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[1] I review the hierarchy of approaches to complex systems,
focusing particularly on stochastic equations. I discuss how
the main models advocated by the late Benoit Mandelbrot
fit into this classification, and how they continue to contribute
to cross-disciplinary approaches to the increasingly important
problems of correlated extreme events and unresolved scales.
The ideas have broad importance, with applications ranging
across science areas as diverse as the heavy tailed distributions
of intense rainfall in hydrology, after which Mandelbrot
named the “Noah effect”; the problem of correlated runs of
dry summers in climate, after which the “Joseph effect” was
named; and the intermittent, bursty, volatility seen in finance
and fluid turbulence. Citation: Watkins, N. W. (2013), Bunched
black (and grouped grey) swans: Dissipative and non-dissipative
models of correlated extreme fluctuations in complex geosystems,
Geophys. Res. Lett., 40, 402–410, doi:10.1002/grl.50103.

1. Introduction

[2] Geophysicists, and other environmental scientists,
frequently now need to use nonlinear and stochastic models,
particularly in support of time series analysis. This need is
further motivated by the increasing importance now attached
to areas like extreme events [Bunde et al., 2005; Sharma
et al., 2012] and trends [Franzke et al., 2012; Vyushin
et al., 2007]. Unless we are also specialists in statistics, or
in stochastic processes, though, geophysicists’ intuition
tends to have been formed on the simplest textbook stochas-
tic time series model: Gaussian, independent identically
distributed (iid), stationary, “white” noise [e.g., Bendat and
Piersol, 2011; Vyushin et al., 2007]. This choice is not just
a matter of background and culture, but is frequently
supported by a physical argument, that fluctuations in
degrees of freedom which couple only weakly to a co-
ordinate, and which also do not perturb each other directly,
should be additive. If these fluctuations have a finite
variance, and are only short-range correlated, they well
approximate the requirements of the central limit theorem
[e.g., Sornette, 2004], which then leads to the Gaussian form.
[3] In stark contrast, however,Mandelbrot [1963],Mandelbrot

and Wallis [1968], Mandelbrot and Van Ness [1968],
Mandelbrot [1974], identified three effects present in many

fluctuating time series drawn from observations in both the
natural and the economic sciences, and put forwardmathematical
models for each. Each exemplified a very strong departure
from one of the key properties of Gaussian white noise. The first
two were:

• Heavy-tailed probability distributions for the values of a
time series, which Mandelbrot and Wallis [1968] dubbed
the “Noah effect.” This was seen in “wild” cotton price
fluctuations by Mandelbrot [1963], and implies a greatly
increased probability of large events compared to a
“milder” light-tailed distribution.

• Long-ranged serial dependence of a value on all its prede-
cessors, the “Joseph effect” [Mandelbrot and Wallis,
1968], leading to “slow” fluctuations which resemble
long-range trends. This was introduced to explain the
Hurst effect in hydrology, named after Hurst’s observa-
tion of the phenomenon of anomalous growth of rescaled
range in the levels of the Nile River [Hurst, 1957].

[4] Subsequently, Mandelbrot [1974] focused on intermit-
tent processes exhibiting a third effect, identified in the study
ofMandelbrot [1963], which has since come to be known in
finance as “volatility clustering,” correlations between the
absolute values of a time series.
[5] Although Mandelbrot’s original papers are famously

idiosyncratic [Goldenfeld, 1998], the body of work in his
Selecta [Mandelbrot, 1997, 1999, 2002] has been of endur-
ing importance. Numerous excellent reviews exist by now
that encompass both his work on fractals and multifractals,
and survey the closely related fields of anomalous diffusion
and anomalous time series [e.g., Feder, 1998; Klafter and
Sokolov, 2011; Sokolov, 2012]. They include some closely
tailored to a geoscience audience [e.g., Ghil et al., 2011;
Lovejoy and Schertzer, 2012], but with some exceptions
[notably Sornette, 2004], have necessarily tended to focus
on parts of the legacy rather than the whole.
[6] This short Frontiers article aims to complement the

detailed reviews by providing a very short tour of how
Mandelbrot’s key contributions fit into the wider and
disparate field of related work in this area, via what is hoped
to be accessible resource letter. I hope this will equip newco-
mers to make their own further exploration, for example in
the books highlighted above, and that it will be helpful to
others engaged in cross-disciplinary applications.

2. Hierarchy of Complexity Models

[7] Although systems in the geosciences usually have very
many degrees of freedom, it is nonetheless usual to define
macroscopic variables and attempt to model them relatively
simply. An example in climate science would be the
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stochastic energy balance model [e.g., Padilla et al., 2011]
where the variable simulated is fluctuations in the globally
averaged surface temperature, in order to estimate a transient
climate sensitivity. Depending on the complexity of a
system, its modeling needs to take into account increasing
numbers of terms to describe the observed structure in time
series, which can be illustrated by a nested set of simple
equations.

