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Abstract 
The potential impacts of climate change are an increasing focus of research 
and ever-larger climate projection ensembles are available, making standard 
impact assessments more onerous. An alternative way of estimating impacts 
involves response surfaces, which present the change in a given indicator for a 
large number of plausible climatic changes defined on a regular sensitivity 
domain. Sets of climate change projections can then be overlaid on the 
response surface and impacts estimated from the nearest corresponding points 
of the sensitivity domain, providing a powerful method for fast impact estimation 
for multiple projections and locations. However, the effect of assumptions 
necessary for initial response surface development must be assessed. This 
paper assesses the uncertainty introduced by use of a sensitivity framework for 
estimating changes in 20-year return period flood peaks in Britain. This 
sensitivity domain involves mean annual and seasonal precipitation changes, 
and a number of simplifications were necessary for consistency and to reduce 
dimensionality. The effect of these is investigated for nine catchments across 
Britain, representing nine typical response surfaces (response types), using 
three sets of climate projections. The results show that catchments can have 
different causes of uncertainty, and some catchments have an overall higher 
level of uncertainty than others. These differences are compatible with the 
underlying climatological and hydrological differences between the response 
types, giving confidence in generalisation of the results. This enables the 
development of uncertainty allowances by response type, to be used alongside 
the response surfaces to provide more robust impact estimates. 
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sensitivity. 
 

1. Introduction 
The hydrological cycle is already being affected by anthropogenic climate 
change, both globally (IPCC 2007) and locally (e.g. Kay et al. 2011). 
Hydrological models, driven by plausible climate time-series for future periods, 
are often used to assess potential impacts on the frequency of floods and 
droughts. Such climate projections are typically derived from Global Climate 



 2

Models (GCMs), usually with some form of downscaling as the resolution of 
GCMs is generally considered too low to drive most hydrological models 
directly. Downscaling can be statistical (e.g. Wilby et al. 2002), dynamic — 
nesting a finer-scale Regional Climate Model (RCM) within the GCM (e.g. Bell 
et al. 2012), or simply involve applying delta-changes derived from climate 
models to baseline observed time-series (e.g. Kay et al. 2009b). Each approach 
has advantages and disadvantages. 
 
Increasingly large ensembles of climate projections are being produced (e.g. 
PRUDENCE, Christensen et al. 2007; ENSEMBLES, van der Linden and 
Mitchell 2009; UKCP09, Murphy et al. 2009), using multiple runs of multiple 
climate models, for multiple emissions scenarios and time-slices, with the aim of 
enabling assessment of uncertainty from various sources (e.g. Kay et al. 2009b, 
Wilby and Harris 2006). In addition, probabilistic ensembles, like UKCP09 and 
those presented by Harris et al. (2010) for Europe, allow a risk-based approach 
to decision-making (Kay and Jones 2012, Christierson et al. 2012). The impact 
assessment process is thus becoming less straightforward, with a greater 
number of projections to consider, and each time new projections are released 
numerous impact assessments potentially have to be redone and any 
differences investigated. 
 
Recently a new way of modelling the impacts of climate change has been 
developed, which makes the process of re-assessing impacts under alternative 
projections less onerous. This involves the production of ‘response surfaces’, 
which present the change in a given indicator for a large number of plausible 
climatic changes defined on a regular sensitivity domain. For example, the 
domain could simply involve changes in mean annual precipitation (P) and 
temperature (T), each in fixed increments between a minimum and maximum, 
with change in mean annual runoff (the impact indicator) calculated for each 
combination of P and T changes. Sets of climate change projections can then 
be overlaid on the response surface, and impacts estimated from the nearest 
corresponding points of the sensitivity domain. Response surface approaches 
have been used for seasonal flows in 18 catchments across Europe (Weiss 
2011), lake levels/outflows in Sweden (Wetterhall et al. 2011), flood warning 
level exceedance in the Upper Severn, UK (Cloke et al. 2013) and the change 
in area suitable for palsa mires in Fennoscandia (Fronzek et al. 2010). 
 
Prudhomme et al. (2010) applied a sensitivity-based method to estimate the 
impacts of climate change on flood peaks in Britain. Their sensitivity domain 
involved changes in mean annual P and seasonality of P, as well as T and 
corresponding potential evaporation (PE) changes. Bastola et al (2011) applied 
a similar domain for four catchments in Ireland. Prudhomme et al. (2013a) went 
further by producing response surfaces for 154 catchments across Britain and 
grouping them by similarity, giving nine ‘response types’. They then 
characterised families of response types by catchment properties (Prudhomme 
et al. 2013b), enabling estimation of catchment sensitivity where-ever the 
necessary properties are available. This provides a powerful method for easily 
estimating the impacts of multiple climate change projections at multiple 
locations, but requires an assessment of the uncertainty introduced by the 
assumptions necessary to make the approach tractable. This paper uses 
example catchments of each response type to assess the additional error 
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derived from use of response surfaces rather than direct impacts modelling. In 
particular, do response surfaces consistently over- or under-estimate changes 
in flood peaks in comparison to direct modelling? Section 2 describes the 
existing sensitivity framework in more detail, and presents the catchments and 
climate change projections used for the uncertainty assessment. Section 3 
describes the factors included in the assessment, with results (Section 4), 
discussion (Section 5) and conclusions (Section 6). 
 

2. Background, catchments and data 
2.1 Sensitivity framework, flood response surfaces and 

response types 
The sensitivity framework developed and used by Prudhomme et al. (2010, 
2013a,b) relies on two key methods/assumptions: 

1. Delta-change downscaling; monthly (percentage or absolute) changes in 
a climate variable (P, T, PE) are applied to a baseline time-series of that 
variable, to produce modified time-series. 

2. A single-harmonic (cosine) function representing the monthly pattern of P 
and T changes. 

The former allowed the consistent application of a large set of climatic changes 
to a large number of catchments. The latter allowed the dimensionality of the 
sensitivity domain to be greatly reduced. 
 
