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Abstract2

This paper presents a quality measure to plan geostatistical soil surveys when measures3

based on the kriging variance are not applicable. The criterion is the consistency of4

estimates made from two non-coincident instantiations of a proposed sample design. We5

consider square sample grids, one instantiation is offset from the second by half the grid6

spacing along the rows and along the columns. If a sample grid is coarse relative to the7

important scales of variation in the target property then the consistency of predictions8

from two instantiations is expected to be small, and can be increased by reducing the9

grid spacing. The measure of consistency is the correlation between estimates from the10

two instantiations of the sample grid, averaged over a grid cell. We call this the offset11

correlation, it can be calculated from the variogram. This quality measure is illustrated for12

some hypothetical examples, considering both ordinary kriging and factorial kriging of the13

variable of interest. The factorial kriging case is considered since, when planning a small-14

scale synoptic geochemical survey we may wish only to map components of the variation15

of the target variable at certain spatial scales. The quality measure is then computed for16

ordinary and factorial kriging with variograms estimated from data on nickel, chromium17

and cobalt content of soil in the north-east of England. Our results show how the offset18

correlation responds to sample density and the form of the variogram, and how larger19

correlations can be achieved for factorial kriging than ordinary kriging at a given density.20

The results for data on soil metals showed that an offset correlation of 0.8 could not be21

achieved (ordinary kriging) by sampling at 5-km intervals, the density at which all of22

England and Wales is sampled. However, if the objective were to map by factorial kriging23

the coarser-scale components of variation, driven primarily by parent material, then for24

two of the metals (Co and Cr) the 5-km grid was adequate, and the sample effort of the25

survey from which the data were taken (0.44 samples km2) was excessive.26
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1. Introduction28

Geochemical survey of the soil entails the collection of soil samples for analysis,29

typically on a more-or-less uniform grid, and subsequent interpolation of the observed30

values to produce local predictions of the variables which are presented as a map. Since31

the seminal work of Burgess and Webster (1980) it is common to interpolate by kriging32

(e.g. Tao, 1995). Kriging is based on a linear model of the regionalization of the variable of33

interest (Goovaerts, 1997), of which a key component is the variogram model. The kriging34

prediction of a variable at an unsampled site is a linear combination of available data.35

The combination is found that minimizes the expected squared error of the prediction36

(the kriging variance), conditional on a variogram model of the variable (Webster and37

Oliver, 2007).38

When a geochemical survey is planned it is necessary to make decisions about the39

sampling design. In particular it is necessary to select a sample density (e.g. Reimann,40

2005). The total cost of processing and analysing the sampled material from a specified41

area depends on the sample density, as does the total cost of field work. Sample density42

also determines the quality of the resulting predictions. To make a rational choice of43

sample density we therefore require two things. First, we must know how some appropriate44

measure of quality of the final map improves with increased density. Second, we must be45

able to specify a value of that quality measure which represents an acceptable quality46

standard for the end user of the data.47

In the case of geostatistical survey it is possible to compute a priori a relationship48

between map quality and sample density. If the variogram is known, perhaps from a49

reconnaissance survey or a previous study of a cognate landscape, the kriging variance at50

some unsampled site depends only on the spatial distribution of sample points around that51

site. One may therefore produce a graph of the kriging variance as a function of sample52

density. This approach to survey planning was proposed by McBratney et al. (1981) and53
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has been used subsequently (e.g. Di et al., 1989; Ruffo et al., 2005). The methodology54

has been extended to cover prediction by cokriging (McBratney and Webster, 1983), cases55

where the mean is not assumed to be stationary (Brus and Heuvelink, 2007) and where56

the variable is log-normal (Lark and Lapworth, 2012) and to account for uncertainty in57

the variogram model (Marchant and Lark, 2006, 2007; Zhu and Stein, 2006).58

A graph of kriging variance against sample density is necessary but not sufficient59

for survey planning by this approach. It is also necessary to know what kriging variance60

is deemed acceptable by the end user of the data. Kerry et al. (2010) and Ruffo et61

al. (2005) provide examples from agriculture in which maximum acceptable standard62

errors for predictions of nutrient concentrations were specified then used to determine the63

maximum spacing of a sample grid which was consistent with this requirement. Black et64

al. (2008) describe a study in which a consortium of policy makers and regulators agreed65

what were acceptable standard errors for predictions of key soil quality indicators, and66

sample requirements were computed from a geostatistical model of available data. This is67

the general approach for sample design advocated by de Gruijter et al (2006) in which the68

data user identifies critical values of some quality measure for estimates from the sample,69

and the statistician identifies the sampling requirements to achieve this.70

However, it is not always possible to express the quality requirements for a geo-71

chemical survey in terms of kriging variances or standard errors. This is for two general72

reasons. First, a geochemical survey is not, in general, undertaken for the benefit of a single73

end-user with clearly defined requirements in terms of information quality. Geochemical74

surveys, particularly at small scale, are typically undertaken to provide data which will75

serve a variety of purposes, not all forseen at the time of sampling. For example, the76

