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Introduction
Few species of pelagic animals have received 

as much research attention as Antarctic krill 
(Euphausia superba). This is because (i) they have 
an important role in the food web of parts of the 
Southern Ocean (Croxall et al., 1999; Hopkins et 
al., 1993a, 1993b; Stowasser et al., 2012); (ii) the 
species is a potentially valuable resource (Nicol et 
al., 2011); and (iii) the species is associated with 
sea-ice for its early life cycle (Daly and Macaulay, 
1991; Siegel and Loeb, 1995), and reductions in 
sea-ice have prompted concerns over what might 
happen to these populations in future (Atkinson et 
al., 2004; Flores et al., 2012).

Antarctic krill (hereafter simply referred to as 
krill) are micronekton (up to 65 mm in length) and 
relatively long lived (up to 7 years), can swim fast 
and maintain their position in the ocean, unlike 
zooplankton. They have schooling behaviour that 
gives rise to very large swarms and a patchy dis-
tribution. Difficulties in sampling krill across their 

full habitat and in experimentation mean that sig-
nificant uncertainties remain over their biology, 
biomass, sources of mortality, population struc-
ture, and movement/migration. These uncertainties 
impact on the ability to make informed predictions 
on population changes that might be occurring as a 
result of natural variability, past or current harvest-
ing, or climate change. 

This review aims firstly to help identify key 
references and sources of data that will help food-
web modellers represent post-larval krill in their 
models. Many aspects of krill biology have been 
reviewed (e.g. Marr, 1962; Miller and Hampton, 
1989; Quetin et al., 1994; Everson, 2000; Croxall 
and Nicol, 2004; Hofmann and Murphy, 2004; 
Siegel, 2005) so there is a strong focus on new 
developments and the recent literature. Secondly, it 
provides an overview of the strengths, caveats and 
uncertainties in the data used to parameterise these 
models. This paper focuses on post-larval krill; lar-
val stages are included in the accompanying paper 
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Abstract

This paper aims to provide the overview needed to include krill in food-web models and 
to guide modellers to key sources of data. It describes the strengths of each method of 
sampling krill, i.e. with nets (for historical time series, demographic information and 
live krill), acoustics (distribution, time series, biomass and swarm-scale information), 
the fishery (sustained sampling in one place and wide area and time coverage) and via 
predators (long time series, demographic indices). Each data source has caveats and more 
efforts to combine them are recommended. Observations that krill occupy the under-
ice layer, the 0–10 m layer, the deeper water column and the benthos have fundamental 
implications, both for assessing biomass and for modelling the food web. Temporally, 
the intense (order of magnitude) interannual variability in krill population size within 
the southwest (SW) Atlantic sector is a major scale of variability, driven by sea-ice and 
climate effects on recruitment. This variability masks top–down predation controls that 
may operate over multi-decadal scales. Growth in spring, summer and autumn is now 
fairly well quantified, but mortality remains an enigma. We are still not yet confident 
which are the major predators of krill but studies increasingly suggest that they are not 
currently birds or mammals. Krill feed across three trophic levels and can control food 
populations through locally high grazing impact and nutrient regeneration. They also 
have fundamental regional differences in overwintering strategies, on-shelf/off-shelf 
distributions, relationships with sea-ice and diet. Whether this reflects ‘subpopulations’ 
with regionally specific life cycles is still unclear. However, caution is urged when scaling-
up food-web models and their parameterisations, either from individual to schooling krill, 
or from one region to another.
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on zooplankton (Atkinson et al., 2012b). A general 
caveat that applies to many aspects of krill ecol-
ogy is that much of our understanding is based on a 
small number of observations or time series. Thus, 
theories, hypotheses and conceptual models have 
been constructed to explain or group our observa-
tions and these are necessarily based on incomplete 
knowledge. 

Sampling krill to provide robust  
abundance estimates
Sampling the full habitat volume of krill

Estimates of the geographic range of krill are 
from 8 to 32 million km2 (Miller and Hampton, 
1989; Nicol et al., 2000a; Siegel, 2005) with a 
conservative recent estimate of 19 million km2 
(Atkinson et al., 2009). Table 1 shows that modern 
acoustic and net surveys have covered <25% of the 
range. Sampling an unevenly distributed species 
across a vast habitat area poses obvious logistical 
challenges for estimating biomass. 

Typically, the density of krill is estimated and 
then scaled to a volume of water. Figure 1 illus-
trates schematically the extent of habitat volume of 
krill and how to sample it. The key units of survey 
estimation for krill are the wet mass m–2 (i.e. bio-
mass density) and no. m–2 (numerical density). 
The current paradigm is that krill are a species that 
primarily live in the top 200 m and this forms the 

depth boundary of the estimation volume, due to 
the concentrations (no. m–3) here being orders of 
magnitude higher than those in deeper water lay-
ers. Thus, acoustic and net surveys for CCAMLR 
stock assessment (Table 2) sample from the near 
surface (typically ~10 m depth for acoustics) down 
to ~200 m and in areas not affected by sea-ice.

This survey design misses four additional com-
ponents of krill habitat. The first is the underside of 
sea-ice – an important habitat for krill year-round 
(Brierley et al., 2002; Flores et al., 2012b). The sec-
ond is the 0–10 m layer of the open ocean/sea-ice, 
which is ‘invisible’ to acoustics and often not prop-
erly sampled by nets either. Large-scale analyses 
of length-frequency distribution reveal that there 
is widespread undersampling of juvenile krill 
~20 mm long (Atkinson et al., 2009; Kawaguchi et 
al., 2010), perhaps due to undersampling of the sur-
face layer because of net mesh selection and avoid-
ance (Krakatitsa et al., 1993; Pakhomov, 2000). 

The third undersampled component of habitat is 
the seafloor. There are many direct benthic observa-
tions of krill down to 3 500 m depth (e.g. Piepenburg 
et al., 2002; Gutt and Siegel, 1994; Clarke and 
Tyler, 2008). They have also been found in the diets 
of benthic predators (Dearborn et al., 1991; Main 
and Collins, 2011) and their stomachs can contain 
seabed-derived material (Ligowski, 2000). How-
ever, these observations have always been assumed 
as exceptional, anecdotal, or winter-only and have 

Table 1: The major surveys conducted for CCAMLR, specifically for management purposes. Three recent
large-scale krill surveys (BROKE, CCAMLR-2000 and BROKE-West) have been conducted to 
provide biomass estimates to CCAMLR so that precautionary catch limits can be set for the krill 
fishery (Nicol et al., 2000a, 2010; Hewitt et al., 2004a). All three used similar (although not
identical) survey designs and used modern scientific echosounders and adopted some form of
stratification of effort so that the geographic extent of krill habitat in the respective areas was 
covered. It is thus possible to compare these surveys to examine regional differences in krill
distribution, density and biomass – although they occurred over the course of a decade. Note that the 
biomass estimate presented here for Area 48 is at the lower end of a wide range of estimates for this
area (see Table 2). 