2.1. Cold Deterministic Dynamics

[8] The first level is a single deterministic degree of
freedom, captured conceptually by Newton’s falling apple,
and mathematically by his equation

F ¼ ma ¼ m€x ¼ �V
0
xð Þ (1)

where I have additionally modeled all the deterministic
forces on the particle’s center of mass x by a single scalar
potential function V(x).
[9] Adding a few extra linear degrees of freedom, by

replacing x by x, is conceptually relatively simple, so the
next important level of complication comes when the
interactions are nonlinear but still deterministic, i.e., V0 is
not just a linear function of x. This allows the possibility
of deterministic Hamiltonian chaos, for example in the
astrophysical Henon-Heiles problem, where V(x,y) is
quadratic in x and cubic in y.
[10] Many physical systems of interest cannot be repre-

sented as an isolated particle in a potential. Including an
explicit dissipation term (damping) allows for another level
of complexity. The simplest such term is a constant, �, linear
in the velocity, referred to as “Ohmic”:

m€x ¼ �� _x� V
0
xð Þ (2)

which, when the force is linearized by approximating the
potential as a quadratic about its minimum V = (k/2)x2, gives
another of the most famous equations in physics, the dissipa-
tive harmonic oscillator: m€x ¼ �� _x� kx . A (frequently
unstated) assumption here is that dissipation is so strong that
thermal fluctuations can be neglected. It is thus a low
temperature approximation.

2.2. Warm Stochastic Dynamics

[11] The possible levels of description of complexity are
not exhausted by deterministic modeling. Instead we
frequently need to go to a stochastic description. This could
result from the number of effective degrees of freedom being
so large that an explicitly random description becomes
necessary, or simply as an economical description of a very
complex potential. The simplest modification of the
equations above to include stochastic fluctuations is to add
a noisy forcing term x giving

m€x ¼ �� _xþ x� V
0
xð Þ (3)

the (Ohmic) Langevin equation (Langevin, 1908) with a poten-
tial, used to model Brownian motion in physics. It describes the
trajectory of a physical Brownian particle, viewed on timescales
comparable with the dissipation timescale g =m/�. When
written in the velocity v(t) rather than the position, with
damping linear in velocity, white noise, and no external
potential this becomes the Ornstein-Uhlenbeck (O-U) equation,
whose stochastic solution is the O-U process [Chorin and Hald,
2009]. The Ornstein-Uhlenbeck equation can also result from
the Langevin equation for overdamped motion in a harmonic

potential, where this time acceleration has been neglected, and
V0 retained and linearized. The variable in the O-U process is
then position, x(t).
[12] In the case of thermodynamic equilibrium, statistical

physics [e.g., Reif, 1965, p. 573] gives a further relation,
the fluctuation-dissipation theorem, between the autocorrela-
tion function hx(0)x(t)i of the fluctuations x, and an integral
operator � acting on the velocity, for the dissipation. White
noise is delta-correlated, and the integral over the delta
function then gives the familiar constant �, and a fluctua-
tion-dissipation relation of the form:

� ¼ 1

2kBT

Z 1

�1
dt < x 0ð Þx tð Þ>0 (4)

2.3. Hot Diffusive Dynamics

[13] Alternatively, rather than consider individual trajecto-
ries in an O-U picture, one may describe the evolving pdf of
a particle’s position in equilibrium with the heat bath, by
making the Smoluchowski approximation [Lemons, 2002],
and dropping the terms in g. If, for simplicity, one also
neglects the potential V, the remaining additive process
[Bachelier, 1900; Einstein, 1905] is known as the Wiener
process in physics, and (somewhat confusingly) as Brownian
motion in mathematics [Chorin and Hald, 2009]. The pdf is
governed by the diffusion equation Lemons [2002]:

@

@t
p x; tð Þ ¼ D0r2p x; tð Þ (5)

3. Standard vs. Anomalous Noise Models

3.1. “Mild” and “Fast” White Gaussian Stationary
Noise

[14] In either a Wiener-Brownian or Ornstein-Uhlenbeck
description, an obvious need is to correctly specify the noise
process x. A “white” Gaussian random noise process will
have a time series with values drawn from the short-tailed
probability distribution:

p xð Þ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � x� mð Þ2=2s2
h i

(6)

where the mean m is usually taken to be zero.
[15] In this time series, departures in magnitude from the

mean by more than � 3 times the standard deviation s will
be rare, occurring in only about 0.2% of values. The iid
property of the series means its fluctuations are fast, and
short-lived, so its autocorrelation function is theoretically a
d-function and its power spectrum “white.” Its moments,
including the familiar mean and standard deviation, are finite
and constant, rather than growing with time. From begin-
nings associated with names such as R A Fisher, who coined
the term “variance” as recently as 1918, a highly developed
theory of statistical inference has grown up around white,
Gaussian noise.