The single-harmonic function of Prudhomme et al. (2010) is given by 

X(t) = Xmean + A cos [ 2
�

 (t - 
�

) / 12 ]    (1) 
with X(t) the change for month t (1=January, 12=December), Xmean the mean 
monthly change (harmonic mean), and A and 

�
 the harmonic amplitude and 

phase (timing of maximum X) respectively. For P, the phase 
�

 was set to 1 
(January). Thus the number of dimensions of P change was reduced from 12 
(months) to two (Xmean and A), each of which was varied in 5% increments 
between minimum and maximum values (-40% to +60% for Xmean and 0% to 
+120% for A) to give 525 scenarios of P change (Table 1). As floods are much 
less sensitive to T than P, only eight T-change scenarios were selected, each of 
which has a corresponding PE-change scenario (Table 1). Each of the eight 
T/PE scenarios was thus combined with each of the 525 P scenarios, to give a 
sensitivity domain consisting of 4,200 scenarios. The sensitivity framework thus 
consisted of the sensitivity domain applied using delta-change downscaling. 
 
Using this sensitivity framework, Prudhomme et al. (2013a) modelled 154 
British catchments using two hydrological models: 120 with the Probability 
Distributed Model (PDM; Moore 1985) (74 daily and 46 hourly time-step) and 35 
with the Climate and LAnd-use Scenario Simulation In Catchments model 
(CLASSIC; Crooks and Naden 2007) (daily time-step). PDM is a lumped 
conceptual model, suitable for smaller catchments, while CLASSIC is a semi-
distributed model, generally used for larger catchments. One catchment was 
modelled with both hydrological models. A simple T-dependent snowmelt 
module (Bell and Moore 1999) was used with each model. See Crooks et al. 
(2009) for further details on models and calibration. The baseline period for 
catchments modelled at a daily time-step was 1961-2001. 
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For each scenario of the sensitivity domain, a flood frequency curve was fitted 
to peaks-over-threshold (POT) from the modelled flow series. Each scenario 
flood frequency curve was then compared to a baseline curve (fitted to POT 
from the modelled baseline flow series), to assess changes in four flood 
indicators: 2-, 10-, 20- and 50-year return period flood peaks. The response of 
each catchment, for each indicator and each T/PE scenario, was presented as 
a 2-dimensional flood response surface, with the P harmonic amplitude (A) on 
the x-axis and the P harmonic mean (Xmean) on the y-axis. The colour of the 
square at each point represents the modelled change in the given flood 
indicator for that scenario of change in P, T and PE (Figure 1a).  
 
Prudhomme et al. (2013a) analysed the similarity of the response surfaces of 
the 154 modelled catchments, and grouped them into nine response types. 
Each response type was represented, for each indicator, by a composite 
(average) response surface (the mean change in the indicator at each position 
on the sensitivity domain, over all T/PE scenarios and all catchments of that 
type). The response types were approximately ordered and named by the 
sensitivity shown in their composite response surfaces: Damped-Extreme, 
Damped-High, Damped-Low, Neutral, Mixed, Enhanced-Low, Enhanced-
Medium, Enhanced-High and Sensitive. Damped response types show 
percentage changes in flood peaks that are generally smaller than the 
maximum monthly P percentage change prescribed by the sensitivity domain, 
whereas Enhanced types show changes in flood peaks generally larger than for 
P, and the Neutral type shows changes in flood peaks similar to those for P. 
Mixed or Sensitive types show more variable changes in flood peaks, 
depending on the magnitude and seasonality of P change (see Prudhomme et 
al. 2013a Table 1). Prudhomme et al. (2013b) then characterised families of 
response types using decision trees. This enables estimation of response type 
from catchment properties, so allows impact estimation for un-modelled 
catchments via composite response surfaces. 
 

2.2 Catchments 
From the 154 catchments modelled by Prudhomme et al. (2013a), a small 
number were selected (Table 2 and Figure 2) to represent the nine response 
types. A catchment modelled with PDM at a daily time-step was selected for 
each response type, after consideration of calibration results and catchment 
location. Response surfaces for these nine catchments (Figure 1b) clearly show 
their differing sensitivity. In particular, they show the difference between 
Damped and Enhanced/Sensitive response types; the former have a relatively 
gradual increase in the impact on flood peaks as both the P harmonic mean and 
amplitude increase (i.e. moving from bottom-left to top-right of the response 
surface), while the latter have a much steeper increase in impact.  
 
In addition to the full uncertainty assessment using nine catchments modelled 
with PDM, a partial assessment is made for four larger catchments, modelled 
with CLASSIC (Table 2 and Figure 2); a full assessment is not possible as there 
are not catchments of each response type modelled with CLASSIC. 
 

2.3 Climate change projections 
Uncertainty associated with use of response surfaces is assessed using three 
sets of climate change projections, each using the 1970s (1961-1990) baseline 
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time-slice and 2080s (2070-2099) future time-slice under SRES A1B emissions 
(IPCC 2000): 

1. GCM projections: 16 projections from AR4 (IPCC 2007) (see 
Prudhomme et al. (2010) Table 2). Available as monthly time-series of 
various climate variables, on relatively low-resolution grids, from which 
monthly delta-changes are calculated. 

2. RCM projections: 11 projections from a perturbed-physics ensemble 
(PPE) of HadRM3 nested in HadCM3; part of UK Climate Projections 
2009 (UKCP09; Murphy et al. 2009 Section 5). Available as daily time-
series of various climate variables, on an approximately 25km x 25km 
grid over the UK, from which monthly delta-changes are calculated. The 
time-series are also used directly (Section 3.4). 

3. UKCP09 projections: 10,000 probabilistic projections (Murphy et al. 
2009). Available as monthly delta-changes for various climate variables, 
on the same grid as the RCM projections or for 23 river-basin regions 
covering Britain. 

These three sets of projections cover a variety of climate change ensemble 
methods (GCM, PPE and statistically emulated) and sizes. For each catchment, 
GCM and RCM projections are taken from the grid-box containing the 
catchment centroid, while UKCP09 projections are taken from the river-basin 
region containing the catchment (Table 2). 
 