Survey CCAMLR 
Area

(see Figure 1) 

Area surveyed
(million km2)

Catch limit 
in 2007 

(million tonnes) 

Biomass 
(million tonnes) 

Reference

BROKE (1996) Division 58.4.1 0.873 0.44 4.83* Nicol et al. 
(2000b)

CCAMLR-
2000

Area 48 2.065 3.47 37.3 SC-CAMLR 
(2007)

BROKE-West Division 58.4.2 1.500 2.53 28.81 Nicol et al. (2010) 
Total  4.438 6.44 71.0  

* uses outdated method for estimation of krill biomass 
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Table 2: Estimates of total krill biomass within the area of the CCAMLR 2000 Krill
Synoptic Survey of Area 48 (CCAMLR-2000 Survey), surveyed in January–
February 2000. 

Method Biomass estimate
(million tonnes) 

Reference

Nets 38.6 Siegel et al. (2004) 
CCAMLR-2000 Survey acoustics 44.3 Hewitt et al. (2004a) 
SDWBA method of analysing acoustic data 108–192.4 Demer and Conti (2005) 
Updated SDWBA 37.29 SC-CAMLR (2007) 
MaxEnt acoustic analysis 414 Heywood et al. (2006) 
 

CCAMLR su rveys  (Table 2)
Cover <25%  o f  total habitat area, 
albeit in  krill ‐r ich parts
of kril l’s  range

Krill  in 0‐10 m layer missed
by acoustic surveys: small
habitat volume but 
occasion al ly high kril l
concentrations

Krill  in  ice‐covered habitats
year  round: smal l 
habitat volume but often 
very  high kril l
concentrations

Kri ll  at depth,  between  
200m and  the seabed:
Very   large habi tat vo lume
but often very low
Kri ll  concentrations

Kril l at  the seabed :  small habitat
Volume but sometimes kr ill  found
in  swarm densi ties

Fig. 2

CCAMLR Surveys (Table 2)
cover <25% of total habitat 
area, albeit in krill-rich parts 
of krill’s range

Krill in ice-covered habitats 
year round: small habitat 
volume but often very high 
krill concentrations

Krill in 0–10 m layer missed 
by acoustic surveys: 
small habitat volume but 
occasionally high krill 
concentrations

Krill at depth, between 
200 m and the seabed: 
very large habitat volume 
but often very low krill 
concentrations

Krill at the seabed: small habitat 
volume but sometimes krill found 
in swarm densities

Figure 1:	 Schematic representation of habitat volume occupied by krill. The vertical 
extent of this habitat is defined here as the water column and seafloor up to 
3 500 m in depth, the deepest that krill have been recorded so far (Clarke and 
Tyler, 2008). CCAMLR daytime acoustic biomass surveys of the 10–200 m 
layer (Table 2) cover 22% of the nominal 20 million km2 habitat area and 5% of 
the total depth range of the species, defined as 0–3 500 m. This survey volume 
contains the highest abundances of krill, but is drawn approximately to scale 
with unsurveyed portions of the habitat.
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never been incorporated into models. In a recent 
comprehensive study Schmidt et al. (2011) found 
that forays to feed on the benthos occurred year-
round throughout Antarctica, and regularly with an 
estimated ~20% of the stock deeper than 200 m at 
any one time.

The fourth undersampled vertical habitat is 
the water column between 200 m and the seabed. 
Schmidt et al. (2011) included this habitat in the 
abovementioned 20% calculation. The key point 
here is that the numbers of krill m–2 is a product 
of the no. m–3 and the habitat volume (Figure 1). 
This means that the great habitat volume of waters 
deeper than 200 m partially compensates for the 
very low densities of krill either residing in, or 
transiting, these deep waters to or from the seabed. 

The issue of undersampled krill has fundamen-
tal implications beyond simply determining their 
biomass. While benthic feeding occurs year-round 
(Schmidt et al., 2011), there is evidence for a sea-
sonal vertical migration to greater depths in winter 
that is possibly superimposed upon these regular 
(probably daily) commutes to the seabed (Taki et 
al., 2005; Lascara et al., 1999; Fielding et al., 2012). 
It is uncertain whether krill occupy all components 
of habitat at all times. Nicol (2006) argued that 
there is differentiation between life stages between 
different components of the habitat. This may lead 
to undersampling particular life-history stages not 
found in the sampled areas, thus affecting estimates 
of, for example, recruitment strength. 

There is now a clear need to include all four of 
these components of krill habitat in conceptual and 
numerical models involving krill. For example, for-
aging near ice floes, in deep water or at the seabed 
exposes krill to radically different food and preda-
tors than they would experience in the 10–200 m 
layer, and may include key aspects of their biology 
such as mating at depth (Kawaguchi et al., 2011), 
overwintering (Meyer, 2012), bentho-pelagic cou-
pling and nutrient regeneration (Schmidt et al., 
2011). 

Approaches to estimating abundance of krill

Methods for assessing absolute krill biomass/
abundance have been reviewed by Watkins (2000). 
They identified issues such as accuracy of estimates 
of krill biomass or numerical density within the 
defined volume of the water that is being measured, 

as well as how representative the survey area is rel-
ative to the overall krill population. The strengths 
and weakness in the main methods of sampling 
krill to provide data of use in food-web models are 
briefly reviewed below.

Sampling krill using nets

The accuracy of determining density of krill 
using a net has been a controversial issue because 
of the potential for net mesh selection and avoid-
ance of the net. Mesh sizes of modern scientific 
nets range up to 4.5 mm for the 8 m rectangular 
midwater trawl (RMT8). Siegel (1986) compared 
catches between the RMT8 and a 330 µm 1 m RMT 
(RMT1) mounted above it and found that the for-
mer retained only ~63% of krill 20 mm long. Only 
when krill were >25 mm did the length frequencies 
from the two samplers converge, so the RMT8 seri-
ously undersamples the 0+ juvenile cohort.