3.2. Anomalously “Slow” Time Series and the Joseph
Effect

[16] Not all natural time series are spectrally white, or
even short-range correlated. Some power spectral densities
S(f)� f� 2d, estimated for example by Fourier methods, are
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singular at the origin [Beran, 1994], reflecting a “pile up” of
energy at low frequencies and long wavelengths. Such “1/f”
noise exhibits long correlated runs of values with similar
sizes, something that is essentially never seen in white noise.
The paradigmatic geophysical example is the annual
minimum level of the Nile River [Hurst, 1957], while the
colorful coinage by Mandelbrot and Wallis [1968] of the
name “Joseph effect” came from the correlation implied by
the 7 years of drought and 7 years of plenty in Pharoah’s
dream.

3.3. Anomalously “Wild” Time Series and the Noah
Effect

[17] The tails of a Gaussian pdf are light, and the distribu-
tion’s only non-zero moments are its first two, giving the mean
and standard deviation. Many important real-world time series,
however, show kurtosis. Some show amildly increased kurtosis
compared to the Gaussian, while some have very high kurtosis,
“heavy tailed” distributions, named after their property that
most of the probability mass of the distribution resides in the tail
[Newman, 2005; Clauset et al., 2009]. Celebrated examples in
astrophysics and geoscience include the Gutenberg-Richter
law for earthquake magnitudes [Sethna et al., 2001], and the
magnitudes of solar flares.
[18] Introduced first as a wealth distribution by Pareto,

after whom it was named, the archetypal distribution for
modeling this effect has a pdf whose tail decays asymptoti-
cally as a pure power law:

p xð Þ � x� 1það Þ (7)

When a lies in the range between 0 and 2, sums of random
numbers drawn from such a distribution do not flow to the
Gaussian. Instead, they follow the corresponding a-stable
(or “Lévy-stable”) law [Lévy, 1937], which also has a power
law tail with the same exponent. Power law distributions
with a exactly 2, or greater, still flow to the Gaussian.
[19] Distinguishing between the Gaussian and an a-stable

distribution with exponent very close to 2, when the sample
size of available data is small, can be difficult. This is partly
because the limited dynamic range explored by the samples
seen so far means that the asymptotic power law shape of the
latter distribution may not yet be so pronounced as to be
obvious. Weron [2001] and Burnecki et al. [2012a] demon-
strate that it is nonetheless possible. The latter authors
applied their method to ‘L-H’ mode transitions in fusion
plasmas.
[20] Some other aspects of best practice for measurement

of power laws have also been controversial in recent years
[e.g., Clauset et al., 2009; Buchanan, 2008; Edwards
et al., 2007; Viswanathan et al., 2011]. In the light of this,
it is important not to lose track of the distinction between
two questions: “am I seeing a power law” versus “am I see-
ing a distribution with a heavy tail?” From the viewpoint of
the risk of large events, the second question is the key one,
because any heavy tailed distribution will give significantly
larger probabilities of large events than a Gaussian does.
[21] If a tail is heavy, the first question, of its specific

functional form, i.e., whether it is for example a power
law, truncated power law, lognormal or stretched exponen-
tial is important for two other reasons. One reason is that
differing shapes for the upper tail will translate into a differ-
ent probability for (as yet unobserved) large “grey swan”
events (e.g., Weitzman, M. L., A precautionary tale of

uncertain tail fattening, Harvard University Economics
Department, Working paper, March 10th, 2012). In coining
his term “black swan,” [Taleb, 2007] distinguished between
these events, which could never have been anticipated, and
the “grey swans” which would result from observing a tail
which is much heavier than the model that was anticipated.
The second reason is that different pdf shapes may each
indicate different physical mechanisms [Sornette, 2004].

