

374 in the dark when judged relative to the DOC concentration on day 0. Larson et al. (2007) 
 

375 compared DOC concentrations in samples of stream water kept in light and dark conditions 
 

376 for 24 hours of normal sunlight and found an average decrease between 5 and 10%. 
 

377 Of all the experiments run, there were 66 samples (out of a total of 690 samples) 
 

378 where an increase in DOC concentration was observed. In 14 of the cases there was a higher 
 

379 day 10 DOC concentration than day 0. Given that no raw water samples were filtered prior to 
 

380 inclusion in the experiment it was possible that particles or the microbial population within 
 

381 the sample generated DOC over the course of the experiments. Samples where there was an 
 

382 
 

383 

increase in DOC over the course of the experiment were not removed from the analysis. 

 
 

384 ANOVA on DOC concentrations 
 

385 The Anderson-Darling test showed that neither the distribution of DOC concentration nor 
 

386 relative DOC concentration for the experiments conducted in the light and those in the dark 
 

387 met the condition of normality, but therefore all subsequent ANOVA were performed on log- 
 

388 transformed data which did exhibit a normal distribution. Conversely, the Anderson-Darling 
 

389 test  of  the  photo-induced  degradation  data  (i.e.  the  difference  in  concentration  between 
 

390 experiments  performed  in  the  light  and  dark)  was  normally distributed  and  so  this  not 
 

391 transformed further. 
 

392 When  the relative concentration  data for all  treatments  (daylight  and  dark) were 
 

393 considered without covariates, all single factors were found to be significant (Table 4). The 
 

394 least important single factor was Site (explaining only 0.4% of the variance in the original 
 

395 dataset). One of the reasons for using relative DOC concentration was to minimise the 
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396 difference between sites, and so this result indicates that this was largely effective. Post-hoc 
 

397 testing showed that the difference between sites was largely associated with the difference 
 

398 between the CHS and MIT, but not between CHS and DBS. There were no significant 
 

399 interactions between the Site factor and any other factor. The most important factor was Day, 
 

400 i.e. the time over the experiment with all days being significantly different from each other. 
 

401 The second most important factor was the difference between treatments, with the relative 
 

402 DOC concentration in the light being 48% lower than those kept in the dark. Indeed the most 
 

403 important  interaction  was  that  between  Day  and  Treatment  factors  which  reflects  the 
 

404 difference in the curves illustrated in Fig. 3. There was a significant effect due to month but 
 

405 this may reflect the importance of the Day0 concentration for the degradation rate (with faster 
 

406 degradation rates associated with higher initial concentrations) rather than a seasonal cycle in 
 

407 degradation behaviour per se, which also explains the significant interactions between the 
 

408 Month factor and the Day and the Treatment factors. Overall the ANOVA of the relative 
 

409 DOC concentration explains 62.7% of the variance in the original data, i.e. the error term 
 

410 represents 37.3% of the variance. This error term represents the unexplained variance which 
 

411 was not only due to sampling or measurement  error but  also variables, factors or their 
 

412 interactions that were not or could not be included: inclusion of covariates should decrease 
 

413 this term. 
 

414 Inclusion of covariates into the ANOVA did increase the proportion of the variance 
 

415 explained, by 4% (Table 4). However inclusion of covariates did not make any of the factors 
 

416 or interactions insignificant; on the contrary, inclusions of significant covariates increased the 
 

417 importance of the differences between sites even when relative DOC concentration was being 
 

418 tested.  The  most  important  covariate  was  the  specific  absorbance,  which  significantly 
 

419 declined with increasing DOC concentration. The second most important covariate was the 
 

420 day0  concentration,  where  relative  concentration  declined  faster  with  increasing  day0 
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421 concentration. This suggests that degradation rate was concentration dependent. No other 
 

422 covariates were found to be significant. No other covariates were found to be significant in 
 

423 this analysis. 
 

424 Guided by the results of the results of the ANOVA it was possible to give the best-fit 
 

425 
 

 
426 

 
 

427 
 
 

428 

equation for the change in the DOC concentration (∆DOC): 
 
 
 
 

 
 
r2 = 0.76, n = 264 

 
 
 
 
 
 
(viii) 

 
429 

 
430 

(0.04) (0.04) (0.05) (0.18) 

 
431 where: day0  = the DOC concentration on day zero of each experiment (mg C/l); t = time 

 
432 since the start of the experiment (days); m = month number (January = 1 to December = 12). 