3. Investigation of factors contributing to 
uncertainty 

The sensitivity framework provides a potentially powerful method for fast 
estimation of the impacts of multiple climate change projections at multiple 
locations (Prudhomme et al. 2013b); the projections are simply overlaid on an 
appropriate response surface. However, there is clearly uncertainty in such 
estimates, due to necessary simplifications. Here, the uncertainty assessed is 
that from use of catchment response surfaces instead of directly modelling the 
impact of climate change projections on a catchment. In particular, does use of 
catchment response surfaces consistently over- or under-estimate changes in 
flood peaks in comparison to directly modelled impacts? The assessment 
focuses on 20-year return period flood peaks (RP20). If composite response 
surfaces are being used (i.e. for un-modelled catchments, where the response 
type has been estimated from catchment properties) then there is additional 
uncertainty which can be included through use of standard deviation surfaces 
(representing the range of catchment response surfaces within a given 
response type, Prudhomme et al. 2013a).  
 
For each of the example catchments, the three sets of climate change 
projections (Section 2.3) are overlaid on the response surface and the impacts 
extracted. Then, the influence of various simplifications on these response 
surface impacts is investigated by directly modelling the impacts under the 
same projections, using alternative methods designed to address simplifications 
grouped into three main factors: 

• Factor 1: Harmonic function simplifications; 

• Factor 2: Use of harmonic function instead of actual monthly changes; 

• Factor 3: Use of simple delta-change downscaling. 
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Section 3.1 describes the overlay of projections on response surfaces, while 
Sections 3.2-3.4 describe the alternative methods addressing each factor. Table 
3 provides a summary and the notation for each method and set of projections. 
 

3.1 Overlaying projections on response surfaces 
In order to use a response surface to estimate the impact of a given climate 
change projection, a single-harmonic function (Section 2.1) is first fitted to a set 
of monthly P changes. Two harmonic function parameters (mean and 
amplitude) are then used to overlay the projection on a response surface, to 
estimate the impact from that of the nearest point of the sensitivity domain 
(Table 1). A single-harmonic function could also be fitted to a corresponding set 
of monthly T changes, to select the closest T/PE scenario of the sensitivity 
domain. Here though, the modelled response surfaces for just one T/PE 
scenario (Medium-Aug; Table 1) are used for each catchment (Figure 1b), as 
the variability of catchment response surfaces for different T/PE scenarios is 
much smaller than that between catchments (Prudhomme et al. 2013a).  
 
For GCM and RCM projections, harmonic functions are fitted using the method 
of Prudhomme et al (2010), which involves deriving multiple sets of monthly 
changes by using all combinations of 20-year sub-periods within the baseline 
and future time-slices, and fitting the harmonic function to the monthly medians. 
This method acknowledges natural variability in climate model data and allows 
a better harmonic fit. For UKCP09 projections, harmonic functions are fitted to 
each of the 10,000 sets of monthly P changes based directly on 30-year 
baseline and future time-slices (data are not available to allow application of the 
sub-period method; Section 2.3). Figure 1a shows an example of the three sets 
of climate change projections overlaid on a catchment response surface. 
 

3.2 Factor 1: Harmonic function simplifications 
The use of a single-harmonic function, to reduce dimensionality, included a 
number of simplifications: 

• The maximum increase in P occurs in January. 

• There is symmetry between summer and winter variance from the mean. 
The phase of the fitted harmonic is ignored, as are the exact harmonic mean 
and amplitude, since the response surface harmonics all correspond to a 
January peak P change and have means and amplitudes in multiples of 5% 
(Table 1). To demonstrate the effect of this assumption, the monthly P changes 
given by each fitted single-harmonic are applied directly to the baseline P series 
and run through the catchment hydrological model. Similarly, the effect of the 
symmetry implicit in the single-harmonic is explored through use of a double-
harmonic fitted to the same set of monthly P changes, thus allowing asymmetry 
and possibly giving two P harmonic peaks in a year (Prudhomme et al. 2010). 
The monthly P changes given by the fitted double-harmonic are applied to the 
baseline P series and run through the catchment hydrological model. For GCM 
and RCM projections both the single- and double-harmonic are applied, but only 
the single-harmonic is applied for UKCP09 as the ensemble is so large.  
 
To further investigate the potential influence of the fixed January phase of the 
sensitivity domain, alternative response surfaces are produced for the example 
catchments modelled with PDM, with the phase set in each alternative month. 
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3.3 Factor 2: Use of harmonic function instead of actual 
monthly changes 

As well as not taking account of the month in which the fitted harmonic peak 
occurs, extracting an impact estimate from the response surface takes no 
account of how well the single-harmonic fits the 12 monthly P changes from a 
climate projection, or of the corresponding monthly T changes from that 
projection. Thus sets of monthly P and T changes are applied directly to 
baseline time-series, without fitting a harmonic. For GCM and RCM projections, 
a number of alternative sets of monthly P changes are applied, each with 
corresponding monthly T changes: 

• Median monthly P changes (to which the P harmonic was fitted).  

• Each set of monthly P changes (121, from 20-year sub-periods within the 
30-year baseline and future time-slices). 

• Alternative monthly P changes (from standard 30-year time-slices). 
Only the last combination is applied for UKCP09 as data are not available to 
derive the others (Section 2.3). 
 

3.4 Factor 3: Use of simple delta-change downscaling 
The simple delta-change method of downscaling involves the perturbation of a 
fixed baseline of observed data. The perturbed series is inevitably similar to the 
baseline in terms of the relative size and ordering of events, which limits its 
variability, and other changes in P, like intensity, are ignored (Cloke et al. 2013). 
This issue is addressed by using the time-series data from the RCM projections 
to drive the hydrological model for each catchment; the RCM PPE addresses 
uncertainty in climate projections due to many important physical processes not 
being explicitly resolved by climate models, but also includes natural climate 
variability as each member is driven by different boundary conditions (from the 
HadCM3 GCM PPE). Each of the 11 PPE ensemble members is a plausible 
realisation (no weights are attached). Bias-correction of RCM time-series is not 
attempted, as there is relatively good agreement between flood frequency 
curves simulated with baseline RCM data and observed data for these 
catchments (Kay and Jones 2012) and any correction requires strong 
assumptions on error stationarity etc. (Cloke et al. 2013).  
 