4. “Anomalous” Extensions to the Wiener
Process: Additive and Undamped Models

[22] We have seen so far that a full description of natural com-
plexity often requires the use of stochastic components in a
model. Many natural time series describe an integrated
property, as emphasized by Kleme�s [2011], and so are more
appropriatelymodeled as an additive, and so possibly nonstation-
ary aggregation Y of fluctuations, than a stationary noise x. We
have also seen that the simplest and best-understood stochastic
processes are white Gaussian noise and the integrated models
derived from it such as the Wiener or Ornstein-Uhlenbeck
processes. Integration here means a stochastic integral [Lemons,
2002], which is formally represented as Y=

R
xdt� R

dL as x is
no longer a deterministic variable. The increment dL thus also
represents a stochastic variable here. Space prevents discussion
of the meaning of stochastic integration, but see Lemons [2002]
among many excellent discussions available at widely varying
levels of sophistication and rigor. In what follows, we will
consider increments taken from a unit normal process L2, and
from an a-stable process La. The identification of the Noah and
Joseph effects by Mandelbrot, which are anomalous with respect
to white noise, has motivated the search for stochastic models to
capture them. In this section, I will concentrate on extensions to
the self similar Wiener process.

4.1. Self-Similar and a-Stable Models: The Fractional
Stable Motions

[23] The first group of models represents fractional
integrations of stable noises, of which the Gaussian is the
basic example.
[24] “Grey swans” modeled as Lévy flights: d=0, a 6¼ 2: An

additive randomwalk time series model where power law steps,
based on the concept of the a-stable laws discovered by Lévy,
replaced Gaussian steps, was proposed by Mandelbrot [1963]
to describe the “wild” fluctuations of cotton prices. By the time
of the English edition [Mandelbrot, 1983] of his book Les
Objects Fractals, he had introduced the term “Lévy flight” for
the equivalent spatial diffusion process, using it in relation to
the trajectory of an imaginary spacecraft travelling randomly
between the stars of a galaxy, and in distinction to shorter-tailed
“Rayleigh” flights.
[25] By the mid 1960s, he had become intrigued by the

pioneering work on the growth of rescaled range in annual
minimum levels of the Nile River [Hurst, 1957; Feder,
1998; Beran, 1994], and in his autobiographical notes
[Mandelbrot, 2002, pp. 218–219] recounted that he had at
first thought that an a-stable noise model could account for
them. On seeing the data, however, he realized that it was
relatively light tailed.
[26] Bunching and the “Joseph effect” modeled via frac-

tional Brownian motion, d 6¼ 0, a=2. The above epiphany led
him, in Mandelbrot and Wallis [1968, 1969a], to advocate the
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use of a different type of self-similar process, YH, which he
called fractional Brownian motion (fBm),

YH ;2 tð Þ ¼ 1

CH ;2

Z
R
dL2 sð ÞKH ;2 t � sð Þ (8)

which extends the Wiener process to include a long-
range-dependent, self-similar, memory kernel KH,2(t� s),

KH ;2 t � sð Þ ¼ t � sð ÞH�1=2
þ � �sð ÞH�1=2

h i
(9)

thus giving a decaying, non-zero weight to all of the values
in the time integral over dL. fBm was given the name
“Wiener’s spiral” by its discoverer, Kolmogorov [1940].
The first derivative of the above process is fractional
Gaussian noise (fGn), which provides a stationary, long-
range-dependent model, when that is what is needed. Many
of the first applications of fBm actually used fGn.
[27] The study of diffusion in the last century was greatly

aided by the development and comparison of several
descriptions: the central limit theorem, the diffusion
equation, and the Langevin equation, and particularly by
their equivalence in the limit of long times. The extent to
which such an equivalence is possible is more subtle in the
case of fBm, because the presence of long-range dependence
means that information is present in a Langevin trajectory
that is not captured by the pdf. The non-Markovian temporal
dependence, for example, is needed to accurately predict the
distribution of first passage times [Lim and Muniandy, 2002].
An equation of the diffusion type can be retrieved [Lutz,
2001] from a fractional Langevin equation (c.f. section 6).
It remains Markovian in structure but has a diffusion coeffi-
cient that grows nonlinearly in time as t2d, or more precisely
:

D tð Þ ¼ D02Ht
2H�1 (10)

[28] The same diffusion coefficient was adapted empiri-
cally in hydrology by Wheatcraft and Tyler [1988] to model
anomalous diffusion. Their equation can be seen in refs.
[Wang and Lung, 1990; Lutz, 2001] to reproduce the pdf
of fBm, a Gaussian whose width progressively stretches as
its variance grows with time as t2H.
[29] “Grouped grey swan” models with both LRD and