Geochemical Baseline Survey of the Environment (G-BASE), undertaken by the British77

Geological Survey in Great Britain, was initially planned to support geological mapping78

and mineral exploration (Johnson et al., 2005), but has subsequently proved invaluable79

for studies and applications on, inter alia, soil pollution (Breward, 2003), the nutritional80
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quality of crops grown on soil (Johnson et al., 2009) and forensic soil science (Rawlins and81

Cave, 2004). When the continuation of this survey was planned this was no longer done82

with a single end user or type of end user, in mind but with the awareness that the data83

set will constitute a general national capabability to tackle a variety of problems. It is84

unlikely that the diverse requirements of all end users, even if they could all be forseen at85

the time of survey planning, could be summarized in terms of a requisite kriging variance86

for the final kriged geochemical map.87

Second, a geochemical survey may be planned to provide a synoptic overview of the88

geochemistry of a region, on the understanding that more intensive local surveys would89

be required for further specific applications such as the local evaluation of a resource or90

assessment of a local environmental risk. For example Reimann et al. (2007) reported91

a geochemical survey of the C-horizon of podzols in a 188 000-km2 part of the Barents92

region (Russia and Finland). This area was sampled at a low density (1 sample per 30093

km2) to provide an overview of the variation of gold and palladium concentrations. The94

objective was to identify areas where more detailed investigation of these elements would95

be justified. In this context, as Reimann et al. (2007) state, the purpose of the survey96

was not to provide precise local estimates but rather to provide a map which represents97

geochemical patterns across a region at spatial scales of interest as a basis for planning98

further resource investigation in more intensive local surveys. It is not apparent that the99

quality requirement for the initial extensive survey could be stated in terms of a prediction100

error variance. Nonetheless, the utility of the resulting map will depend on sample density,101

and an appropriate quality measure is necessary to allow the selection of an operational102

sample density on rational grounds.103

Smith and Reimann (2008) discussed the quality of geochemical surveys and pro-104

posed that the user is concerned with what they call the ‘robustness’ of the survey proce-105

dure. A procedure, a sampling design at some particular density, is robust if two surveys,106

conducted by the same procedure but at non-coincident sample locations, would pro-107
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duce maps which exhibit the same general pattern of geochemical variation. Smith and108

Reimann (2008) illustrate this idea by visual interpretation of geochemical maps produced109

at different densities. This concept has intuitive appeal. The scientist or other data user110

is aware that geochemical properties are spatially variable. His or her concern is to resolve111

an underlying pattern of variation, but one consequence of representing the geochemistry112

of a region with a finite sample is that some features of the variation are represented and113

others are missed. A useful measure of the quality of a sampling strategy is therefore the114

degree of consistency that could be expected between repeated surveys of the same region.115

This consistency will be small if the spacing between sample points is large relative to116

the scales at which the target property shows substantial variation, and can be improved117

by increasing the sample density. What is needed is a quality measure which reflects this118

idea of consistency, and which can be calculated as a function of sample density, given119

statistical information on the spatial variability of the variable of interest.120

In this paper we propose such a statistical quality measure based on this concept of121

consistency. This measure is based on the idea of Smith and Reimann (2008) but is ob-122

tained from a variogram model of the target variable and refers to the consistency of maps123

produced by kriging. We suggest that this is a useful quality measure for circumstances, as124

described above, where it is not possible to express the data user’s requirements in terms125

of a kriging variance. In particular it is an intuitively appealing measure of the quality of126

a survey procedure which may be communicated to data users who may have no experi-127

ence of stating their requirements for the quality of estimates in terms of variances. The128

quality measure can be computed from reconnaissance data, or other information which129

allows a variogram of the target variable to be estimated or approximated. Where the130

variogram shows nested spatial structures the quality measure can be computed for maps131

of the longer-range structures, estimated from the data by factorial kriging (Goovaerts132

and Webster, 1994).133

In the next section of this paper we develop the proposed quality measure and134
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examine its properties. We then illustrate it using geochemical data on the soil from the135