 
433 Only variables that were found to be significant different from zero at least at a probability of 

 
434 95% were included. The values in brackets give the standard errors on the coefficients and 

 
435 the constant term. The partial regression analysis shows that the most important variable is 

 
436 ln(day0) (partial regression coefficient = 0.66) with the other terms of approximately equal 

 
437 

 
438 

importance. 

 
439 ANOVA on Photo- induced degradation 

 
440 The difference between the dark and light concentrations in each experiment was 

 
441 taken  as  the  estimate  of  the  impact  of  photic  processes.  The  extent  of  photo-  induced 

 
442 degradation could be estimated in 313 cases and the loss due to photo-induced degradation 

 
443 varied  from  48  mg  C/l  and  -11  mg  C/l  (i.e.  as  above  in  some  experiments  the  DOC 

 
444 concentration was observed to increase, implying  photo-induced production). The ANOVA 

 
445 shows that all single factors were significant but that there were no significant interactions 
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446 between  those  factors  (Table  5).  Only one  variable,  and  no  others,  was  found  to  be  a 
 

447 significant covariate - the day0  concentration. The Month factor, although significant, shows 
 

448 no  clear  seasonal  cycle  which  may  imply  that  hydroclimatic  conditions  on  the  day  of 
 

449 sampling (e.g. riverflow) are more important than the season of the year. The Day factor 
 

450 showed a significant maximum in the difference due to photo-induced degradation after 2 
 

451 days (Figure 4, also apparent in Figure 3) which then declines to the 10 day period. 
 

452 Given the results of the ANOVA it was possible to identify the best-fit equation for 
 

453 
 

 
454 

 
 

455 
 
 

456 

the loss due to photo-induced degradation (∆DOCphoto ): 
 
 
 
 

 
 
r2 = 0.52, n=313 

 
 
 
 
 
 
(ix) 

 
457 

 
458 

(9.0) (0.06) (3.0) (255) 

 
459 Where: [DOC] = the DOC concentration (mg C/l); and Abs400  – absorbance at 400nm. The 

 
460 most important term in Equation (ix) is ln[DOC] with a partial regression coefficient = 0.69, 

 
461 followed by Abs400/[DOC] with the least important term being [DOC] having a partial 

 
462 regression coefficient = 0.035. 

 
463 It should be noted that neither temperature nor PAR variables were found to be 

 
464 significant covariates in any of the above approaches. However, it was possible to estimate 

 
465 the apparent quantum yield (AQY) in 158 of the experiments and this was found to vary 

 
466 between  9.6  and  -1.7  mmol  C/mol  photons  (again  there  were periods  of photo-induced 

 
467 production as opposed to photo-induced degradation) – on an energy basis this equates to a 

 
468 maximum AQY of 1.9 mg CO2 /kJ. Most values of AQY in the literature are defined for 

 
469 single wavelengths (eg. Boyle et al., 2009) or for inappropriate end-products making them 

 
470 less transferrable to this study (eg. Stubbins et al., 2010). Osborn et al. (2009) measured AQY 
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471 
 

472 

for DOC values between 1 and 3 mmol C/mol photons, for samples at the mouth of the 
 
Mackenzie River (> 180,0000 km2). Soumis et al. (2007) give photoreactivity of DOC in 

 
473 sterile lake water as between 15.5 and 35.8 mg CO2 /kJ. This larger photoreactivity may be 

 
474 due to the experiment being performed in sterile containers that remove any biotic process 

 
475 and so photic processes are the only process operating. The ANOVA of the AQY showed 

 
476 significant effects due to Day, Month and with day0  as a covariate. Month was the most 

 
477 important factor with a peak in December and a minimum between February and June. This 

 
478 suggests  that  some  months  were  associated  with  proportionately  more  photo-induced 

 
479 production than other months. This seasonal cycle could appear to be the inverse of the day 

 
480 length or solar declination, both of which would have peaked in June rather than December 

 
481 when the days are shortest and the sun’s declination to the horizon at its lowest. It should be 

 
482 remembered that AQY is a measure of the photo-induced degradability and not the amount of 

 
483 

 
484 

photo-induced degradation, i.e. the DOC in December was more photodegradable. 