For each ensemble member, changes are assessed between two 30-water-year 
time-slices, 1 October 1960-30 September 1990 (Baseline) and 1 October 
2069-30 September 2099 (Future), with a 9 month run-in (from 1 January) for 
each time-slice [note that an RCM year is only 360 days]. For each grid box, 
daily P and T are available directly. Daily PE from the land-surface is derived 
from daily RCM open-water PE using the method of Bell et al. (2011). The 
required PDM catchment-average or CLASSIC grid-average P and PE are 
produced using area-weighting, with additional weighting for P using standard 
average annual rainfall information (Kay et al. 2006), with T from the grid box 
containing the catchment centroid (and altitude from the RCM orography file). 
 

3.5 Comparison of P changes and derivation of PE changes 
Figure 3 presents an example comparison of sets of monthly P changes: A 
response surface harmonic (Figure 3a) is contrasted with corresponding P 
changes from Factors 1 and 2 (Figure 3b-d; Table 3). Comparing Figure 3b and 
3a, a shift in phase between an actual single-harmonic and its response surface 
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harmonic can be seen, along with a small difference in harmonic mean and 
amplitude, as these are rounded to the nearest 5% for the response surface 
harmonic. The asymmetry of the actual double-harmonic compared to the 
single-harmonic is also shown (Figure 3b). Figure 3c shows the wide range of 
monthly P changes derived from 20-year sub-periods within time-slices, while 
Figure 3d shows corresponding P changes using fixed 30-year time-slices. 
 
For RCM projections, the PE delta-changes are derived from RCM PE time-
series data (Section 3.4). For GCM or UKCP09 projections, PE is not directly 
available so for simplicity a T-based PE formula (Oudin et al. 2005) is applied, 
as for the PE scenarios of the sensitivity domain (Table 1). For each catchment 
and each projection, monthly PE changes are calculated as the difference 
between baseline and scenario T-based PE time-series (derived respectively 
from baseline T, and baseline T adjusted using projected T changes). Note that 
there are a number of issues and uncertainties involved in PE estimation under 
climate change (Kay et al. 2013), but Oudin PE is preferred here over other 
simple formulae as it includes extra-terrestrial radiation (Shaw and Riha 2011). 
 

4. Results 
Figure 4 shows the impacts on RP20 for each of the nine example catchments 
modelled with PDM, using each set of projections and each alternative method 
of application (Table 3). For each catchment, the results using GCM projections 
are first (six methods, gcm_*), then RCM projections (seven methods, rcm_*), 
then UKCP09 (three methods, ukcp_*). For each projection set, the results 
using the catchment response surface are first (*_rs), then the alternative 
methods (in order from Table 3). The differing sensitivity of the catchments is 
immediately clear from Figure 4, as the Damped catchments show a much 
narrower range of impacts than the Enhanced/Sensitive catchments. The 
results are discussed below in terms of how the impacts from different methods 
compare, for the three factors addressed. 
 

4.1 Factor 1: Harmonic function simplifications 
For GCM and RCM projections, Figure 4 shows that the impacts estimated from 
the response surfaces (gcm_rs, rcm_rs) are generally similar to or larger than 
those when the actual P single-harmonics are applied (gcm_harm, rcm_harm), 
in terms of mean and/or maximum impacts on RP20. Only for catchment 07002 
are the mean and maximum impacts from the response surfaces clearly lower 
than those from use of P single-harmonics. For UKCP09 projections though, 
most catchments have lower mean and maximum impacts using response 
surfaces (ukcp_rs) than using P single-harmonics (ukcp_harm). This suggests 
that the response surface assumption of a January phase is more 
consequential for the estimation of impacts for some catchments and using 
UKCP09 projections than GCM or RCM projections. 
 
To further investigate the potential influence of the fixed January phase of the 
sensitivity domain, Figure 5 shows 11 alternative response surfaces for the nine 
example catchments, with the phase set to each month from February to 
December. These surfaces show that, if the phase is between February and 
mid-summer the impact on RP20 is generally less than that for a January 
phase, whereas if the phase occurs in autumn or earlier in winter then the 
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impact can be greater (the exception is 07002, where the impact is greater if the 
phase is April onwards). Some catchments show a clearly increased sensitivity 
in their response surfaces for some alternative phases when compared to their 
January response surface. For example, the September response surface for 
07002 and the November surface for 02001 look more similar to the January 
surface for 14001 (Damped-Low) than they do to their own January surfaces 
(Damped-Extreme and Damped-High respectively). Similarly, October for 34003 
(January Mixed) looks like January for 21023 (Enhanced-Medium) and 
November for 21023 looks like January for 43005 (Enhanced-High). The other 
catchments have most sensitive surfaces which are still more similar to their 
own January response surface than to any of the other January surfaces, so 
use of their January surfaces should not significantly under-estimate impacts. 
[Note that these differences with phase were taken into account to some extent 
by Prudhomme et al. (2013b), by grouping response types into families and 
characterising those families by catchment properties.] It must be recalled when 
looking at alternative response surfaces (Figure 5) that not all P harmonic 
phases are equally likely under existing projections. Histograms (Figure 6) show 
that phases in spring, summer or (early) autumn are quite unlikely, especially 
for the RCM and UKCP09 projections, and that January is the predominant 
phase for most catchments, for all three sets of projections. Exceptions are 
07002 and 02001 for UKCP09 projections (and 02001 for RCM projections), 
where December becomes the predominant phase, so using the January rather 
than December response surface for all projections will lead to some under-
estimation of impacts in these cases (Figure 5). Similarly, for 14001 and 21023 
for UKCP09 projections, although January is the predominant phase there is 
also a high proportion in December. Any bias in impacts extracted from the 
January response surface for a catchment is thus a consequence of both the 
true phases of the projections (Figure 6), and the differing responses for 
different phases (Figure 5), and each should be borne in mind. 
 
For the P double-harmonics, Figure 4 shows that there are minimal differences 
in impacts using actual double-harmonics for GCM and RCM projections 
(gcm_harm2, rcm_harm2) compared to corresponding single-harmonics 
(gcm_harm, rcm_harm). This suggests that use of a more complex harmonic 
function is unnecessary, at least for these sets of projections over Britain. 
 