G-BASE survey of a part of eastern England.136

2. Theory137

2.1. The proposed quality measure138

Consider a survey of a variable conducted on a square grid, Grid 1, of interval ξ. The139

kth node of grid 1 has coordinates xk,1 . We propose that a measure of the consistency of140

this sampling design is the correlation that is expected between kriging predictions made141

from Grid 1, and predictions made from a second grid, Grid 2, which is a translation of142

Grid 1 by ξ/2 along the rows and the same distance along the columns so that its kth143

node has coordinates xk,2 = xk,1 + {ξ/2, ξ/2}.144

Let x0 be a target location at which two kriged predictions of a variable are ob-145

tained. The first prediction, Z̃1(x0), is obtained by ordinary kriging from the n1 nearest146

neighbouring observations on Grid 1, we denote this prediction subset of nodes of Grid147

1 by the ordered set X1,x0 . We denote the n1 × 1 vector of ordinary kriging weights by148

λ1,x0 . The lth element of λ1,x0 is the kriging weight applied to the observed value at the149

lth node in X1,x0 . The second prediction, Z̃2,n2(x0), is obtained by ordinary kriging from150

the n2 nearest neighbouring observations on Grid 2 with kriging weights in λ2,x0 which is151

n2 × 1. As for Grid 1, the prediction subset of nodes from Grid 2 is denoted X2,x0 .152

Let C2,1,x0 denote a n2 × n1 matrix of covariances such that C2,1,x0{i, j} is the153

covariance between the observation at the ith node in X2,x0 . and the jth node in X1,x0 .154

Similarly let C1,x0 and C2,x0 denote the variance-covariance matrices of the observations155

in X1,x0 . and X2,x0 respectively. These matrices can be populated directly given the156

coordinates of the grid points and a (second-order stationary) variogram function for the157

variable of interest.158

Given the notation above, the variances of Z̃1(x0) and Z̃2(x0) can be computed as159

σ2
Z̃1

(x0) = λT
1,x0

C1,x0λ1,x0 , and
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σ2
Z̃2

(x0) = λT
2,x0

C2,x0λ2,x0 , (1)

and the covariance of Z̃1(x0) and Z̃2(x0) is160

CZ̃1,Z̃2
(x0) = λT

2,x0
C2,1,x0λ1,x0 . (2)

The correlation of the two kriging predictions may then be obtained as161

ρZ̃1,Z̃2
(x0) =

CZ̃1,Z̃2
(x0)

√
σZ̃1

σZ̃2

. (3)

In Figure 1 we show a map of the correlation of kriged estimates from two grids, each162

of interval 50 units, one grid translated from the other by 25 units along the rows and the163

same distance along the columns. The correlations are mapped at locations in a cell of one164

of those grids, with one node of the second grid at the centre. At all locations in the figure165

the mapped correlation is between the prediction by ordinary kriging from the nearest 16166

nodes in the first grid and the nearest 16 nodes in the second grid, each set of 16 nodes167

being a regular 4 × 4 array. This is for a hypothetical example in which the variogram168

of the variable is an isotropic spherical function. The linear model of regionalization for169

such variables comprises two independent additive components. The first, the nugget170

component with variance c0 is spatially uncorrelated over the shortest distances between171

observations. The second spatially correlated component, with variance c1 shows spatial172

dependence over distances up to the range, a. The overall variance of the variable (the a173

priori variance) is c0 + c1. At longer distances than the range observations of the variable174

are not spatially dependent. The variogram function is175

γ(h) = c0 + c1Sph (h|a) , (4)

where176

Sph(h|a) =

{
3h

2a
− 1

2

(
h

a

)3
}
, h ≤ a,

= 1, h > a. (5)

In the example here a = 150 units, c0 = 0.2 and c1 = 0.8. Figure 1 shows the variation177

of ρZ̃1,Z̃2
(x0) across the grid cell. Note that the correlation decreases as one approaches178
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a node of either prediction grid, and is largest between the nodes, where the influence of179

the two grids is most similar.180

In this paper our proposed quality measure for a survey on a regular grid of interval181

ξ is the average value of the correlation ρZ̃1,Z̃2
(x0) across a cell of one grid, where the two182

grids are of interval ξ and one is a translation of the other by ξ/2, as described above. In183

this paper we compute the correlation for kriging predictions from the nearest 4×4 subset184

of nodes in each array. We call this measure the offset correlation.185

2.2. Hypothetical examples186

In Figure 2a offset correlations are plotted for grids of different spacing for kriging187

predictions of a regionalized variable with a spherical variogram, as defined in Equation (4).188