 
485 Rate of Degradation 

 
486 The rate of degradation of DOC was considered relative to the individual treatments, i.e. i) 

 
487 the rate of degradation in the light (i.e. total degradation); ii) the rate of degradation in the 

 
488 dark; and iii) the difference between the two treatments which was taken as the rate of photic 

 
489 processes. For samples in the light, the degradation rate varied from 30.1 mg C/l/day to -3.5 

 
490 

 
491 

mg C/l/day, i.e. increases or no change in DOC concentrations were observed in 60 cases. 

 
492 Rate of Degradation in the light 

 
493 The ANOVA of the rate of degradation for samples in the light showed that all factors 

 
494 were significant (Table 6). When no covariates were included then all 3 factors were found to 

 
495 be significant (obviously no treatment factor was included because only experiments in the 
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496 light were being considered). Once covariates were included then neither Site nor Month 
 

497 factors were found to be significant. The lack of significance for the Site factor means that 
 

498 this  study  found  that  the  different  parts  of  the  river  did  not  have  inherently  different 
 

499 degradation rates. Equally, the lack of a significant difference between months of sampling 
 

500 suggests that there is no seasonal cycle in degradability. When covariates were included then 
 

501 both ln(day0 ) and 1/Temp were found to be significant and no others, although collectively 
 

502 they explained only 8% of the original variance. Given the results of the ANOVA the best fit 
 

503 
 

504 
 

 
505 

 
 

506 

equation for degradation rate in daylight was: 
 
 
 
 

 
 
r2= 0.61, n = 167 

 
 
 
 
 
 
(xi) 

 
507 

 
508 

(5.7) (0.12) (0.1) (1567) 

 
509 Where: T = absolute temperature of the experiment (K). The residuals of equation (xi) were 

 
510 normally distributed. The most important term in Equation (xi) is ln(day0 ) with a partial 

 
511 regression coefficient =0.51 and the least important term being 1/T with a partial regression 

 
512 coefficient = 0.035. Although the visual inspection of the residuals of equation (x) show no 

 
513 obvious changes, the main effects plot of ln(ratelight ) vs t (Figure 5) would suggest that, 

 
514 although a straight line fit was significant, a combination of two straight lines would be 

 
515 better, with one fast rate equation covering the period up to approximately 4-5 days and one 

 
516 after 5 days. The significance of the reciprocal of absolute temperature in equation (xi) means 

 
517 that it was possible to estimate the activation energy of the degradation given a value of the 

 
518 

 
519 

universal gas constant as 0.692Jj/K/gC and in which case this would be 2.6 ± 1.2 kJ/gC. 

 
520 Rate of degradation in the dark 
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521 It was possible to calculate the rate of degradation in the dark in 258 experiments, 
 

522 which ranged from a decrease of 19.4 mg C/l/day to -6 mg C/l/day, i.e. increase or no change 
 

523 in DOC concentrations were observed in 77 cases. For the rate of degradation in the dark the 
 

524 ANOVA shows that all factors were significant (Table 7). Once covariates were included 
 

525 then site was found not to be significant, however, unlike when considering the rate of the 
 

526 reaction in the light there was still a significant role for the month factor, i.e. there was a 
 

527 seasonal cycle in aphotic degradability. The main effects plot of the month factor shows that 
 

528 degradability peaked in July and October at 6.11 mg C/l/day, and was at a minimum in 
 

529 November at 0.28 mg C/l/day (Figure 6). There is a superficial similarity between the rate of 
 

530 degradation and the annual average temperature during each month’s experiment but the 
 

531 temperature did not show the local maxima in July and October. When covariates were 
 

532 included then both ln(day0 ) and 1/Temp were again found to be significant: no others were 
 

533 found to be significant 
 

534 Given the results of the ANOVA the best fit equation for degradation rate in darkness 
 

535 
 

536 
 
 

537 
 
 

538 

was: 
 
 
 
 

 
 
r2 = 0.45, n = 178 

 
 
 
 
 
 
(xii) 

 
539 

 
540 

(0.11) (0.10) (0.17) (0.20) (2783) 