4.2 Factor 2: Use of harmonic function instead of actual 
monthly changes 

For GCM and RCM projections, Figure 4 shows that the mean, minimum and 
maximum impacts on RP20 are generally greater when the median monthly 
changes are used directly (gcm_20med, rcm_20med) rather than being 
smoothed out by a single-harmonic function (gcm_harm, rcm_harm). The main 
exception is 54008 for RCM projections. The largest difference in the maximum 
(mean) impact between the two methods, of around 35% (25%), occurs for 
38003 under GCM projections. The differences in mean impacts are often 
smaller using RCM than GCM projections (6 out of 9 catchments).  
 
When the sets of monthly changes in P, T and PE are used (gcm_20, rcm_20), 
rather than the median monthly changes calculated from these (gcm_20med, 
rcm_20med), Figure 4 shows that the median impact of the former is within 6% 
of the mean impact of the latter. In addition, the 10th-90th percentile range of the 
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former mostly encompasses the latter; there are just a small number of 
projections with impacts which fall slightly below (above) the corresponding 10th 
(90th) percentile. The maximum (minimum) impacts using the sets of monthly 
changes (gcm_20, rcm_20) are generally greater (less) than all impacts using 
delta-change methods with corresponding sets of projections, particularly for 
GCM projections (where the maxima are often outside the +85% plot limit). 
 
The 10th-90th percentile range from the use of the sets of monthly changes 
(gcm_20, rcm_20) also mostly encompasses the range of impacts when the 
monthly changes from the fixed 30-year time-slices are applied (gcm_30, 
rcm_30). Interestingly though, the mean of the latter is similar to or less than the 
median for the former: The difference is within 5%, except for 34003, 43005 and 
38003 for GCM projections where it is 10-17%. This shows that the way in 
which monthly P changes are derived could affect the results considerably, and 
suggests that the use of multiple sub-periods within a time-slice may be 
preferable to take some account of uncertainty due to natural variability, not just 
to improve the range of impacts but also the average impact. 
 
For UKCP09 projections, Figure 4 shows that the median impact when the 
monthly changes from the fixed 30-year time-slices are applied (ukcp_30) is 
generally within 5% of that using the fitted P single-harmonic (ukcp_harm). 
Exceptions are 47007, where the former is 9% greater than the latter, and 
38003, where it is 14% less. 
 
These differences in impacts are partly due to the use of the actual monthly P 
changes instead of the changes smoothed through the year via the fitted single-
harmonic function. However, they are also due to the use of the actual monthly 
T/PE changes for the catchment, rather than the Medium-Aug T/PE scenario 
(from T changes smoothed through the year via a harmonic function; Table 1). 
 

4.3 Factor 3: Use of simple delta-change downscaling 
When baseline and future climate time-series derived from the 11-member 
RCM ensemble (Section 3.4) are used as direct inputs to the PDM for each 
catchment (rcm_tseries), the mean impact is generally within (or just outside) 
the range of average impacts obtained from the alternative delta-change 
methods using RCM projections (Figure 4). The exception is 38003 (Sensitive), 
where the mean from direct use of RCM data is around 12% larger than the 
highest average from any of the alternatives methods (rcm_20 in this case).  
 
Although the mean impacts from direct use of RCM data are generally similar to 
the means from one or more of the delta-change methods using RCM 
projections, the full range of impacts is often much wider (Figure 4). However, it 
is not always the same ensemble member that results in the increased range at 
either end (not shown), suggesting that the particular parameter settings of 
individual members are less important and that natural variability (on a range of 
timescales) is the more dominant factor. In particular, both baseline and future 
RCM time-slices are affected by natural variability: the RCM baselines are not 
meant to exactly reproduce the climate in the baseline period but are simply one 
representation of what could have occurred, just as the Future time-slice is one 
representation of what might occur (under given assumptions on emissions etc). 
Also, for a given RCM ensemble member and future period, longer timescale 
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natural variability could act in the same (opposite) direction as climate change, 
reinforcing (reducing) its apparent effect (Murphy et al. 2009 Section 2.2). The 
inclusion of natural variability in RCM time-series thus helps explain their 
expanded range relative to that from delta-change methods, although it is 
difficult to separate this from possible differences in the underlying spatial 
patterns in RCM data. The UKCP09 projections also include natural climate 
variability (to some extent) in their range (Murphy et al. 2009 Section 2.2), 
perhaps contributing (along with the much larger sample size) to their expanded 
range relative to GCM and RCM projections. 
 

4.4 Summary 
When compared to values extracted from the response surfaces, some 
catchments show greater differences under alternative methods than other 
catchments. To compare the potential levels of uncertainty between the nine 
example catchments modelled with PDM, the differences between the mean (or 
median) impacts for each of the alternative methods and the mean impacts from 
the response surfaces are calculated. The three sets of projections are kept 
separate (e.g. the mean of gcm_harm is compared to that of gcm_rs whereas 
the mean of rcm_harm is compared to that of rcm_rs). Table 4 gives the 
maximum of these differences for each catchment and set of projections. This 
shows that 14001 (Damped-Low), 47007 (Neutral), 54008 (Enhanced-Low) and 
43005 (Enhanced-High) have relatively low potential uncertainty, while 38003 
(Sensitive) shows by far the highest potential uncertainty for all three sets of 
projections. The other four catchments, representing Damped-Extreme, 
Damped-High, Mixed and Enhanced-Medium response types, have 
intermediate uncertainty. A second set of nine catchments modelled with PDM 
gave similar relative differences in uncertainty by response type (not shown).  
 
For larger catchments a partial uncertainty assessment was performed using 
four catchments modelled with CLASSIC (Table 2). This compared the impacts 
using RCM time-series (rcm_tseries) to the corresponding impacts extracted 
from response surfaces (rcm_rs). The results (Table 5) show similar relations 
between catchments as those for the PDM catchments (Table 4); 76007 
(Neutral) and 39001 (Damped-Low) show a lower level of uncertainty (cf. 47007 
and 14001), with greater uncertainty for 27009 (Damped-High) and 33026 
(Mixed) (cf. 02001 and 34003). Table 5 and Table 4 also show that each 
CLASSIC catchment has a higher level of uncertainty than the corresponding 
(same response type) PDM catchment. It is possible that this apparent 
increased response of catchments modelled with CLASSIC compared to those 
modelled with PDM, when using RCM time-series as input, is due to the larger 
area of the CLASSIC catchments (Table 2); a larger area means an increased 
possibility of large accumulations of water reaching the river, and the RCM data 
could be suggesting greater spatial coherence in future rainfall (due to wetter 
winters and drier summers meaning more large-scale, frontal rainfall and less 
convective rainfall) (Buonomo, pers. comm.). 
 