heavy tails: Once Mandelbrot had appreciated that each of
the above models exemplified one of the Noah and Joseph
effects at the expense of the other, he proposed a more
general model that would exhibit both. In Mandelbrot and
Wallis [1969b] he looked at a fractional noise with power
law distributed steps, calling it a “fractional hyperbolic”
process. This paper presented the model in the context of
demonstrating how the “R/S” diagnostic [Mandelbrot,
2002] was a measure of long-range dependence d rather than
the self-similarity exponent H, which may have contributed
to its relative neglect compared to his papers on fBm and
Lévy flights. Mandelbrot himself seems not to have pursued
the fractional hyperbolic model further, preferring to
develop multifractal models [e.g., Mandelbrot, 1974], as
will be discussed in section 7. This seems in part to have
been because of their more obvious volatility clustering proper-
ties-a visual feature of many turbulence and finance series.
However, interest in fractional stable models continues in the
stochastic processes community. fBm is the most general
Gaussian random walk that keeps the analytically desirable

self-similar and stable property. Fractional stable models, such
as linear fractional stable motion (LFSM) [Samorodnitsky and
Taqqu, 1994; Burnecki and Weron, 2010], have subsequently
extended fBm to the infinite variance case. LFSM generalizes
fBm by combining a stochastic integral over a-stable variables
with a self-similar kernel, so:

YH ;a tð Þ ¼ 1

CH ;a

Z
R
dLa sð ÞKH ;a t � sð Þ (11)

where KH ;a t � sð Þ ¼ t � sð ÞH�1=a
þ � �sð ÞH�1=a which we

can now see to be the generalization of the fBm kernel.
The memory parameter d, self-similarity exponent H, and
stability exponent a are related to each other [Weron et al.,
2005] by

d ¼ H � 1

a
(12)

Taqqu [1987] pointed out the potential relevance of LFSM
to geophysical modeling, and some applications have
followed [e.g., Watkins et al., 2009a].

4.2. Fractal Sums of Pulses, and Generalized Shot Noise

[30] The derivative of the Wiener process defines Gaussian
white noise, whereas the derivative of the Poisson process
yields white “shot” noise [Haenggi and Jung, 1995, page
244]. Recalling that fBm is the self-similar process whose
fractional derivative gives Gaussian white noise raises the
question of what kind of self-similar point process would
have white shot noise (or related pulse models) as its
fractional derivative. This was studied in a series of papers
reviewed in Eliazar and Klafter [2011]. The book by Lowen
and Teich [2005] is a very useful complementary survey of
the field of fractal point processes, with a notably compre-
hensive set of problem solutions.

4.3. Continuous Time Random Walk

[31] fBm and LFSM have the convenience of preserving a
mapping to the CLT or extended CLT, but as noted above
they have a relatively uninformative diffusion equation. An
alternative approach has been the continuous time random
walk (CTRW) paradigm, in which one specifies both a
distribution of jump lengths and of waiting times, but the
stable property of the pdf is lost [Kolokoltsov et al., 2001].
The most widely studied version has a factorizing pdf
P(x,t) =Y(x)Φ(t), with heavy tailed pdfs for both jump size
and waiting time. A particularly accessible heuristic
treatment of it is given in the supplementary information of
Brockmann et al. [2006], who christened it the “ambivalent”
process to emphasize its competing subdiffusive and
superdiffusive elements.

5. Fractality and Its Discontents: Common
Questions about the Use of Fractal Models

5.1. Kadanoff: Where’s the Physics?

[32] One question about the above models has been a
perception that the anomalous effects lacked a physical
mechanism. A widely cited source for this is Kadanoff
[1986], a Physics Today editorial entitled “Fractals: where’s
the physics?” but it has often not been appreciated that this
was not so much a criticism of the fractal idea but more a
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plea for their increased physical understanding. A particu-
larly noteworthy and influential attempt to address this was
the stimulating proposal by Bak et al. [1987] of self-organized
criticality (SOC). Its frequent presentation in statistical terms
has meant that it is not always appreciated that SOC is a
physical mechanism intended to account for, and unify,
spacetime fractals, and thus much more than simply a statistical
description of complex systems. Instead it took its name from
the space and time correlation seen in the “critical phenomena”
[Wilson, 1979], the prototypes of which were seen at phase
transitions. SOC posited a tendency of slowly driven,
thresholded and interaction-dominated systems to organize
via “avalanches” of energy release into such a state.

5.2. Kleme�s: Is the Physics of Fractals the Wrong Kind
of Physics?

[33] An unfortunate corollary to the misperceptions noted
above has been that stochasticmodels such those ofMandelbrot
[1963] and Mandelbrot and Wallis [1968] are also sometimes
decried as being “purely statistical.” When examined more
closely, as I have above, one sees that they all imply physics,
as they are modifications to the established physics of noisy
inertial near-equlibrium dynamics. In consequence the more
important issue is whether the physics that they embody is a
good match to the natural system being modeled.
[34] Joseph: Mandelbrot’s advocacy of fGn, a model with