 
541 where  all  terms  are  defined  as  above.  The  residuals  of  equation  (xii)  were  normally 

 
542 distributed. The most important term in Equation (xii) is ln(day) with a partial regression 

 
543 coefficient = 0.29 and the least important term being 1/T with a partial regression coefficient 

 
544 = 0.008. As above the main effects plot of ln(ratedark ) vs. t suggests that a more complex rate 

 
545 law than a single rate law. Again it was possible to estimate the activation energy of the 
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546 degradation and in which case this would be 2.3 ± 1.8 kJ/gC, i.e. not significantly different 
 

547 from the estimate based on the degradation rate in the light. It is difficult to find studies that 
 

548 measure activation energy in comparative systems, but Alperin et al. (1995) give a value of 
 

549 6.7 kJ/gC for DOC in marine sediments; a higher value may be expected for DOC that is 
 

550 
 

551 

likely to have been older and more recalcitrant than that found in rivers. 

 
552 The rate of photo-induced degradation 

 
553 The rate of the photo-induced degradation could be calculated from 168 experiments 

 
554 and  varied  from  27.3  mg C/l/day to  -4.3  mg  C/l/day,  i.e.  in  39  cases  an  increase was 

 
555 observed. All 3 factors were found to be significant but again the Site factor was not found to 

 
556 be significant when covariates were included (Table 8). As before the Day factor was found 

 
557 to be the most important, though there was a significant seasonal cycle where the rate peaked 

 
558 in September at 7.7 mg C/l/day with a minimum in June at 1.1 mg C/l/day. The covariates 

 
559 

 
560 

 
 

561 
 
 

562 

found to be significant were not only Day 0 but also cumulative PAR. 
 
 
 
 

 
 
r2 = 0.29, n = 94 

 
 
 
 
 
 
(xiii) 

 
563 

 
564 

 
 

565 
 
 

566 

(14.8) (4.5) (2.0) (3.9) (0.003) 
 
 
 
 

Where all terms are defined as above. The significant effect of the term in  does suggest 

that we could measure significant AQY. The most important term in Equation (xiii) WAs lnt 
 

567 (partial  regression  coefficient  =  0.39)  with  no  other  term  having  a  partial  regression 
 

568 
 
 

569 

coefficient greater than 0.07. By using partial regression it was possible to examine the 

relationship between ln(ratephoto ) and , which does suggest that the rate of photo-induced 
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570 degradation  declined  with  increasing  ΣPAR.  This  implies  that  there  was  a  progressive 
 

571 decrease  in  the  sensitivity  of  remaining  DOC  to  photo-induced  degradation,  i.e.  that 
 

572 photobleaching had occurred, and that this was associated not only with time but also with 
 

573 
 

574 

increased light intensity. 

 
575 Empirical modelling 

 
576 The estimated in-stream residence time for water between Trout Beck and the tidal limit 

 
577 

 
578 

varied from 12.9 to 127.2 hours. Between 1994 and 2009 the annual flux of DOC at Cottage 
 
Hill  Sike  varied  from  14.7  to  33.3  tonnes  C/km2/yr.  For  each  measurement  of  DOC 

 
579 concentration at Cottage Hill Sike the flow measurement at the Trout Beck gauging station 

 
580 was used to calculate the in-stream residence time. Given an initial concentration and an 

 
581 estimate of the in-stream residence time it was possible to calculate the loss of DOC and the 

 
582 

 
583 

 
584 

export that would represent. Based on the in-stream residence time and equation (viii), then 

the equivalent flux at the tidal limit would be between 5.4 and 12.6 tonnes C/km2/yr which 

gives an equivalent removal rate of 7.7 and 21.4 tonnes C/km2/yr which is a removal rate of 
 

585 
 

586 
 

587 

between 48 and 69% (Figure 7). There was a significant trend in the DOC flux from Cottage 
 
Hill Sike, which increased at average rate across the whole period of 0.59 tonnes C/km2/yr2

 
 
(3.0 % /yr2) but no significant trend was observed for the flux at Broken Scar over the same 

 
588 

 
589 

period. Therefore, it is perhaps not surprising that there was a significant increase in the 
 
predicted removal rate – 0.52 tonnes C/km2/yr2  (5.0 %/yr2). The increase in the predicted 

 
590 removal rate is in line with the increase observed for the flux of DOC at source, and so 

 
591 therefore the observations of DOC degradation for this catchment imply that the river is 

 
592 capable of removing most or all of the increase in DOC export from the source, before it 

 
593 reaches the sea. This in turn implies that observed increases in DOC flux from peat soils 

 
594 across the northern hemisphere could translate into large increases in loss of CO2  to the 
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595 atmosphere. However, in this case this would assume no other changes in sources in the rest 
 

596 
 

597 

of the catchment such as no changes in urban or agricultural sources. 