5. Discussion 
Comparison of the impacts on RP20 extracted from the response surfaces with 
those using alternatives methods shows that different catchments can have 
different causes of uncertainty (that is, the differences in comparison to the 
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response surface results occur for different factors in the uncertainty 
assessment). Perhaps more importantly, some catchments have a higher 
potential level of uncertainty than other catchments. Some catchments have a 
similar level of uncertainty across the four return periods (2-, 10-, 20- and 50-
years), whereas others have a level of uncertainty which increases/decreases 
with return period (not shown). 
 
Assuming the differences in average impacts for the example catchments also 
apply to catchments of the same response type, it is possible to say something 
about the potential level of uncertainty for different response types. For 
instance, Neutral catchments will have quite a low level of uncertainty, as will 
Damped-Low or Enhanced-Low catchments, while Damped-High or Mixed 
catchments are likely to have a higher level of uncertainty, and Sensitive 
catchments are likely to have the greatest uncertainty. These results are 
compatible with the underlying climatological and hydrological differences 
between the response types (Prudhomme et al. 2013a). The characteristics 
selected in the decision trees, which can be used to estimate catchment 
response type, demonstrate that change in the water balance is the dominant 
factor determining change in flood potential (Prudhomme et al. 2013b). For 
Neutral catchments, where the response surfaces show a near-linear response 
to P changes, the water balance throughout the year is not unduly affected by 
changes in P and PE, so uncertainty in flood change is small. In contrast, for 
Sensitive catchments the response surfaces have a very narrow band where 
the change in flood peak can be anywhere between 0 and 90%, so seasonal 
changes to P and PE can easily alter the balance between these two factors 
and consequent flood potential. Thus precisely how and when climatic changes 
occur through the year causes differences in impact on the water balance, 
resulting in comparatively high uncertainty. Mixed, Enhanced-Medium and 
Enhanced-High catchments are also susceptible to seasonal changes in the 
water balance, so have fairly high uncertainty. Uncertainty for Damped-High 
catchments is probably less affected by potential water balance changes than 
by the causes and month of extreme event occurrence, for example changes in 
T or P which affect the incidence of snowmelt floods or summer storms. 
 
Despite the small number of catchments investigated here, the fact that the 
results are physically reasonable, and the relative similarity of the results for 
comparable PDM and CLASSIC catchments, gives confidence in the extension 
of the results to response type. That is, the analysis in Section 4.4 can be used 
to develop uncertainty allowances by response type, to be used alongside the 
response surfaces to provide more robust impact estimates. For example, it 
might be decided to add 8% to a set of impacts derived by overlaying a large 
ensemble on a response surface for a Damped-High catchment, as this is the 
difference in the mean impacts modelled for the example Damped-High 
catchment (Table 4). For a larger catchment (Area > 2000km2 say), the 
differences in Table 5 might be taken into account. 
 
It should be noted that the analysis presented in Section 4.4 concentrates on 
differences in average impacts, but the full results (Figure 4) also indicate 
differences in the impact ranges between the different methods. In particular, 
the range is larger when natural variability and its projected changes are 
considered, either through use of delta-changes derived from multiple sub-
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periods within time-slices, or use of simulated time-series. This feature was also 
shown by Kay and Jones (2012), who compared flood impacts using alternative 
UKCP09 products for the same nine catchments as here. This possible 
expansion of the uncertainty range is not included in the example above but 
could potentially be incorporated into modified impact distributions. 
 

6. Conclusions 
Sensitivity frameworks and response surfaces provide a useful way of 
estimating the potential impacts of climate change. The great strength of the 
approach is that alternative large sets of projections (for different emissions or 
time-slices, or entirely new projections) can be readily applied without the need 
for a significant new impact modelling study. However, a number of 
simplifications are necessary to construct response surfaces, particularly for 
indicators like flood flows where the seasonal pattern of climate change is 
important. The sensitivity framework developed by Prudhomme et al. (2010) 
facilitated the production of flood response surfaces, representing the sensitivity 
of a given flood indicator for a catchment to a particular set of changes in 
precipitation (P), temperature (T) and potential evaporation (PE). Here, the 
uncertainty introduced by some of the simplifications has been assessed for a 
small number of catchments. 
 
The analyses suggest that the results can be extended from catchments to 
response types, enabling the development of uncertainty allowances by 
response type. This means that the methodology of Prudhomme et al. 
(2013a,b) can be used with greater confidence for impact estimation for un-
modelled catchments. That is, for such a catchment, first the response type is 
estimated via the decision trees then the composite response surface of that 
type is combined with a set of climate projections (Prudhomme et al. 2013b). 
This provides an initial estimate of the set of impacts, to which the uncertainty 
allowance would be added to correct for potential bias in the average impact 
(and possibly a range correction too). Then the standard deviation surface of 
the same type is also combined with the set of climate projections, to allow for 
the range of responses within the type (Prudhomme et al. 2013b). Whilst this 
provides a useful first level of assessment it is recommended that further 
hydrological modelling is carried out in certain cases (e.g. for very vulnerable 
situations or where significant investment is planned), where the chance of 
greater impacts than estimated using the sensitivity framework may be critical. 
 
A similar sensitivity framework method could be developed for other impact 
sectors (e.g. water availability) and include factors other than climate change 
(e.g. land-use change) if appropriate models are available. However, the design 
of the framework has to be carefully tailored to the sector and the factors of 
importance. Choices potentially influencing response surface results include:  

• Climate variables: For flood peak changes it was assumed that P change 
was more important than T or PE change, thus only eight T-change 
scenarios were applied here, with corresponding PE-changes derived 
from T (Table 1). However, T changes are likely to be more important in 
regions more strongly influenced by snow (e.g. Wetterhall et al. 2011) 
and PE changes are likely to be more influential for changes in low flows 
than floods (Kay and Davies 2008). Changes in other meteorological 
variables than T affecting PE, such as radiation and wind, may then be 
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important, as might changes in plant physiology (Kay et al. 2013, Bell et 
al. 2011). 