an infinite correlation length, as a model for the Joseph effect
in hydrology led to a response that the spacetime structure
that they implied for any time series would be a priori
unphysical. For example, as argued by Vít Kleme�s in a
series of papers collected as Kleme�s [2011], the Hurst
phenomenon could either be due to the presence of long-
range dependence in a stationary noise or of nonstationarity.
Kleme�s took the view that physical arguments implied that
the latter position was more conservative, from an Occam’s
razor point of view. Such a position leaves open the question
of whether fGn or similar models might be operationally
better than short-range-dependent ones.
[35] Noah: Similarly, the infinite variance for the ampli-

tude of jumps in the Lévy flight model became a key
perceived barrier to their wider application. There are
physical variables for which infinite variance has not been
a priori controversial, because they are not bounded by an
obvious conservation law, e.g., waiting times in cold trapped
atoms. Infinite variance is already present even in standard
Brownian motion, where the distribution of times taken to
return for the first time to the starting point decay as � t� 3/2.
A finite variance modification was provided by “truncated
Lévy” flights [Mantegna and Stanley [1994] and initially
applied to financial indices. LFSM also exhibits infinite
variance jumps, and so Fractional Tempered Stable Motion
(FTSM) has been introduced by Houdre and Kawai [2006]
to combine LFSM with truncation.
[36] A second key perceived problem with Levy-type

models was the possibility of infinite velocities. A modifica-
tion of the Lévy flight idea to ensure finite velocity, known
as the “Lévy walk” was proposed by Shlesinger and Klafter
[1985]. Their approach was to make the length of a CTRW
step an explicit function of its duration. Applications of
Lévy walks have since included the modeling of diffusing
particles in turbulent media, and (more controversially)
animal foraging.

5.3. Avnir et al.: Are Fractals a Solution Looking for a
Non-existent Problem ?

[37] A third issue has been the question of the range over
which fractals really existed in nature, and how well scaling
exponents are measurable. Space and time present different
challenges here, because the frequency range over which a
temporal fractal is seen can in principle always be increased
by waiting longer, but a spatial fractal occupies a fixed area.
An important paper was Avnir et al. [1998], and the
exchange of letters (including Mandelbrot’s) that resulted
from it, which still repay reading.

6. But Do We Always Need Purely Fractal Models
Anyway?

[38] A key point that is often lost in discussions like those
cited above is that the presence of damping in a system, as
for example via the � term in the Ohmic Langevin equation,
immediately changes its character. Rather than a self-similar
unbounded nonstationary walk, it becomes a mean reverting
process at high frequencies. This can occur without a loss
of asymptotic self-similarity, as for example seen in the
Auto Regressive Fractionally Integrated Moving Average
(ARFIMA) model [Beran, 1994] (also known as FARIMA).
ARFIMA retains a singular behavior in its power spectrum
at low frequencies. ARFIMA generalizes the more familiar
autoregressive processes such as AR(1), to provide a univer-
sal model for subdiffusive dynamics in engineering and the
basic sciences [Burnecki et al., 2012b] and can be seen as
adding realism in the noise driver. When the basic ARFIMA
model is extended to allow a-stable Lévy jumps, it becomes
a universal model for fractional mean-reverting dynamics in
general, e.g., its use by Franzke et al. [2012] to assess the
behavior of diagnostics of H on such asymptotically self-
similar time series, and by Vyushin et al. [2012] in contrast
to AR(1) as a temperature time series model.
[39] In view of this, I will now re-emphasize the contrast

between self-similar but nondissipative Wiener types of
process and the dissipative Ornstein-Uhlenbeck class of
processes.
[40] Wiener-type processes are models of the integrated

displacement of free Brownian motion, in the Smoluchowski
limit. They embody a mathematical result, the central limit
theorem, about the limiting behavior of sums of iid finite
variance random variables. They naturally connect time
series modeling to idealized models of diffusion, because a
1D time series from a random walk is a projection of a
diffusion in a multidimensional space. They are known in
mathematics as Brownian motion, and ever since their
invention by Bachelier has remained a natural paradigm in
finance where dissipation is not necessarily a priori
obviously present. The standard deviation of the displace-
ment of an ensemble of their trajectories will grow even
though its mean remains fixed. The Wiener process is thus
non-stationary, but is self similar.
[41] Ornstein-Uhlenbeck processes in contrast cannot be

completely self-similar, as the presence of an explicit
dissipation timescale breaks this property. Conversely they
can be stationary, and the effect of the dissipation is to make
them mean-reverting. This can be an essential property for
the modeling of a physical system on timescales comparable
with the dissipation time. In finance mean reversion can be
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motivated as a model of how a stock would recover the price
supported by its fundamentals after an external “shock.”
[42] The discussion of the Langevin equation above made

the usual assumption that the noise is very short-range
correlated and so the ACF can be approximated as a delta
function giving the most familiar form (equation 3), with
constant damping. However, many physical scenarios
[Haenggi and Jung 1995] result in the tail of a heat bath’s
autocorrelation function being non-negligible in time,
necessitating the use of the less approximate form of the
Langevin equation, where the constant � is replaced by an
integral over the damping kernel r:

m€x ¼ �m

Z t

0
dt

0
rðt � t

0 Þ _xðt0 Þ þ x� V
0
xð Þ (13)