 
598 Limitations and Implications 

 
599 One particular process that this study has not quantified is the processing of the particulates. 

 
600 We deliberately did not filter the samples prior to experiment, to allow for the possibility of 

 
601 interaction between particulates and DOC, but because of the small volume of samples it was 

 
602 not possible to test the composition of the particulates over the course of the experiments. 

 
603 However, suspended sediment concentrations were measured in samples at day 0 and day 10, 

 
604 meaning that it was possible to assess the change in particulate concentration over a 10 day 

 
605 period in 35 cases. Over these 35 cases no increases in suspended sediment concentration 

 
606 were  observed,  with  removal  rates  ranging  from  0.2  to  15.6  mg  C/l/day.  Without 

 
607 compositional information it is difficult to infer the extent to which the particulate carbon 

 
608 content has changed. However, for the CHS there is no mineral soil in the catchment and so 

 
609 any suspended sediment can be assumed to be organic. There were 9 cases where it was 

 
610 possible to compare the day 0 and day 10 samples at CHS, and this gave a loss of POC 

 
611 between 7.5 to 29.4 mg C/l/day (assuming a carbon content of 45%), which is a removal rate 

 
612 of between 38 and 87% over 10 days. Of course this assumes that our experimental set up 

 
613 mimics the settling out of POC into a streambed, and the analysis does not indicate whether 

 
614 the POC was converted to directly to CO2  or to DOC. Nevertheless, the absence of any 

 
615 evidence of increasing particulate concentrations in any of the experiments argues strongly 

 
616 that the widespread reductions in DOC observed were not due to flocculation or precipitation. 

 
617 Based on BOD measurements from rivers across England and Wales, Worrall et al. 

 
618 (2007) estimated an average 29% removal of DOC, although this estimate was based upon an 

 
619 assumption of a fixed 5 day residence time. Worrall et al. (2006) working on the River Tees 
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620 calculated the DOC export at a range of scales to show an average net loss of 40% of DOC 
 

621 from source to outlet. Worrall et al. (2012) developed an empirical model of net watershed 
 

622 loss based upon data from 169 catchments and applying the method to the Tees catchment 
 

623 suggests a removal rate of 58%. Therefore, the estimates of removal rates are not dissimilar 
 

624 to previous less detailed estimations, and indeed not dissimilar to estimates of global in- 
 

625 stream removal (42% - Cole et al., 2007). 
 

626 
 

627 

Worrall et al. (2012) estimated the flux of DOC from the UK was 909 ± 354 ktonnes 
 
C/yr (2.2 – 5.2 tonnes C/km2/yr), so applying the removal rates measured in this study 

 
628 

 
629 

 
630 

suggests that the flux of DOC at source in the UK would have been between 1067 and 4074 

ktonnes C/yr (4.4 – 16.7 tonnes C/km2/yr). Rates of DOC loss through the UK’s fluvial 

network would be between 512 and 2811 ktonnes C/yr (2.1 – 11.5 tonnes C/km2/yr), which 
 

631 represents a greenhouse gas emission of between 1880 and 10320 ktonnes CO2eq /yr. Even the 
 

632 lower of these estimates would represent 1% of the UK’s national total GHG budget. 
 