The variogram parameters are a = 100 units, and c1 varies from 1.0 to 0.1, with c0 =189

1.0 − c1. As expected the offset correlation declines with increasing grid spacing, for190

a given variogram, and also declines as the nugget variance c0 increases relative to the191

correlated variance c1. Note that the offset correlation goes to zero when ξ = a
√

2. Some192

elementary geometry shows that for this grid the distance between any node in subset193

X1,x0 and the nearest node in subset X2,x0 is a, and so, for this or any coarser grid, the194

covariance between any two observations on Grid 1 and Grid 2 is zero. When the nugget195

variance is zero then an offset correlation of 0.8 can be achieved with a 50-unit square196

grid. However, when the nugget variance is half of the a priori variance the grid interval197

must be about 22 units to achieve the same offset correlation.198

Figure 2b shows comparable plots for predictions of a variable with an exponential199

variogram200

γ(h) = c0 + c1 (1− exp {−h/r}) , (6)

with r=30 units and the same range of values for c0 and c1 as for the examples with a201

spherical variogram. The effective range of this variogram (at which γ(h) ≈ 0.95(c0 + c1))202

is 90 m. The behaviour of the offset correlation is similar to Figure 2b. The main difference203
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is that, since the covariance of a process with an exponential variogram declines to zero204

asymptotically, the offset correlation does not go exactly to zero above some grid spacing.205

Figure 2c shows plots of the offset correlation for random variables with a double-206

spherical variogram. The double-spherical variogram describes a linear model of regional-207

ization which comprises three mutually independent additive components, a nugget com-208

ponent and two components, with variance c1 and c2, which are spatially correlated at209

different scales with range parameters a1 and a2 respectively. The double spherical vari-210

ogram model is211

γ(h) = c0 + c1Sph (h|a1) + c2Sph (h|a2) (7)

In this example we considered variables with a1=50 units, a2=125 units, c0 =0.1 units,212

and various values of c1 and c2 such that the a priori variance is 1.0 in all cases.213

Consider a situation in which the longer-range component of a variable with a214

double-spherical variogram represents the source of variation of primary interest. For215

example, it might represent variation due to geochemical differences between types of par-216

ent material, whereas the shorter-range component represents effects of diffuse pollution.217

If our primary concern is to map the coarser-scale pattern, then this can be done by krig-218

ing analysis, or factorial kriging (e.g. Goovaerts, 1997). Goovaerts and Webster (1994)219

used factorial kriging to estimate separate components of geochemical variation in the220

soil of south-east Scotland. The component of the linear model with a shorter range was221

interpreted as a land-management effect, and the longer-range component as a geological222

effect. In some contexts we are interested in the former, but not the latter, such as when223

soil geochemistry is mapped as a surrogate for investigation of the geochemical variation224

between parent materials. In such circumstances the quality measure of interest for the225

geochemical survey is the offset correlation between the factorial kriging estimates of the226

component of interest. This can be calculated by substituting the vectors of factorial krig-227

ing weights λ2
1,x0

and λ2
2,x0

into Equations (1) and (2), where the superscript is an index228

not a power, and λg
1,x0

is the factorial kriging weight to estimate the gth component of a229
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nested random variable at x0 from observations on Grid 1. The factorial kriging weights230

are obtained by solving the factorial kriging equations, as described by Goovaerts (1997)231

and Webster and Oliver (2007).232

Figure 2d shows the offset correlations for factorial kriging predictions corresponding233

to the ordinary kriging predictions in Figure 2c. In all cases the factorial kriging prediction234

is for the coarsest-scale component, with a range of 125 units.235

To achieve an offset correlation of 0.8 for ordinary kriging predictions of the double236

spherical random variable, with c2=0.7, requires a grid of interval 40 units. To achieve the237

same standard for factorial kriging predictions of the coarsest scale component requires238

a grid interval of just under 50 units. Figures 2c and 2d show that the offset correlation239

decays less rapidly with grid interval for the factorial kriging case, other factors being240

equal. Note, however, that the offset correlation at the finest grid spacing is more sensitive241

to the relative values of c2 and c1 than is the offset correlation for the ordinary kriging242

predictions.243

This section has introduced the offset correlation, and examined its behaviour for244