Net-avoidance by krill is well documented and 
believed to result in major underestimates of krill 
density (Hamner and Hamner, 2000; Watkins, 
2000; Wiebe et al., 2004), but this view is mainly 
based on the use of zooplankton nets. This paper 
suggests that underestimates are likely to be well 
within an order of magnitude when larger nets, 
typical of modern krill surveys (RMT8), are used. 
Supporting evidence includes the following: (i) the 
only comparison using more typical krill sampling 
gear, an RMT8, found clear evidence of avoidance 
during the day but not at night (Everson and Bone, 
1986); (ii) a comparison with acoustic studies dur-
ing the CCAMLR 2000 Krill Synoptic Survey of 
Area 48 revealed broadly similar mean biomass 
density to that revealed by acoustics (Siegel et 
al., 2004; Hewitt et al., 2004a; Kasatkina et al., 
2004); (iii) a calculation of circumpolar biomass 
based on 8 137 net hauls revealed a total biomass 
of 117 million tonnes (Atkinson et al., 2009), not 
dissimilar to estimates based on acoustics (Siegel, 
2005); and (iv) simple calculations show that bio-
masses an order of magnitude greater than these 
would be unsupportable from primary production 
(Priddle et al., 1998; Arrigo et al., 2008). A major 
limitation of net sampling is the tiny fraction of 
the total survey volume that can be sampled with 
any single survey (Watkins, 2000). Thus due to the 
patchy distribution of krill, mesoscale estimates 
of mean density based on nets can be very impre-
cise, and compare poorly to those from acoustics 
(Kasatkina et al., 2004; Pauly et al., 1997, 2000; 
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Jarvis et al., 2010; Kawaguchi et al., 2010). Analy-
ses of large-scale composites of net data (e.g. Marr, 
1962; Mackintosh, 1973; Atkinson et al., 2008) 
may reduce this problem, but such analyses yield 
climatologies rather than synoptic pictures of dis-
tribution. 

Sampling krill using acoustics

Net sampling of krill has been increasingly 
replaced by acoustics for estimating biomass. This 
has been adopted by CCAMLR as the standard on 
which estimates of precautionary yield are based 
(Hewitt and Demer, 2000; Macaulay, 2000). While 
this produces an accurate measure of acoustic 
backscatter in the depth range from a few metres 
below the transducer to the attenuation depth for 
the frequency being used, the major challenge is 
to attribute the detected backscatter to specific 
species, and then to scale it to provide a biomass 
estimate. This is a technical issue that remains 
under current development. Some advances have 
resulted in significant changes in the calculation of 
krill target strength, a key parameter in converting 
backscattered energy into krill density (Table 2). 

The variety of biomass estimates in Table 2 
were all derived from a single survey, and illustrate 
the effect of the method used for scaling up the 
data from a series of line transects to the whole of 
the surveyed area. For example, the standard Jolly 
and Hampton (1990) method has been in use for 
20 years but there have been various attempts to 
use other analytical methods, all of which give 
very different results depending on (i) assumptions 
about how to use the data to predict the distribution 
of krill in the survey area, and (ii) the acoustic tar-
get strength used for krill (Murray, 1996; Heywood 
et al., 2006) (Table 2). These considerations also 
pose the questions of how to design a survey so that 
known krill-rich hotspots do not cause a distorted 
picture (Watkins et al., 2004). Overall, compari-
sons between different surveys have to ensure that 
comparable methods have been used for data col-
lection and analysis. 

Sampling krill using the fishery

Information on fishing method, length fre-
quencies, by-catch etc. is collected through the 
CCAMLR Scheme of International Scientific 
Observation (www.ccamlr.org), with further data 
also archived by fishery operators (Kawaguchi et 

al., 2005). The fishery effort in recent years has 
been concentrated mainly in the Scotia Arc region, 
but this is not a reliable indicator of overall krill 
distribution because the fishery is also dictated 
by a suite of commercial and operational fac-
tors (Butterworth, 1988; Kawaguchi et al., 2005; 
Litvinov et al., 2004; Kawaguchi and Nicol, 2007). 
Information on the operational behaviour of the 
fishery (e.g. search effort, swarm selectivity) is 
needed before fisheries catch and effort data can 
provide a reliable index of krill density (Mangel, 
1988, 1989; Butterworth, 1988). However, careful 
analysis yields information on where fishable con-
centrations of krill occur consistently and at what 
depth, or where they can be found when they are 
absent from the small areas that are surveyed sci-
entifically (e.g. Taki et al., 2005; Kawaguchi et al., 
1997, 2005). 

Other problems that may arise with fisheries 
data include (i) potential error in catch weights 
arising from the method used to convert these 
from product weights; and (ii) catchability of krill 
using the different methods may range between 0.1 
and 0.5 (Czubek, 1981; Akishin, 1988; Zimarev 
et al., 1991). While the above highlights some of 
the drawbacks of using fisheries-derived krill data, 
standardised catch-per-unit-effort (CPUE) data 
may have some utility in providing time series 
of relative abundances when the fishery operates 
in the same area within a season and/or between 
seasons and at times when other scientific activi-
ties cannot be undertaken (Kawaguchi and Nicol, 
2007; Schmidt et al., 2011). Increasingly, the use 
of krill fishing vessels to carry out research will 
result in data that can be more confidently used for 
management.

Sampling krill using predators

The dynamics of the krill population has been 
inferred from the diet and performance of krill-
dependent predators (e.g. Agnew, 1997; Croxall 
et al., 1999; Forcada et al., 2006, 2008; Hill et al., 
2012; Boyd and Murray, 2001; Trivelpiece et al., 
2011; Reid and Croxall, 2001). However, care is 
needed to relate these measures correctly to the 
spatial and temporal dynamics of the krill popula-
tion. Such observations may also provide insights 
into krill–predator–fisheries interactions (Reid et 
al., 2005; Hill et al., 2007b, 2012a; de la Mare and 
Constable, 2000). 
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While predator performance and population 
size may reflect the availability of krill, their diet 
reveals further insights into prey availability and 
its population structure. Thus the contribution of 
krill to the diets of their predators can reflect inter-
annual variability in krill availability (Hill et al., 
2005; Waluda et al., 2012; Hill et al., 2012a) and 
the median size of krill in predator diets can also 
be a useful proxy (Forcada et al., 2008). Data from 
krill predator diets have been used to identify krill 
recruitment pulses (Reid et al., 1999) and to make 
inferences about krill growth rates (Reid, 2001) 
and regional population dynamics (Murphy and 
Reid, 2001; Reid et al., 2002).