[43] It must be stressed that the noise x, while Gaussian, is
no longer white (a fluctuation dissipation theorem is still
obeyed). A well-studied example is when a Langevin equa-
tion is driven by Ornstein-Uhlenbeck noise, which has an
exponential acf [Padilla et al., 2011; Haenggi and Jung,
1995]. The extreme case is where the heat bath’s correlation
function has the slowest possible, power law, decay [Lutz,
2001], so, for large t:

r tð Þ � t� 1þ2dð Þ (14)

where we are taking the non-Brownian case, when d is not
equal to zero.
[44] In this maximally long-range-dependent case the

power law form of the correlations allows an alternative
form for the integral in Equation (13). By introducing the
Riemann-Liouville fractional derivative:

@lf tð Þ
@tl

¼ 1

Γ �lð Þ
Z t

0
dtf tð Þ t � tð Þ� 1þlð Þ (15)

the Langevin equation can be rewritten as

m€x ¼ �mr 1þ2dð Þ
@2d

@t2d
_x
�
t
0�þ x� V

0
xð Þ (16)

[45] Note that the heat bath’s memory parameter d is
equivalent to (a� 1)/2 in the notation of Lutz [2001]. It runs
from� 1/2 to 1/2. Lutz [2001] should be consulted for further
details including the definition of the constant ρ(1 + 2d) and a
summary of a (quantum mechanical) microphysical deriva-
tion of (13) using a random matrix approach.

7. Multiplicative Models, Volatility Bunching, and
Multifractals

[46] All the above sections have discussed additive
stochastic models. This is true both for classic models like
the Langevin equation, where white noise fluctuations are
added via the x term, and for more recent ones like
Mandelbrot’s Lévy flight and fBm models which exempli-
fied the Noah and Joseph effects. The additive nature of
the Langevin equation, the near equilibrium and weak
coupling assumptions made, and the Gaussian form of the
noise used, are related, see, e.g., the introductory discussions
in Reif [1965] or the more advanced [Chorin and Hald,
2009]. In the path-integral formulation, Feynman and Hibbs

[2005] discuss how this picture arises “. . .[as] a good
approximation in a much wider class of situations, namely,
where the effect itself is the result of a very large number
of influences, each of which by itself has little effect . . ..”
[47] However, additive models are not the only ones

possible, and in stochastics the motivation for a multiplicative
model has frequently been to capture the unknown effects of
unresolved scale [c.f. Majda et al., 1999]. It modifies the form
of the Langevin equation to allow state-dependent noise or a
noisy potential, e.g., by a form such as:

m€x ¼ �� _xþ f xð Þx (17)

Of particular note are some linear multiplicative processes,
including the Kesten process, which offer alternative models
for heavy tailed time series [Sardeshmukh and Sura, 2009;
Sornette, 2004]. By the early 1970s, Mandelbrot also came
to question the applicability of additive models in some
circumstances, and began to advocate multiplicative,
multifractal models, particularly for the study of fluid
turbulence and financial markets [Mandelbrot, 1974, 1997,
1999]. Chang and Wu [2008] have noted that for intermit-
tent turbulence, one may visualize the fluctuations to be
composed of many types, each being characterized by a
particular fractal dimension. Two questions arise: (i) What
are the different types of fractal dimensions? (ii) How are
they distributed in the turbulent medium? Recently, a new
technique of analyzing intermittent fluctuations has been
developed to specifically address these questions [Chang
and Wu, 2008]. The technique, known as Rank-Ordered
Multifractal Analysis (ROMA), retains the spirit of the
traditional structure function analysis and combines it with
the idea of one-parameter scaling of monofractals. ROMA
maps the complete set of non-self-similar Probability
Distribution Functions (PDF) and determines the fractal
spectrum in terms of the concept of generalized crossover
invariant functions, connecting the understanding of inter-
mittent turbulence one-step closer to the concept of the
dynamic renormalization group.
[48] The long flights in space captured by the Noah effect