• Seasonality: A single-harmonic function was used to represent 
seasonality here (Section 2.1). Alternatives include use of a fixed 
monthly pattern to distribute annual changes (e.g. Wetterhall et al. 2011, 
Cloke et al. 2013). If seasonality is not important for the indicator under 
consideration then only mean annual changes need be considered (e.g. 
Fronzek et al. 2010 for P). 

• Increment: Increments of 5% were used here (Table 1). Use of finer 
increments would result in more continuous response surfaces but 
require many more simulations, and is unlikely to make a substantial 
difference to the impact distribution extracted for a large projection 
ensemble; interpolation could be used instead. However, if any sharp 
change/discontinuity is shown by a response surface, some refinement 
may be advisable to better resolve this. 

• Downscaling: Delta-change downscaling was used here (Section 2.1), 
but this method is limited in terms of variability. A possible alternative is 
applying a weather generator (Bastola et al. 2011), although ideally 
multiple runs would be required at each position of the sensitivity domain 
to reduce the noise that could be introduced by single runs; significantly 
increasing the computational burden. 

• Impact model structure and parameterisation: Hydrological modelling 
uncertainty was not considered here, but the response surfaces for a 
catchment modelled with both hydrological models are very similar (not 
shown), and other research has suggested that hydrological modelling 
uncertainty is smaller than GCM uncertainty (e.g. Kay et al. 2009b, Wilby 
and Harris 2006). However, such uncertainty could be included in 
response surfaces; e.g. Cloke et al. (2013) use 100 parameter sets with 
their hydrological model, Bastola et al. (2011) apply four hydrological 
models each with 50 parameter sets, and Fronzek et al. (2011) include 
uncertainty in their palsa mire models. 

 
However, the balance between uncertainty in the results and complexity of the 
framework has to be carefully considered. Increasing the number of dimensions 
in the sensitivity domain will not only increase the number of runs necessary, 
but also make presentation and analysis (e.g. grouping and characterisation, 
Prudhomme et al. (2013a,b)) more difficult, so will not necessarily decrease the 
overall potential for uncertainty. It is recommended that, when designing a 
framework, some initial testing is carried out to facilitate an assessment of the 
relative importance of different factors and suitability of simplifications. 
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Tables 
 
Table 1 Sensitivity domain for change in precipitation (P), temperature (T) 
and potential evaporation (PE) relative to the baseline, for construction of 
response surfaces. 
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Change 
in P 

January -40% to 
 60% 

0 to 
+120% 

All combinations by increments of 5% 
 
Total: 525 scenarios 

Change 
in T 

January 
and 
August 
 
None 

1.5°C 
2.5°C 
4.5°C 
 
0.5°C; 4.5°C 

1.2°C 
0.8°C 
1.6°C 
 
0°C 

Low-Jan and Low-Aug 
Medium-Jan and Medium-Aug 
High-Jan and High-Aug  
 
Low-/High-Non-Seasonal (NS) 
 
Total: 8 scenarios 

Change 
in PE 

One scenario corresponding to each of the T scenarios (based on the Central-
England T series and T-based PE formula of Oudin et al. 2005). Resulting 
monthly percentage changes range from less than 2% (in July under Low-Jan) 
to over 100% (in February under High-Jan) but average around 22% (see Kay 
et al. 2009a Figure 1.3). 

  Total: 8 scenarios 
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Table 2 Details of the nine example catchments modelled with PDM (one 
for each response type) and the additional four example catchments 
modelled with CLASSIC. 

Response type 
(short-hand) 

Catchment 
number 

River name@ 
Location 

Area 
(km

2
) 

SAAR61-90 

(mm) 
BFI 
(-) 

UKCP09 
river-basin 
region (see 
Section 2.3) 

PDM catchments:      
Damped-Extreme 
(DpE) 

07002 
Findhorn@ 
Forres 

781.9 1064 0.41 
North 
Highland 

Damped-High 
(DpH) 

02001 
Helmsdale@ 
Kilphedir 

551.4 1117 0.48 
North 
Highland 

Damped-Low 
(DpL) 

14001 
Eden@ 
Kemback 

307.4 799 0.62 Tay 

Neutral 
(Neu) 

47007 
Yealm@ 
Puslinch 

54.9 1410 0.56 
Southwest 
England 

Mixed 
(Mix) 

34003 
Bure@ 
Ingworth 

164.7 669 0.83 Anglian 

Enhanced-Low 
(EnL) 

54008 
Teme@ 
Tenbury 

1134.4 841 0.57 Severn 

Enhanced-Medium 
(EnM) 

21023 
Leet Water@ 
Coldstream 

113.0 671 0.35 Tweed 

Enhanced-High 
(EnH) 

43005 
Avon@ 
Amesbury 

323.7 745 0.91 
Southwest 
England 

Sensitive 
(Sen) 

38003 
Mimram@ 
Panshanger 
Park 

133.9 656 0.94 Thames 

CLASSIC catchments:      
Damped-High 
(DpH) 

27009 
Ouse@ 
Skelton 

3315 914 0.46 N/A 

Damped-Low 
(DpL) 

39001 
Thames@ 
Kingston 

9948 719 0.64 N/A 

Neutral 
(Neu) 

76007 
Eden@ 
Sheepmount 

2287 1214 0.49 N/A 

Mixed 
(Mix) 

33026 
Bedford 
Ouse@ 
Offord 

2570 609 0.47 N/A 

SAAR61-90 = Standard Average Annual Rainfall (1961-1990);  
BFI = baseflow index, a measure of the proportion of flow coming from stored sources like 
groundwater 
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Table 3 Summary of the methods applied to investigate each factor 
leading to uncertainty from use of catchment response surfaces (Section 
3), with the notation used for the results from each set of projections 
(GCM, RCM, UKCP09; Section 2.3). 