Inferences about krill populations from preda-
tor performance and diet can be prone to bias, 
nonlinearity and noise. A major source of bias is 
the fact that predators are not random samplers 
of the whole krill population. Predator variables 
should be described as indicators of krill avail-
ability since they are unlikely to have access to 
the whole population. Factors such as the vertical 
and horizontal distribution of krill in relation to the 
foraging range and diving depth of predators, the 
density of swarms and the presence of competitors 
or natural enemies of the predators may all influ-
ence this (Croxall et al., 1985, 1988; Reid et al., 
1996; Nicol, 1993; Trathan et al., 2012). Predators 
also select krill according to size, sex, etc. (Hill et 
al., 1996). Such interactions (including multiple-
predator interactions) are important to consider in 
ecosystem models (Hill et al., 2006). 

A second major issue is the form of the predator’s 
functional response, indicating how consumption 
rate changes relative to prey availability. Boyd and 
Murray (2001); Reid et al. (2005) and Cury et al. 
(2011) present evidence for asymptotic functional 
responses in many krill predators while Waluda et 
al. (2012) suggest that the functional response for 
macaroni penguins is sigmoidal. The functional 
response will also be modified by the availability 
of alternative prey (Hill et al., 2005). 

In summary, krill data useable in food-web 
models can be provided by nets, acoustics, fisheries 
and predators. However, each method has its own 
particular sources of uncertainty and bias. A chal-
lenge is to synthesise data (a good example being 
on interannual variability) from each approach. 
Important insights can be gained, for example, by 

exploring the form of relationships derived by mul-
tiple methods (e.g. Pauly et al., 2000; Hewitt et al., 
2004a; Kasatkina et al., 2004).

Krill distribution
Circumpolar distribution

There have been many attempts to estimate 
the global biomass of Antarctic krill (e.g. Miller 
and Hampton, 1989; Nicol et al., 2000a; Siegel, 
2005; Atkinson et al., 2009). Recent values range 
from 67to 297 million tonnes based on acoustics 
(Siegel, 2005), 117 to 379 million tonnes using nets 
and 113 million tonnes by combining both meth-
ods (Atkinson et al., 2009). This total biomass is 
strongly concentrated in the southwest (SW) Atlan-
tic sector with 75% of the population in the 0–90°W 
sector (Marr, 1962; Mackintosh, 1973; Siegel, 
2005; Atkinson et al., 2008). How krill maintain 
their distribution in good habitats for growth is 
still unknown (Thorpe et al., 2007; Atkinson et al., 
2008), but probably reflects a combination of fac-
tors that allows completion of the whole life cycle 
(Pakhomov, 2000; Nicol, 2006).

The SW Atlantic sector is unique in containing 
krill in the outer northern fringes of the Antarctic 
Circumpolar Current (ACC) (Krafft et al., 2010). 
Further east in the Lazarev Sea, there appear to 
be two ‘populations’ of krill, one in the ACC and 
another in the East Wind Drift, much closer to the 
continent. This may reflect distinct stocks or sub-
populations (Mackintosh, 1973), which may even 
be genetically distinct. However, genetic studies 
on krill have yielded ambiguous results (Fevolden 
and Schneppenheim, 1988, 1989; Zane et al., 
1998), perhaps due to the methods used (Jarman 
and Nicol, 2002). Genetic homogeneity may result 
from genetic exchange over a shorter time period, 
despite stock separation on the timescale of a few 
generations, the timescale of interest to manage-
ment. Clearly, determining the degree of connec-
tivity between subpopulations is a central issue for 
regionally based management within CCAMLR.

At the scale of individual sectors, relationships 
between krill distribution and the environment are 
hard to generalise. For example, right across the 
80–150°E (Indian) sector there is a positive rela-
tionship between krill abundance and the aver-
age extent of winter sea-ice (Nicol et al., 2000b; 
Pakhomov, 2000). However, this relationship 
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breaks down in sectors of very extensive ice cover 
(e.g. the Weddell and Ross Seas) and in areas such 
as South Georgia where there is little or no annual 
sea-ice (Nicol, 2006). Circumpolar associations 
have been suggested between krill abundance and 
fronts, e.g. the Southern Boundary of the ACC 
(SBACC) (Tynan, 1998), but this does not hold 
universally. For example, in the Indian sector the 
north–south transition from low to high krill den-
sity is south of the SBACC (Nicol et al., 2000a, 
2000b), whereas in the Scotia Sea it is near the 
Southern ACC Front (Ward et al., 2012).

Regional and finer-scale distribution

Although temporally ephemeral, there are loca-
tions where high densities of krill are often found 
and these areas are well mapped by the fishery 
(Ramm et al., 2005). Both physical and biological 
processes appear to lead to this stability in areas 
of regular occurrence of krill aggregations. Large-
scale recirculation (stable eddies) create physically 
driven retention zones that may temporarily isolate 
krill aggregations within them from the broader 
population. In these cases, patterns of abundance 
would more likely reflect the dominance of advec-
tion over births and deaths. Active movements 
by the broader krill population may also occur 
and may serve to maintain the population in a 
favourable habitat (Nicol, 2006). In this case, the 
residence time of the krill in these favourable habi-
tats would be considerably longer, allowing local 
factors (birth and death) to dominate the temporal 
pattern in abundance (Siegel, 1988). Obviously, 
when interpreting biomass changes, it is critical to 
know which of these processes is dominant. 

The relative importance of advection/retention 
and krill behaviour is a key issue in understanding 
krill ecology. The dominant paradigm, particularly 
in the South Atlantic, is that the system is domi-
nated by advective forces and that krill populations 
are drifting from the west to the east and north in 
the ACC (Hofmann and Murphy, 2004). Thus krill 
data from a single location can be interpreted as 
the result of an influx from ‘upstream’ rather than 
as a result of in situ processes. As described above, 
there is increasing evidence that in the South 
Atlantic, there are areas where the population of 
krill has extended residence times and that in some 
areas there are even semi-resident stocks (Reid et 
al., 2010; Wiebe et al., 2011). It may also be the 
case that the factors affecting the distribution of 

sub-adults are quite different from those affecting 
adults (Nicol, 2006). Thus distributions or time 
series need to be examined carefully to ensure that 
interpretations are not merely a product of the con-
ceptual model which underlies the observations. 