some hypothetical examples, considering both ordinary kriging and factorial kriging anal-245

ysis to estimate scale-specific components of a variable. In the next section we examine a246

case study with data from a geochemical survey of the soil, and use validated variograms of247

soil properties to examine the offset correlations for predictions by ordinary and factorial248

kriging.249

3. A case study with soil data250

3.1. The soil data251

We used soil data from the British Geological Survey’s G-BASE survey of the252

Humber-Trent region, approximately 15 800 km2 (North East England). A more detailed253

account of this G-BASE survey is given by Rawlins et al (2003) and the G-BASE proce-254

dures are described by Johnson et al. (2005). Alternate 2-km squares of the UK Ordnance255
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Survey grid were sampled at a single site within the square. At each sample site five soil256

cores were collected from the centre and corners of a 20-m square. Each core was 15-cm257

long, excluding surface litter. The five cores at each site were bulked, and this material258

was subsequently air-dried, disaggregated and sieved to pass 2 mm. and sub-sampled by259

coning and quartering. A 50-g sub-sample was ground in an agate planetary ball mill until260

95% of the material was finer than 53 µm. Concentrations (totals) of 26 major and trace261

elements were determined for each sample by wavelength dispersive X-Ray Fluorescence262

Spectrometry. We used data from 5892 sites.263

3.2. Statistical analysis264

3.2.1. Exploratory analysis and variogram estimation, modelling and validation. For pur-265

poses of this paper we present analyses of data on the concentrations of chromium, cobalt266

and nickel. Summary statistics for these data are presented in Table 1. The summary267

statistics include the octile skew (Brys et al., 2003) which is a measure of the symmetry of268

the 1st and 7th octiles of the data about the median. The octile skew is a robust measure-269

ments of skewness, which is insensitive to outlying observations but measures rather the270

degree of asymetry of the underlying distribution. Data are considered for transformation271

if the conventional coefficient of skewness lies outside the interval [−1,1], (Webster and272

Oliver, 2007). Lark et al (2006) found that a corresponding interval for the octile skew273

is [−0.2,0.2]. If the coefficient of skewness for a variable is outside the interval [−1,1] but274

the octile skew is small then this suggests that the data have an underlying distribution275

that is more-or-less symmetrical but that there are outliers present. The three variables276

considered here all have small octile skew, with absolute values less than 0.1, which sug-277

gests that a transformation is not appropriate for the data. However, the conventional278

coefficients of skewness are large for nickel and, particularly, for chromium, which suggests279

that these observations may include outlying values, perhaps from point pollution.280

Exploratory geostatistical analysis suggested that these data do not show pro-281

nounced anisotropy, and so we estimated isotropic variograms using the conventional282
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method of moments estimator due to Matheron (1962) as well as three robust estima-283

tors, proposed by Cressie and Hawkins (1980), Dowd (1984) and Genton (1998). Robust284

estimators were considered because of the suggestion from the exploratory analysis that285

the data may contain outliers.286

Variogram models for each experimental variogram were selected on the basis of287

the Akaike Information Criterion (Webster and Oliver, 2007). Double spherical variogram288

models were selected in all cases, and fitted to the estimated variograms by weighted289

least squares with the fvariogram procedure in GenStat (Payne, 2010). The variogram290

models were then cross-validated. The xvok2d program in the GSLIB library (Deutsch291

and Journel, 1992) was used for this purpose. The standardized square cross validation292

prediction error, θ(x) was computed from the cross-validation prediction , Ỹ (x), of each293

observation in the data set, Y (x), and the corresponding kriging variance σ2K(x).294

θ(x) =

(
Ỹ (x)− Y (x)

)2
σ2K(x)

, (8)

We computed normal Q-Q plots of the cross-validation errors (Figure 3). These indicated295

that the prediction errors appeared to be normally distributed, although with some ef-296

fects of outliers. Lark (2000a) showed that the median value of the standardized squared297

prediction error is the most appropriate diagnostic to evaluate a variogram from cross-298

validation output, and when the prediction error are predominantly normal the expected299

value of this statistic is 0.455. The cross-validation results were used to select a variogram300

model from among the set of those fitted to the experimental variograms obtained by the301

different estimators. The variogram model thus selected was then used to compute the302

offset correlations for each variable, as described below.303

3.2.2. Offset correlations. Offset correlations were computed for square grids with intervals304

from 500 m to 30 km. The average offset correlation was computed across a cell of one of305

the grids, as described in section 2.1. Offset correlations were computed both for ordinary306

kriging predictions, and for factorial kriging predictions of the component of the linear307

model of regionalization with the longest range.308
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3.3. Results309