633 Although this study has been able to develop empirical rate law for the loss of DOC, 
 

634 it is clear from this study that if we are to further understand the turnover of DOC in the 
 

635 rivers then it will be necessary to consider changes on hourly timescales rather than daily, and 
 

636 to better constrain in-stream residence times across regions. The study suggests that there is a 
 

637 strong influence of radiation on the loss of DOC which would create a strong diurnal cycle in 
 

638 the  loss  or  processing  of  DOC,  which  in  the  short  residence  times  of  rivers  has  two 
 

639 implications: firstly, that without a good knowledge of in-stream residence time it will be 
 

640 difficult to judge how much DOC is lost. Second, a strong diurnal cycle in northern latitudes 
 

641 also implies that there should be a strong annual cycle in loss of DOC, even with a fixed in- 
 

642 stream residence time. The study suggests that there at least two broad types of DOC, with 
 

643 one rapidly turning over into the other, at the same time as the particulate organic matter is 
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644 itself turning over producing DOC. The interplay of at least these three processes means that 
 

645 
 

646 

we need to consider each of these on sub-daily timescales. 

 
647 Conclusions 

 
648 The study has found that for peat-derived DOC in the river network the average loss of DOC 

 
649 in light conditions was 73% over a 10 day period, but with the majority of the loss occurring 

 
650 in the first 2 days. When extrapolated across a catchment the annualised removal rate was 

 
651 between 48 and 69% of the flux of DOC at its soil source. These measured removal rates are 

 
652 for DOC close to its source in rivers with residence times of only several days, and not for 

 
653 longer residence times systems or for the relative old DOC found downstream in a larger 

 
654 river networks. The results suggest that rivers could be sources of CO2  equivalent to several 

 
655 

 
656 

percent of a national GHG inventory. 
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814 

 

 
Figure 1. Schematic diagram of the DOC processing within a peat-sourced stream 

 
815 Figure 2. Location of the study catchment with monitoring sampling points and river flow 

 
816 

 
817 

gauging stations used within the study. 

 
818 Figure 3. The main effects plot of DOC concentration change for light and dark over the 

 
819 period allowed in the study. Error bar is given as the standard error but smaller than symbol 

 
820 

 
821 

size. 

 
822 Figure 4. The main effects plot of the change in loss due to photo-induced degradation over 

 
823 

 
824 

the course of the experiment. Error bar is given as the standard error. 

 
825 Figure 5. Main effects plot of rate of DOC loss in light conditions over time in the 

 
826 

 
827 

experiment. Error bar is given as the standard error. 

 
828 Figure 6. Main effects plot of the seasonal cycle in the rate of DOC loss in light conditions 

 
829 over time in the experiment (1 = January, 12= December) in comparison to the average air 

 
830 

 
831 

temperature during each month’s experimentError bar is given as the standard error. 

 
832 Figure 7. The estimated export of DOC  at the peat source (Cottage Hill Sike) in comparison 

 
833 

 
834 
835 
836 
837 
838 
839 
840 

to the estimated areal loss of DOC and therefore the expected DOC export at the tidal limit. 
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Table 1. Areas and locations of all field sites.  Catchment areas and percentage peat covers 

are taken from literature. 

 
 
 

Site Site code National grid 
 

reference 
Catchment 

 

area (km2) 
Mountain/ heath/ 

 

bog cover (%) 

Cottage Hill Sike CHS NY 744 327 0.2 100 
 

Trout Beck TB NY 759 336 11.4 90.8 
 

Middleton-in-Teesdale MIT NY 950 250 242.1 47.6 
 

Broken Scar DBS NZ 259 138 818.4 33.9 



 

 
 
Table 2. Details of River Tees gauging stations as required for calibration of in-stream 

residence time. 
 

Gauging station Catchment area 
(km2) 

Mainstream river 
length (km) 

Altitude 
(m asl) 

1085Slope( 
m/km) 

Broken Scar 818 79 37 6.9 
 

Barnard Castle 509 51 133 9.8 
 

Middleton 242 32 211 12.9 
 

Dent Bank 217 29 227 17.8 
 

Harwood Beck 25.1 9.7 374 26.5 
 

Trout Beck (Moor 11.4 5.1 533 35.8 
House) 

 
 
 
 

Gauging station Bankfull discharge 
(Qbf – m3/s) 

Bankfull width 
(wbf - m) 

Bankfull depth 
(dbf – m) 

Broken Scar 384 12 2.44 
 

Barnard Castle 257 10.4 2.04 
 

Middleton 115 9.4 2.19 
 

Dent Bank 93 9.3 2.36 
 

Harwood Beck 19 8.8 1 
 

Trout Beck 4 6.1 0.53 
(Moor House) 



 

 
 
 
Table 3. Mean and coefficient of variation (CV - %) for Cottage Hill Sike (CHS) and Broken Scar (DBS) for the range of times considered in the 

study. * Average values taken from all sampling reported for CHS from Environmental Change Network monitoring. 