An important regional scale of krill distribution 
is their relationship to shelves. Some specific areas 
associated with shelves, such as canyons (Santora 
and Reiss, 2011), banks (Trathan et al., 1998) 
and shelf breaks (Warren and Demer, 2010) may 
attract semi-dependable concentrations of krill that 
are exploited by predators and fishing fleets alike. 
Many papers have linked high krill abundance to 
shelves and shelf breaks but the nature of this rela-
tionship varies regionally. For example, krill are 
most abundant in the inner shelf along the Western 
Antarctic Peninsula (Lascara et al., 1999; Ross et al., 
2008), whereas in the Indian sector they are found 
typically in oceanic water but within 200 km of the 
shelf break (Hosie and Cochran, 1994; Pakhomov, 
2000). However, Atkinson et al. (2008) calculated 
that 87% of their global population were located 
over oceanic water >2 000 m deep, with its great 
habitat area and low mean krill densities overcom-
pensating for high densities over the much smaller 
habitat area of the shelf. These authors rationalised 
this distribution using a risk-reward model, con-
cluding that areas of high food abundance were 
also high in predators, which results in this area 
being no better for net population growth than the 
lower-risk, lower-reward habitats offshore, albeit 
with radically different growth/mortality dynamics.

Krill are gregarious animals, with some schools 
estimated at >2 million tonnes (Macaulay, 2000; 
Nowacek et al., 2011). Such rare but large aggre-
gations can contain large fractions of the total 
regional biomass (Tarling et al., 2009), challenging 
our ability to sample them representatively. How-
ever, the typical length scale for swarms is much 
smaller, with most being tens of metres to several 
hundred metres across and classifiable in terms of 
size and relative dimensions (Tarling et al., 2009; 
Cox et al., 2010). Schools can also be common 
and large in some years but rare and more diffuse 
in others (Fielding et al., 2012) and they change 
diurnally, regionally and seasonally in size, depth 
and frequency of occurrence (Godlewska, 1996; 
Lascara et al., 1999; Klevjer et al., 2010). School-
ing is a fundamental property of krill so it needs to 
be incorporated into models and considered when 
examining the ecological effect of krill.
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Temporal variation in abundance  
and biomass
Interannual and decadal variability

Acoustics and net sampling monitoring surveys 
and indices from krill-dependent predators provide 
information on variability in krill numerical den-
sity and biomass across multiple timescales (Siegel 
et al., 1998; Ross et al., 2008; Reiss et al., 2008; 
Brierley et al., 1999; Atkinson et al., 2004, 2008; 
Croxall et al., 1999; Forcada et al., 2008). In addi-
tion to the plethora of problems of sampling krill 
quantitatively, factors such as the seasonal timing 
of the survey or irregular movement of pulses of 
krill into a survey area can contribute to interannual 
variation and reduce our ability to evaluate  trends 
(Siegel, 1988; Saunders et al., 2007; Reiss et al., 
2008; Reid et al., 2010). Despite these issues, many 
studies reveal significant and persistent interannual 
relationships between the amount of krill, their 
size distribution, predator performance, sea-ice 
extent and climatic indices (Siegel and Loeb, 1995; 
Pakhomov, 2000; Quetin and Ross, 2003; Atkinson 
et al., 2004; Murphy et al., 2007b). Just as surpris-
ing, the variability is concordant right across the 
Scotia sector (Brierley et al., 1999; Atkinson et al., 
2004). This suggests that a combination of climate 
and sea-ice have strong, and possibly additive, 
effects on krill recruitment causing great yearly 
fluctuations, mainly in abundance but also in bio-
mass.

There has been some confusion in the literature 
over time trends in numerical density and those 
of biomass density, with the two terms sometimes 
being used interchangeably. At an interannual scale, 
the two measures do not scale linearly, so interan-
nual trends in mean biomass density are not the 
same as those in numerical density. This is because 
krill recruitment is highly episodic, with on average 
only a few, irregularly spaced recruitment events 
per decade needed to sustain the population (Siegel 
and Loeb, 1995; Quetin and Ross, 2003; Siegel et 
al., 2003). These years reflect a population greatly 
swelled by numerous small krill, each with an indi-
vidual mass which may be only 10% of that of the 
larger krill.

Several studies in the SW Atlantic sector have 
found positive correlations between the extent of 
winter sea-ice and subsequent krill recruitment and 
population size, but the mechanisms are poorly 
known (Siegel and Loeb, 1995; Loeb et al., 1997, 

2010; Atkinson et al., 2004; Quetin and Ross, 
2003; Murphy et al., 2007a, 2007b, 2012). Recruit-
ment is affected by a sequence of previous envi-
ronmental conditions in both summer and winter 
that can extend back to ~2 years beforehand. This 
includes factors affecting spawning stock size and 
reproductive output per female (Quetin and Ross, 
2001; Schmidt et al., 2012) plus subsequent larval 
survival during summer, autumn and winter. 

Recruitment has been studied by a combination 
of field experimentation, time-series analysis and 
modelling. Together, these approaches show that 
timing of suitable conditions is crucial (Quetin and 
Ross, 2001, 2003; Quetin et al., 2007). For exam-
ple, a recent modelling study by Lowe et al. (2012) 
found that the dynamics of the autumn decline in 
pelagic phytoplankton, the advance of winter sea-
ice and its microbial communities and the late win-
ter increase in available ice algae were all important 
factors governing larval condition and survival. 
Conditions conducive of life cycle completion are 
also regionally specific, for example ice cover is 
not regionally identical in providing conditions for 
growth and shelter from predators (Fritsen et al., 
1998; Meyer et al., 2009). Recent work is further 
emphasising the light regime, both for providing a 
cue for seasonal behaviour of post-larvae (Meyer, 
2012) and in determining the exposure of sea-ice 
to winter sunlight, thus generating sea-ice micro-
bial communities. Clearly much work still needs 
to be done to understand this critical issue of krill 
recruitment.

Interannual fluctuations in krill recruitment are 
ultimately driven by climatic cycles that operate 
over a range of scales (Figure 2). Quetin and Ross 
(2003) showed that west of the Antarctic Peninsula, 
krill recruitment success was positively correlated 
with neutral or moderate El Niño or La Nina indi-
ces as accumulated over 15 months influencing 
the strength of a year class, i.e. both reproductive 
output and winter survival of the larvae. Failures 
in krill recruitment have been associated with a 
strong El Niño Southern Oscillation (ENSO) sig-
nal, whether El Niño or La Nina; a different effect 
to that observed further north near the tip of the 
peninsula by Loeb et al. (2010). In the Scotia Sea 
area Murphy et al. (2007a, 2007b) found that cli-
matic variability, related to ENSO and the South-
ern Annular Mode, generated anomalies in water 
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Figure 2:	 Conceptual time–space diagrams adapted from Murphy et al. (1988) 
showing (a) the characteristic scales of krill-related processes and 
(b) the corresponding scales of physical processes. The shaded areas 
represent the scales of immediate influence from krill swarms. Note, 
however that scales at each process propagate upwards in space 
and time to influence larger scale processes. The ability of krill 
individuals and swarms to migrate vertically and horizontally faster 
than purely physical transport rates means that the key krill-related 
processes operate over shorter timescales for a given space scale 
than key physical processes. Sea-ice forms an exception to this rule, 
affecting krill dynamics across a great range of timescales and space 
scales (Murphy et al., 1988).
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temperature and corresponding sea-ice anomalies, 
leading to variation in recruitment and dispersal of 
krill in the Scotia Sea area.