Table 2 shows the cross-validation results for all three variables. In all cases the310

variogram model based on the estimator of Cressie and Hawkins (1980) was selected be-311

cause the median standardized squared prediction error was closest to 0.455. The selected312

model and the associated point estimates, as well as the estimates by Matheron’s esti-313

mator, are shown in Figure 4, and the model parameters are presented in Table 3. The314

difference between the models can be attributed to outlying data which have a larger315

effect on Matheron’s estimator than on the robust estimator. The value of the median316

standardized squared prediction error for kriging with the selected variogram model based317

on a robust estimator suggests that this gives a reliable account of the uncertainty of the318

kriging predictions.319

The offset correlations are plotted against sample density in Figure 5. Figure 5a320

shows the offset correlations for ordinary kriging, and Figure 5b shows the offset corre-321

lations for factorial kriging of the longest-range component. Two sample densities are322

indicated on these graphs. One is 0.04 samples km−2, the sample density of the National323

Soil Inventory in England and Wales (McGrath and Loveland, 1992). The second is 0.44̇324

samples km−2, the sample density for soils in the G-BASE survey (Johnson et al., 2005).325

If we regard an offset correlation of 0.8 as a standard for selecting a sample density326

for ordinary kriging then it is clear from Figure 5a that the sample density of the NSI327

is not adequate to meet this standard for all three elements. The offset correlations are328

0.74 for chromium and nickel and 0.79 for cobalt. However, the standard is easily met329

with the G-BASE sample density, the offset correlations are 0.89, 0.91 and 0.93 for nickel,330

chromium and cobalt respectively.331

The graph in Figure 5a shows that nickel is the most challenging of these three ele-332

ments, in that it has the smallest offset correlation at any given sample density. However,333

if the sample density were reduced to 0.12 samples km−2, a reduction of sample effort by334

a factor of nearly 4 relative to the G-BASE survey, then the offset correlation standard of335
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0.8 would be achieved for nickel. This could be useful information when planning a survey336

on a neighbouring region, or over similar parent materials.337

If we are concerned only to predict and map, by factorial kriging, the broader-scale338

variations of the elements, represented by the longer-range component in the linear model339

of regionalization (a range of 18–20 km) then the offset correlations of interest are those340

in Figure 5b. This shows that the NSI sample density is adequate to meet the 0.8 offset341

correlation standard for cobalt and chromium, but not for nickel. The offset correlations342

at G-BASE sample density are large (0.95–0.97), and an offset correlation of 0.8 could be343

achieved for all three elements by sampling at 0.049 samples km−2 , a nine-fold reduction344

in sample effort relative to G-BASE. Note that there is very little increase in the offset345

correlation for the factorial kriging estimates when the sample density is larger than the346

G-BASE density.347

4. Discussion348

The offset correlation is a proposed measure for the quality of a geostatistical survey.349

It can be computed for a proposed sample scheme given only the variogram of the variable350

of interest. It is an intuitively appealing measure of the extent to which a survey can351

be expected to provide a map of spatial variation that is robust to arbitrary differences352

between realizations of a particular sample design. Users of data are familiar with the353

concept of correlation, and its measurement on an interval [0,1], and so it is proposed354

that this measure could be useful for discussing the sampling requirements for a survey355

with scientists or other data users with little or no statistical background. In particular356

it could be useful in circumstances where it is difficult for the data user to express their357

requirements for information quality in terms of standard errors of predictions.358

In this paper we considered simple grid surveys, but the same approach could be used359

to evaluate alternative sample designs such as unaligned sampling in which the good spatial360

coverage required for local prediction is combined with an element of randomization. Offset361

correlations could be computed between pairs of realizations of this sample design.362
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In this paper we have considered the variogram parameters as fixed but unknown363

quantities to be estimated, and we have taken no account of parameter uncertainty. Given364

the large sample available this was not unreasonable. In circumstances where the vari-365

ogram has been estimated from a smaller reconnaissance sample we should try to account366

for parameter uncertainty. This may be done most conveniently in a Bayesian framework367

in which the variogram parameters are treated as random variables. Bayesian estimation368

allows us to obtain a posterior distribution of the variogram parameters (e.g. Orton et369

al, 2007; Minasny et al., 2011), and a corresponding distribution of the offset correlation370

could be computed by sampling this distribution. It would also be possible to make gen-371

eral recommendations about the sampling effort required to achieve a particular offset372

correlation on the basis of average variograms culled from the literature (McBratney and373