Factor Precipitation (P) 
Temperature (T) 
and Potential 
Evaporation (PE) 

Notation for sets of climate change 
projections (2080s, A1B emissions) 

16 GCMs 11 RCMs 
10,000 
UKCP09 

- Response surface P 
harmonic (multiple 
of 5% for mean and 
amplitude, January 
phase; Table 1) 

Medium-Aug T 
harmonic and 
corresponding 
monthly PE delta-
changes (Table 1) 

gcm_rs rcm_rs ukcp_rs 

1 Actual P single-
harmonic (fitted to 
median monthly P 
changes below)  

As above 
 

gcm_harm rcm_harm ukcp_harm 

1 Actual P double-
harmonic (fitted to 
median monthly P 
changes below) 

As above 
 

gcm_harm2 rcm_harm2 N/A 

2 Median monthly P 
delta-changes  
(median of range 
below) 

Corresponding 
monthly T and PE 
delta-changes 

gcm_20med rcm_20med N/A 

2 Range of monthly P 
delta-changes (20-
year sub-periods in 
baseline and future 
time-slices) 

As above 
 

gcm_20 rcm_20 N/A 

2 Alternative monthly 
P delta-changes 
(fixed 30-year 
baseline and future 
time-slices) 

As above 
 

gcm_30 rcm_30 ukcp_30 

3 P time-series (daily) T and PE 
time-series (daily) 

N/A rcm_tseries N/A 
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Table 4 The maximum difference (%) between the average impacts from 
each of the alternative methods (*_harm/harm2/20med/20/30/tseries where 
* is gcm, rcm or ukcp; Table 3) and those extracted from response 
surfaces (*_rs), for each example catchment modelled with PDM and each 
set of projections. 

PDM catchment 
(response type) 

Projection set 
Mean Maximum 

GCM RCM UKCP09 

07002 (Damped-Extreme) 7 11 9 9 11 
02001 (Damped-High) 3 14 8 8 14 
14001 (Damped-Low) 5 6 5 5 6 
47007 (Neutral) 3 1 6 3 6 
34003 (Mixed) 11 10 6 9 11 
54008 (Enhanced-Low) 5 0 -1 1 5 
21023 (Enhanced-Medium) 4 13 7 8 13 
43005 (Enhanced-High) 8 1 0 3 8 
38003 (Sensitive) 16 20 11 16 20 
Mean 7 8 6 7 10 
Mean over four types 
(Damped-High to Mixed) 5 8 6 6 9 

 
 
Table 5 The difference (%) between the mean impact from use of RCM 
time-series (rcm_tseries) and that extracted from response surfaces 
(rcm_rs), for each example catchment modelled with CLASSIC. 

CLASSIC catchment 
(response type) 

RCM 
projections 

27009 (Damped-High) 18 
39001 (Damped-Low) 12 
76007 (Neutral) 7 
33026 (Mixed) 20 

Mean 14 
 



 22

 

Figures 
 
(a)

0 20 40 60 80 100 120

−
40

−
20

0
20

40
60

Precipitation harmonic amplitude (%)

P
re

ci
pi

ta
tio

n 
ha

rm
on

ic
 m

ea
n 

(%
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

(b)
07002 02001 14001 47007 34003 54008 21023 43005 38003
DpE DpH DpL Neu Mix EnL EnM EnH Sen

 
Figure 1 Response surfaces for changes in 20-year return period flood 
peaks under the Medium-Aug T/PE scenario (Table 1): (a) catchment 
47007 with axis labels and colour key, (b) the nine example catchments 
modelled with PDM (Table 2). Overlaid on the response surface in (a) are 
three sets of climate change projections, from GCMs (16 circles), RCMs 
(11 crosses) and UKCP09 (contours delineating densities of 10, 100 and 
300 projections per 5%x5% sensitivity domain square) (see Section 2.3). 
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Figure 2 Boundaries and outlet locations of the nine example catchments 
modelled with PDM (left) and the four example catchments modelled with 
CLASSIC (right). 
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Figure 3 Example of how alternative sets of monthly P changes (Table 3) 
compare, for one GCM projection and one grid box (over catchment 
02001): (a) response surface harmonic (gcm_rs, solid line; Xmean=10%, 
A=5%, �=January); (b) actual single-harmonic (gcm_harm, solid line; 
Xmean=11.4%, A=7%, �=November), actual double-harmonic (gcm_harm2, 
dashed line), and the median monthly P changes to which the harmonics 
are fitted (gcm_20med, crosses; medians from c); (c) range of monthly P 
changes derived from 20-year sub-periods within baseline and future 
time-slices (gcm_20, crosses/dotted lines, with medians as darker 
crosses/lines); (d) alternative monthly P changes derived directly from 
fixed 30-year time-slices (gcm_30, crosses). The zero line is also shown 
on each plot (to highlight any decreases in P), with additional horizontal 
dotted lines in (a) and (b) showing Xmean. 
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Figure 4 Modelled changes in 20-year return period flood peaks for the 
nine example catchments modelled with PDM, using GCM (blue), RCM 
(red) and UKCP09 (green) projections. Impacts are shown for each 
application method of Table 3 (labelled along top). Boxes-and-whiskers 
are used for large sets (gcm_20, rcm_20, ukcp_rs, ukcp_30, ukcp_harm): 
boxes show the 25th-50th-75th percentile range, whiskers the 10th-90th 
percentile range, additional markers the minima and maxima (if in the 
plotted range -70%-+85%). Smaller sets are plotted as separate points (16 
for GCMs, 11 for RCMs), using plus signs if from response surfaces 
(gcm_rs and rcm_rs) and crosses otherwise, with means shown by 
horizontal bars (black). 
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Figure 5 Modelled response surfaces for each of the nine example 
catchments modelled with PDM, showing the percentage change in 20-
year return period flood peaks under the Medium-Aug T/PE scenario 
(Table 1) but with the harmonic phase (month of peak P change) occurring 
in each alternative month of the year (top to bottom). See Figure 1a for 
axis information and colour key. 
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Figure 6 Histograms of P harmonic phase (month of peak P change in the 
fitted single-harmonic) for each of the nine example catchments modelled 
with PDM, for GCM (blue dotted), RCM (red dashed) and UKCP09 (green 
solid) projections. 
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