Sub-decadal-scale periodicity in krill popula-
tion dynamics has not been studied so intensively 
outside the SW Atlantic sector. However, around 
Prydz Bay (Indian sector) Pakhomov (2000) found 
that 3–4-year cycles with increased warm deep-
water input from the north led to large numbers of 
salps north of the Antarctic Divergence and suc-
cessful krill spawning in the region. These years 
have the lowest summer ice coverage and are fol-
lowed by the intensive ice accumulation during 
the winter. This induces strong recruitment of the 
1+ age group in the southern part of the Prydz Bay 
Region during the next summer, which in turn may 
promote a krill biomass increase 1–2 years later 
(Pakhomov, 2000).

Multi-decadal variability

Several studies in the SW Atlantic sector sug-
gest longer-term trends in krill abundance or 
recruitment that appear to be superimposed on 
variability described above (Fraser and Hofmann, 
2003; Loeb et al., 1997; Reid and Croxall, 2001; 
Atkinson et al., 2004; Trivelpiece et al., 2011). 
These studies tend to concur that mean krill den-
sity and recruitment strength declined in the latter 
decades of last century, but the magnitude, geo-
graphical extent, timing or the exact causes of this 
are still not properly known. A clear candidate is 
the warming along with winter ice loss which has 
affected the Bellingshausen/Amundsen Seas most 
strongly (Stammerjohn et al., 2008a, 2008b), but 
also extends across the Scotia Sea (Meredith and 
King, 2005; Whitehouse et al., 2008). Southwards 
shifts in biogeographic distribution are an expected 
outcome of regional warming (Pakhomov et al., 
2002; Mackey et al., 2012), but have not yet been 
conclusively demonstrated for the krill population.

It is tempting to extrapolate past relationships 
(e.g. between krill and sea-ice) when model-
ling future scenarios, but the confidence will be 
low until we know more about the mechanisms 
of population control (Fraser et al., 1992; Reid et 
al., 1999; Wiedenmann et al., 2009; Murphy et 
al., 2007a). This problem is best illustrated in the 
Northern Hemisphere, where Beaugrand (2012) 
found a long-standing relationship between zoo-
plankton indices and the winter North Atlantic 

Oscillation (NAO) broke down suddenly around 
1988. He suggested that the climate had changed 
the ecosystems to such an extent that the old driv-
ers lost their importance and new factors came 
into play. Likewise, Loeb et al. (2010) found that 
the role of winter sea-ice in recruitment has been 
supplanted in importance by more subtle ENSO-
related factors during the recent decades of more 
stable sea-ice and krill abundance near the tip of the 
Antarctic Peninsula.

Historical krill population changes may also be 
a product of the changes in the balance of predators 
caused by harvesting (Ainley et al, 2007). A variety 
of models suggests that superimposed longer-term 
trends could be linked to the major shift in balance 
among the higher predators due to sequential over-
fishing (Mori and Butterworth, 2007; Willis, 2007; 
Trathan et al., 2012). However, these long-term 
changes would occur through complex feedbacks 
operating in both bottom-up and top-down modes 
simultaneously (Nicol et al., 2010), which empha-
sises the caution needed when seeking simple 
solutions to ecosystem problems. 

Krill rate processes relevant  
to food-web modelling

Figure 2 illustrates the timescale and space-
scale dependence of key aspects of krill biology, 
in relation to its environment. It illustrates the 
special characteristic of krill schooling highlighted 
by Murphy et al. (1988). By forming aggrega-
tions that are three orders of magnitude larger than 
the length of one krill, they can interact with the 
physics and the rest of the food web, both on the 
scale of the krill and on the scale of a school-sized 
‘super-organism’. This is a much wider range of 
scales than, for example, a copepod, and suggests 
caution in transferring zooplankton-type model-
ling parameterisations directly across to krill. The 
benefits of schooling are poorly known (Ritz et al., 
2011), but this fundamental property needs to be 
taken into account when modelling their food-web 
interactions.

This review is limited to recent developments in 
assessing the gain and loss terms (growth and mor-
tality) as well as the feeding processes that may exert 
top–down control on their prey populations. These 
processes are more relevant to food-web models 
than detailed descriptions of the energy budget. 
The latter topic is covered elsewhere (e.g. Miller 
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and Hampton, 1989; Quetin et al., 1994; Pakhomov 
et al., 2002; Meyer, 2012; Atkinson et al., 2012a).

Growth and production

Early work on growth rates was based on sequen-
tial sampling of the length-frequency distributions 
of krill from the field. Despite major assumptions 
required by this method, plausible-looking sea-
sonal growth curves were obtained (Rosenberg et 
al., 1986; Miller and Hampton, 1989). Measuring 
growth rates in the laboratory has been less suc-
cessful (Quetin et al., 1994) and the advent of the 
Instantaneous Growth Rate (IGR) method (Quetin 
and Ross, 1991) provided the first real cross-check 
on the in-situ growth curves. The IGR method 
has since provided empirical model predictions of 
growth and moulting rate based on time of year, 
food, temperature, krill length, sex and maturity 
stage (Ross et al., 2000; Kawaguchi et al., 2006; 
Candy and Kawaguchi, 2006; Tarling et al., 2006; 
Atkinson et al., 2006; Brown et al., 2010).

These growth predictions are useful because 
they allow krill to be ‘grown’ in models using 
satellite-derivable data, shortcutting the problem 
of having to model the entire energy budget to 
determine growth. Growth is a net-gain term in the 
energy budget so direct growth models can be used, 
for example to explore habitat suitability (Atkinson 
et al., 2008; Murphy et al., 2007b) or the effect of 
future climate change (Wiedenmann et al., 2008; 
Lowe et al., 2012). However, the unit of growth 
predicted from IGR is length, not mass, and this 
causes problems in models using mass as a curren-
cy. That is because krill stop growing in length for 
parts of the year and either increase their reproduc-
tive output or their overwintering energy reserves. 
These seasonal changes are reflected in lipid con-
tent (Hagen et al., 2001), length–mass relationships 
(Siegel and Nicol, 2000) and proximate, elemental 
and calorific composition (Donnelly et al., 1994; 
Färber-Lorda et al., 2009, and references therein). 
The second problem is that the predictive IGR mod-
els for post-larvae do not yet incorporate the long 
winter period. Whether krill grow or shrink, even 
slightly, is important because the winter period is 
so long. More generally, poor knowledge of the 
winter period is a major obstacle for all models and 
annual budgets involving krill.