Pringle, 1999), fuzzifications of the variogram (Lark, 2000b) or from variograms of ancil-374

lary variables such as airborne gamma radiometry which we might reasonably treat as a375

proxy for the spatial variation of soil geochemistry (Rawlins et al, 2007).376

5. Conclusions377

We have derived the offset correlation, a statistical measure of the robustness of378

geostatistical prediction to arbitrary variations between realizations of a sample design379

(here a regular grid). We have illustrated how this measure behaves from hypothetical ex-380

amples and a real case study on soil geochemistry. The offset correlation can be computed381

from the variogram for the target variable for either ordinary kriging or for prediction382

by factorial kriging of a specific component of the linear model of regionalization that is383

of interest. As expected, a comparison between the offset correlations for factorial and384

ordinary kriging shows that a coarser sample grid can be used to map the broad-scale385

components of a variable than is needed to achieve the same offset correlation for all com-386

ponents. It is proposed that this could be a useful quality measure on which to base the387

planning of a geostatistical survey in cases where it is difficult or impossible for the end388

user of the information to frame their quality requirements in terms of standard errors or389
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variograms of the prediction error.390
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de Recherches Géologiques et Minières, Paris.

18



McBratney, A. B., Pringle, M. J. 1999. Estimating average and proportional variograms

of soil properties and their potential use in precision agriculture. Precision Agricul-

ture 1, 125-152.

McBratney, A.B., Webster, R. 1983. Optimal interpolation and isarithmic mapping of

soil properties V. Co-regionalization and multiple sampling strategy. Journal of Soil

Science 34, 137–162.

McBratney, A.B., Webster, R., Burgess, T.M. 1981. The design of optimal sampling

schemes for local estimation and mapping of regionalised variables. I. Theory and

Method. Computers and Geosciences 7, 331–334.

McGrath, S.P., Loveland, P.J. 1992. The Soil Geochemical Atlas of England and Wales.

Blackie, London.

Minasny, B., Vrugt, J.A., McBratney, A.B., 2011. Confronting uncertainty in model-

based geostatistics using Markov Chain Monte Carlo simulation. Geoderma 163,

150–162.

Orton, T.G., Rawlins, B.G., Lark, R.M. 2009. Using measurements close to a detec-

tion limit in a geostatistical case study to predict selenium concentration in topsoil.

Geoderma 152, 269–282

Payne, R.W. (editor). GenStat Release 13 Reference Manual Part 3: Procedure Library

PL21. VSN International, Hemel Hempstead, Hertfordshire.

Rawlins, B.G., Cave, M. 2004. Investigating multi-element soil geochemical signatures

and their potential for use in forensic studies. In: (eds) Pye, K., Croft, D. Forensic

Geoscience Principles, Techniques and Applications. Geological Society, London.

Special Publications, 232, 197–206.

Rawlins, B.G., Webster, R., Lister, T.R. 2003. The influence of parent material on

topsoil geochemistry in Eastern England. Earth Surface Processes and Landforms

28, 1389–1409.

Rawlins, B.G., Lark, R.M., Webster, R. 2007. Understanding airborne radiometric survey

signals across part of eastern England. Earth Surface Processes and Landforms 32,

1503–1515.

19



Reimann, C. 2005. Sub-continental scale geochemical mapping: sampling, quality control

and data analysis issues. Geochemistry: Exploration, Environment, Analysis 5, 311–

323.

Reimann, C., Melezhik, V., Niskavaara, H. 2007. Low-density regional geochemical map-

ping of gold and palladium highlighting the exploration potential of northernmost

Europe. Economic Geology 102, 327–334.

Ruffo, M.L., Bollero, G.A., Hoeft, R.G., Bullock, D.G. 2005. Spatial variability of the

Illinois soil nitrogen test: implications for soil sampling. Agronomy Journal 97,

1485–1492.

Smith, D.B., Reimann, C. 2008. Low-density geochemical mapping and the robustness of

geochemical patterns. Geochemistry: Exploration, Environment, Analysis 8, 219–

227.

Tao, S. 1995. Kriging and mapping of copper, lead and mercury contents in surface soil

in Shenzhen area. Water, Air and Soil Pollution 83, 161–172.

Webster, R., Oliver, M.A. 2007. Geostatistics for Environmental Scientists. 2nd Edition

John Wiley & Sons, Chichester.