 
 
 

Cottage Hill Sike (CHS) Broken Scar (DBS) 
Day 0 Day 10 Day 0 Day 10 

Determinand Mean CV(%) Mean CV (%) Mean CV(%) Mean CV (%) 
POC (mg C/l)  95  103  21  45  28  45  10  52 
Conductivity (µS/cm)  35 38  57 36 317 90 528 151 
pH 4.5 13 6.3  5  7.0  6  7.3   7 
DOC (mg C/l) 112 67 24 77 30 55 9 83 
Abs400 0.14 37 0.16 35 0.06 47 0.08 26 
E4/E6 6.1 31 5.7 34 4.8 69 5.6 88 
Bromide (mg/l) 0.0 62 0.02 210 0.22 92 0.37 89 
Chloride (mg/l) 5.9 71 9.3 136 51.8 130 24.4 163 
Fluoride (mg/l) 0.2 42 0.5 119 0.3 39 0.6 56 
Nitrate (mg/l) 0.3 70 0.6 58 13.2 156 7.6 188 
Phosphate (mg/l) 0.9 45 1.3 127 2.6 167 1.8 173 
Sulphate (mg/l) 4.4 123 10.4 80 39.7 93 25.7 85 
Iron (mg/l)* 0.62 70 

  Aluminium (mg/l)*  0.09  71   



 

without covariates With covariates 
Factor (or covariate) P ω2  P ω2 
day0 na 0.00 9.6 
Specific Absorbance na 0.00 24.0 
Site 0.04 0.4 0.04 2.4 
Treatment 0.00 8.9 0.00 6.1 
Day 0.00 12.6 0.00 11.4 
Month 0.00 6.4 0.00 1.9 
Treatment*Day 0.00 3.7 0.00 2.0 
Treatment*Month 0.00 3.5 0.00 9.5 
Day*month 0.00 2.3 ns - 

  Error  37.3  33.0 
 

 

Table 4. Results of ANOVA for relative DOC concentrations for all experiments across both 
 

daylight and dark treatments. (na = not applicable; and ns = not significant). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   



 

without covariates With covariates 
Factor (or covariate) P ω2  P ω2 
day0 na 0.00 9.6 
Specific Absorbance na 0.00 24.0 
Site 0.04 0.4 0.04 2.4 
Treatment 0.00 8.9 0.00 6.1 
Day 0.00 12.6 0.00 11.4 
Month 0.00 6.4 0.00 1.9 
Treatment*Day 0.00 3.7 0.00 2.0 
Treatment*Month 0.00 3.5 0.00 9.5 
Day*month 0.00 2.3 ns - 

  Error  37.3  33.0 
 

 

Table 5. Results of ANOVA for relative DOC concentrations for all experiments across both 
 

daylight and dark treatments. (na = not applicable; and ns = not significant). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   



 

without covariates with covariates 
Factor P ω2  P 
1/Temp na 0.00 
Ln(day0 ) na 0.00 
Site 0.00 3.3 ns 
Day 0.00 47.3 0.00 
Month 0.00 9.5 ns 

  Error  39.9   
 

 

Table 6. The results of ANOVA of the degradation rate of DOC in the light. 
 

 
 

ω2 

1 
6.9 

 
48.3 

 
43.9   



 

 

Table 7. ANOVA of the degradation rate of DOC in the dark. 
 

without covariates with covariates 
Factor P ω2  P ω2 

1/Temp na 0.04 1.0 
Ln(Day0) na 0.00 6.5 
Site 0.00 4.8 ns 
Day 0.00 23.8 0.00 
Month 0.00 28.3 0.00 

29.3 
14.3 

  Error  43.2  48.9   



 

Table 8. ANOVA of the photo-induced degradation rate of DOC. 
 

without covariates with covariates 
Factor P ω2  P ω2 

ΣPAR  na 0 1.8 
ln(day0 ) na 0  1 
Site 0.05 1.8 ns 
Day 0.00 40.5 0 30.1 
Month 0.00 13.5 0 3.3 

  Error  44.2  63.0   
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