Partly for this reason, annual production and P:B 
ratios of krill are difficult to estimate. These further 

depend on the exact definitions of both the mass 
and the growth terms and whether larval growth is 
included. The current consensus on annual produc-
tion (Miller and Hampton, 1989; Ross and Quetin, 
1986; Atkinson et al., 2009) is ~100–500 million 
tonnes for post-larvae, and it is probably nearer the 
high end of this range. This value is similar to, or 
slightly larger than, their summer maximum bio-
mass. 

Mortality rates and sources

Mortality rates of krill are much more poorly 
known than growth rates. Mortality has been 
estimated in a variety of ways (see Miller and 
Hampton, 1989; Siegel and Nicol, 2000), which 
follow the expectation that the lowest rates are for 
medium-size krill (Pakhomov, 1995, 2000). How-
ever, the main sources of this mortality are not 
known. The iconic krill predators in Antarctica, 
marine mammals and birds, are much more studied 
than fish or squid. The relative importance of these 
air-breathing predators as the primary sources of 
mortality has recently been challenged, with food-
web analyses using Ecopath showing that fish may 
be much more important than originally though 
(Hill et al., 2012).

The South Georgia Ecopath model also found 
that estimated krill production exceeded the sum of 
their estimated consumption rates from all known 
krill predators (Hill et al., 2012). This particular 
system is one of the most intensively studied in 
the Southern Ocean, with a series of ‘krill budg-
ets’ incorporating advective supply of krill to 
the region, advective loss, growth and mortality 
(e.g. Croxall et al., 1984; Atkinson et al., 2001; 
Gilpin et al., 2002; Murphy et al., 2007a). While 
these studies have reached a variety of conclusions 
on the relative importance of these processes, the 
recent Ecopath food-web model suggests that there 
may be significant sources of mortality that we 
do not know about. These could include, among 
others: non-capture injury/mortality from preda-
tors, benthic mortality sources, or disease/parasites/
non-predation mortality. Food-web models and 
budgets now face a challenge in attributing mortal-
ity sources in a meaningful way.

Role of krill feeding

The consumption of food by krill determines the 
extent to which they control phytoplankton stocks 
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and how much of their production is transferred 
into the krill-based food web. Krill feeding studies 
have a long history, and the slowness of progress on 
this topic exemplifies the great difficulty in obtain-
ing real-world data. Krill feed readily in captivity; 
the problem is in translating the results to the real 
world of swarming krill in a patchy Southern Ocean 
environment. The discussion below tackles critical 
topics that appear to be particularly sensitive terms 
in Nutrient–Phytoplankton–Zooplankton (NPZ) 
and food-web models, namely diet, prey switching, 
the shape of the functional response and maximum 
feeding rates (Buitenhuis et al., 2006; Gentleman 
and Neuheimer, 2008). 

Diet, prey switching and trophic level

Krill are sufficiently large to feed across three 
trophic levels, namely phytoplankton, protozoans 
and metazoans (mainly copepods). However, the 
question is the extent to which they feed on each 
level and whether there is active switching (defined 
here as a behaviourally induced change in feed-
ing method) or passive prey switching (i.e. a fixed 
feeding method but a diet that changes simply due 
to the change in composition or size of the ambient 
food). In the wild krill feed actively in large dense 
swarms so some authors suggest that there is little 
selection for food quality or type – particulate mat-
ter that enters a krill swarm will get consumed. 

Krill were originally classed simply as filter 
feeders of phytoplankton, chiefly diatoms, based 
on mouthpart morphology, observations of feed-
ing and the prevalence of diatoms in their guts 
(Barkley, 1940; Kils, 1983). However, subsequent 
work challenged this view. Their guts were found 
to contain metazoan remains (Hopkins et al., 
1993a, 1993b; Huntley et al., 1994; Pakhomov et 
al., 1997; Perissinotto et al., 1997) and in incuba-
tions they ingested copepods at high rates (Price 
et al., 1988; Granéli et al., 1993; Atkinson and 
Snÿder, 1997). Some studies went further to sug-
gest that krill could have competitive or predator–
prey interactions with copepods (Atkinson et al., 
1999; Hernández-Leon et al., 2001).

The last decade, however, has seen a partial 
return to earlier views, and a questioning of the 
idea that krill switch to feeding on copepods or 
protozoans outside of bloom periods. Protozoans 
indeed appear to be an important food resource, but 
this is both inside and outside of bloom periods, 

with fatty acids suggesting an additional role of 
small flagellates as well as the large thecate ciliates 
and dinoflagellates visible in gut contents analysis 
(Hopkins et al., 1993a, 1993b; Alonso et al., 2005; 
Schmidt et al., 2006, 2011, 2012). However, these 
studies have generally failed to detect large num-
bers of copepods in their guts. Krill have a low 
15N ratio suggestive of a mainly herbivorous diet 
(Schmidt et al., 2003, 2004; Stowasser et al., 2012). 
Benthic feeding has been described from gut con-
tents analysis (Ligowski, 2000; Schmidt et al., 
2011) with this linked with enhanced ingestion of 
sediment grains, benthic diatoms, copepods, phyto-
detritus and bacteria.

These seabed-surface differences represent 
active prey switching, as they entail behavioural 
responses linked to a change in diet. Active prey 
switching also occurs between sea-ice and the 
underlying water. Meyer (2012) found that feed-
ing was an important part of krill’s winter energy 
budget, but ice-derived sources seem more impor-
tant for larval and juveniles than adults (Meyer, 
2012; Atkinson et al., 2002; Quetin et al., 2007).

Some studies suggest that adult krill do actively 
select specific phytoplankton taxa. Haberman et 
al. (2003b) found that in mixtures of diatoms and 
prymnesiophyte colonies of the same size, clear-
ance rates on the latter were significantly less than 
those on the diatom. In natural assemblages of 
diatoms, prymnesiophytes and cryptophytes, krill 
again selected for the diatoms. Thus food size, 
handling time, feeding basket blockage, nutritional 
quality and phytoplankton composition all effect 
clearance rates (Haberman et al., 2003a, 2003b).