Zhu, Z., Stein, M. 2006. Spatial sampling design for prediction with estimated parame-

ters. Journal of Agricultural, Biological and Environmental Statistics 11, 24–44.

20



Table 1. Summary statistics on soil data.

Cr Co Ni

mg kg−1

Mean 75.03 19.52 23.72
Median 72.00 19.12 22.00
SD 54.06 8.26 14.17
Skewness 28.23 0.91 3.01
Octile skew 0.02 0.00 0.07
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Table 3. Parameters of the selected variogram model for each element.

Cr Co Ni

Estimator Cressie-Hawkins

Model type Double spherical

c0 199.5 12.9 11.6
c1 176.9 12.3 42.5
c2 378.3 35.4 82.7
a1 1 813 4 332 2 535
a2 21 409 21 228 16 115
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Figure captions

1. Correlations across four unit cells of a square grid of length 50 units (grid nodes

indicated by a ×) between ordinary kriging estimates of a variable obtained from

the nearest 16 nodes of the grid, and estimates derived from the nearest 16 nodes

of a second grid with the same interval but translated along the rows and columns

by 25 units (grid nodes indicated by a +). The variable has a spherical variogram

γ(h) = 0.2 + 0.8 Sph(h|125) where Sph(·|·) is defined in Equation (5).

2a. Average correlation across a unit cell of a grid between ordinary kriging predictions

of a variable from the grid and those from a grid translated by half the grid interval

along the rows and the same distance along the columns (offset correlations). The

average correlation is plotted as a function of grid interval. Example for a variable

with a spherical variogram with a range parameter of 100 units. Results are given

for variograms with different values of the correlated variance, c1 shown by different

symbols. In all cases the a priori variance of c0 + c1 = 1.

2b. Offset correlations as in Figure 2a, but for a variable with an exponential variogram

with a distance parameter of 30 units. Results are given for variograms with different

values of the correlated variance, c1 shown by different symbols. In all cases the a

priori variance of c0 + c1 = 1.

2c. Offset correlations as in Figure 2a, but for a variable with a double spherical variogram

with ranges 50 and 125 units and nugget variance c0 = 0.1. In all cases c1 + c2 = 0.9

so the a priori variance is 1. Different values of c2 are indicated by symbols in the

plot.

2d. Offset correlations for a variable with a double spherical variogram, as in Figure 2c,

but these are correlations for the factorial kriging predictions of the component with

a range 125 units.

3. Empirical normal QQ plots for cross-validation errors of chromium, cobalt and nickel.

In each case the empirical quantile of a datum is plotted against the corresponding

normal quantile of a random variable with mean and standard deviation equal to

robust estimates of these parameters from the data.

4. Variogram estimates for chromium, cobalt and nickel. The solid discs show estimates

by Matheron’s estimator. The open circles are estimates obtained by the robust
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estimator selected from the cross-validation statistics (Cressie and Hawkins, 1980;

in all cases). The model fitted to the robust estimates is also shown.

5a. Offset correlations for ordinary kriging estimates of chromium, cobalt and nickel

in the soils of the Humber-Trent region plotted against the sampling density of a

square grid. The densities of the G-BASE survey and the National Soil Inventory of

England and Wales are indicated by vertical lines.

5b. Offset correlations for factorial kriging estimates of the long-range (18–20 km) com-

ponent of the linear models of regionalization for chromium, cobalt and nickel plotted

against the sampling density of a square grid.
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Figure 2b 
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Figure 2c 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

O
ffs

et
 c

or
re

la
tio

n

Grid spacing /units

0.7

0.6

0.45

0.3

0.2



Figure 2d 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

O
ffs

et
 c

or
re

la
tio

n

Grid spacing /units

0.7

0.6

0.45

0.3

0.2



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

 q
ua

nt
ile

Empirical quantile

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

 q
ua

nt
ile

Empirical quantile

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

 q
ua

nt
ile

Empirical quantile

Figure 3 Cr 

Co 

Ni 



0

200

400

600

800

1000

1200

1400

0 5000 10000 15000 20000 25000 30000

Va
ria

nc
e

Distance /m

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000 30000

Va
ria

nc
e

Distance /m

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000

Va
ria

nc
e

Distance /m

Figure 4 Cr 

Co 

Ni 



Figure 5a 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.004 0.016 0.063 0.250 1.000 4.000

O
ffs

et
 c

or
re

la
tio

n

Sample density /km–2

Co

Cr

Ni

NSI G-BASE



Figure 5b 
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