Maximum feeding rates  
and functional response

This study considers that the most realistic 
maximum daily ration estimate is that derived by 
Perissinotto et al. (1997) of ~13% of body C d–1. 
This value is lower than that derived by Clarke 
et al (1988), who had to make assumptions over 
assimilation efficiency. Assimilation and gut 
throughput of krill have subsequently been found 
to be highly variable (Perissinotto and Pakhomov, 
1996; Atkinson et al., 2012a; Schmidt et al., 2012) 
making Clarke’s original egestion-rate method less 
suitable to derive ingestion. However, adult sum-
mer maximum rations of about 13% fit with maxi-
mum growth rates estimated at ~25% of this value, 
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based on energy budget calculations (Straile, 1997; 
Quetin et al., 1994; Atkinson et al., 2006). Maxi-
mum summer/autumn rations of larvae were ~20–
25% body C d–1 (Meyer et al., 2003; Pakhomov et 
al., 2004) so those of adults are probably lower than 
this.

The functional response of krill ingestion to food 
concentration has seldom been measured. Although 
the results generally show a Holling type II func-
tional response for compression filtration (water 
column) with a relatively high critical concentra-
tion (Price et al., 1988; Ross et al., 1998; Oakes, 
2008), the maximum ingestion rate and critical 
concentration are inconsistent, reflecting the great 
difficulty in obtaining realistic rates on a free-living 
swarming organism held in the laboratory. Oakes 
(2008) found a Holling type III functional response 
curve in larval and small sub-adult krill feeding in 
a simulated ice-scraping mode, but Holling type II 
in compression filtration mode. 

Discussion
Krill biomass can be sufficient to affect trophic 

levels below them as well as above. Areas of high 
krill abundance have been linked to the dominance 
of flagellates relative to diatoms (Kopczynska, 
1992) and to reduced phytoplankton concentrations 
(Whitehouse et al., 2009; Wright et al., 2010), with 
this interpreted as a grazing effect. These areas 
have also been found to show elevated specific 
rates of nitrogen uptake by the remaining ungrazed 
cells (Whitehouse et al., 2011), possibly a ‘condi-
tioning effect’ by krill, due to their locally intense 
ammonium regeneration due to excretion (Priddle 
et al., 1997; Atkinson and Whitehouse, 2000). Krill 
have also been attributed with a top-down effect 
in the iron cycle, either in recycling this element 
(Tovar-Sanchez et al., 2007; Nicol et al., 2010) or 
via seabed foraging and subsequent return to the 
surface which can import ‘new’ iron into surface 
waters (Schmidt et al., 2011). Thus krill may 
have diverse roles right across the food web from 
nutrients to whales, and we are only just starting to 
understand some of these.

These unique features of krill mean that they 
cannot be incorporated easily into existing generic 
food-web models. Developing ‘end-to-end’ food-
web models involving krill is a task for the future; 
most ‘krill food-web’ models only explore the troph-
ic links from krill upwards, while biogeochemical 

models typically work upwards towards krill. In 
a recent review, Hill et al. (2006) identified three 
broad categories of model representing Antarctic 
krill. These comprised firstly models explor-
ing specific aspects of krill biology such as life 
cycle, energetics or behaviour (e.g. Hofmann and 
Hùsrevõglu, 2003; Murphy et al., 2004; Fach et al., 
2008; Lowe et al., 2012). The second group were 
multi-species population models, simulating either 
historic changes in the abundance of krill and its 
predators or the effects of harvesting on interacting 
species (e.g. Butterworth and Thomson, 1995; May 
et al., 1979; Murphy, 1995; Mori and Butterworth, 
2004). The third category included single species 
population projection models, for example to quan-
tify regional catch limits (Butterworth et al., 1994; 
Constable and de la Mare, 1996). 

Since this 2006 review, several authors have 
used a fourth type of model: mass-balance regional 
food-web models incorporating krill (Cornejo-
Donoso and Antezana, 2008; Pinkerton et al., 2010; 
Hill et al., 2012b). The mass balance constraint is 
that consumption of a prey group cannot exceed 
production by that group over an arbitrary time 
period (Steele, 2009; Polovina, 1984), of one 
year in each model. Also, several groups have 
recently developed spatially resolved multi-species 
dynamics models, which have been used to evalu-
ate proposed management measures for the krill 
fishery in the Scotia and Bellingshausen Seas 
(Plagányi and Butterworth, 2012; Watters et al., in 
rev; Constable, 2005; Hill et al., 2007a). 

Hill et al. (2006) suggested that the multi-species 
dynamics models should include a size-structured 
representation of the krill population; an explicit 
recruitment process that incorporates stock size, 
environmental and stochastic effects; a representa-
tion of krill transport between areas; and explicit 
interactions with krill predators. Both Plagányi 
and Butterworth (2012) and Watters et al. (in rev) 
represented numerical krill abundance and used a 
constant mass (Hill et al., 2007b) to convert this to 
biomass and hence fishing and predation mortality. 
The models also required stock recruit parameters, 
intrinsic population growth rates and biomass or 
density estimates for krill. The discussion present-
ed here would help facilitate further development 
of these components of the models. In addition, 
Hill et al. (2007b) provided an approach for model-
ling krill transport at the maximum advection rate 
indicated by the OCCAM global circulation model 



233

Fitting Euphausia superba into Southern Ocean food-web models

which, they suggested, represents an upper bound 
on the uncertainty and should therefore be contrast-
ed with zero transport. 

The interactions of both predators and the fish-
ery with krill depend ultimately on the fine-scale 
spatial interactions considered above. This relation-
ship is highly uncertain (Hill et al., 2009), and is 
difficult to represent well in models because of the 
mismatch of scales between model representation 
and the scales of biological processes (Hewitt et al., 
2004b; Hill et al., 2007b; Plagányi and Butterworth, 
2012; Watters et al., in rev). Better information is 
needed on the respective probabilities of the fishery 
and predators encountering exploitable densities 
of krill at the smaller scale of fishing operations 
(c. 3.5 nm) and foraging trips (Waluda et al., 2010; 
Cresswell et al., 2007, 2008). 

There is a general acceptance amongst model-
lers that parameter estimates for krill are often 
highly uncertain and subject to spatial, seasonal and 
interannual variability, but that the extent of this 
uncertainty and variability is not often clear (Hill 
et al., 2006, 2007a, 2007b). Consequently, many 
models incorporate innovative methods for assess-
ing or dealing with uncertainty (e.g. Butterworth et 
al., 1994; Constable and de la Mare, 1996; Plagányi 
and Butterworth, 2012; Watters et al., in rev; Hill 
et al., 2012b). The information presented in this 
review could be used to help refine some of these 
uncertainties as well as identify the critical gaps 
that need to be filled in delivering robust represen-
tations of krill in food-web models.
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