have the effect of linking points in the system together over
longer distances than would be seen in a more traditional
model. However, in their early work on SOC, Bak and Chen
[1989] also made a strong case that models which separate
spatial and temporal correlation may be artificial: “Actually,
for those (like us) who are brought up as condensed matter
physicists it is hard to believe that long-range spatial and
temporal correlations can exist independently. A local signal
cannot be “robust” and remain coherent over long times in
the presence of any amount of noise, unless stabilized by
the interactions with its environment. And a large, coherent
spatial structure cannot disappear (or be created) instantly.
For an illustration, think of the temporal distribution of
sunshine, which must be correlated with the spatial distribu-
tion of clouds, through the dynamics of meteorology.”
[49] The issues of mean reversion and multifractality

noted above have arisen in the study of complexity in the
Earth’s magnetosphere. A much-studied example here is
the Auroral Electrojet [AE] index [Davis and Sugiura,
1966], a proxy for energy dissipation in the system. Early
work on complexity in AE used low-dimensional chaos as
a paradigm, but the act of AE reveals an exponential decay
on timescales of less than about 2 hours, and a much slower
power law decay on longer timescales [Takalo and Timonen,
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1994]. It has thus been a candidate for stochastic descrip-
tions, including fBm [Takalo and Timonen, 1994] and self-
organized criticality (see, for example, the reviews of
Watkins [2002]; Chapman and Watkins [2001]; Freeman
and Watkins [2002]). With hindsight, however, it seems
clearer that stochastic modeling of the AE index is (or should
be) broadly of the Langevin type because the intent is to
model its evolution on timescales from hours down to
minutes, on which energy is being dissipated. A recent
development in modeling both the mean-reversion and vola-
tility bunching noted above, in both ionospheric physics and
finance, has come in a series of papers by Martin Rypdal and
coworkers. They have used models of Ornstein–Uhlenbeck
form with multifractal driving noises, for example fBm in
multifractal time [Rypdal and Rypdal, 2010].

8. Implications of the Above Models for
Diagnostics of, and Approaches to, Extreme Events

[50] Now that I have reviewed the above diverse collection
of models and paradigms, one can compare them with the
approaches used so far to the problems of extreme events.
The approaches fall roughly into two main groups, which
we will briefly note, and attempt to compare. Space prevents
more than a brief sketch which we hope will inspire readers
towards new research problems.

8.1. Threshold Exceedance Approaches

[51] The first group might be called extreme “Joseph
problems,” and are based around the periods during which
a continuous time quantity exceeds a threshold. A paradigmatic
problem here would be the number of hot days above a temper-
ature threshold, a statistical definition of a “heat wave.”This has
an immediate link to weather derivatives [Jewson et al., 2005].
[52] The stochastic processes community have contributed

the idea of sojourns [Berman, 1992], the times Lt(u) spent
above a threshold u by a stochastic process,Z t

0
I x sð Þ>u½ �ds (18)

and level sets, the areas defined by threshold crossings
[Azaïs and Wschebor, 2009].
[53] From a more physical perspective, self-organized

criticality has contributed the idea of a (3 + 1 dimensional)
avalanche or “burst” in space time. This has a 4-dimensional
surface, the space and timescaling exponents of which have
been calculated for some SOC models by Paczuski et al.
[1996]. The “burst problem” becomes more ambiguous,
though, when only a time series is accessible, because one
is trying to distinguish a 1 + 1 dimensional cut through a
candidate SOC model, from other possible stochastic
models. Watkins et al. [2009a] gives further references on
the burst problem and Watkins et al. [2012] derive burst
scaling relations for such a null model and make a prelimi-
nary comparison to data. Inspired in part by SOC, and more
generally by application of fractals and LRD to time series
modeling, Bunde and his colleagues have produced a series
of papers [e.g., Bunde et al., 2005] on level crossings in
fractional noises.

8.2. Extensions of the Extreme Value approach

[54] By contrast, one can look at extreme “Noah problems,”
like the bunching of severe point like events, e.g., hurricanes. A

key step has been the use of the idea of bunching of events into
“clumps”with a characteristic size, to modify the main distribu-
tions of extreme value theory via an extremal index [Coles,
2001]. The Extremal index is effectively the inverse of themean
size of a clump, which poses the obvious problem that an LRD
time series may not have a finite theoretical mean size of bunch.

9. Conclusions: How Can We Fairly Compare
Models and Theories of Complex Systems?

[55] Even from the brief survey above, I hope two things
will be clear to the reader. One is the evidence that stochastic
models of much greater complexity than the familiar random
walk will need to be considered in order to span the full
range of extreme events of the earth system [Sharma et al.,
2012; Moffatt and Shuckburgh, 2011]. The second is that
there are typically several possible explanations for any
scaling property of a complex system [Sornette, 2004],
raising the obvious question of how to distinguish models
in the presence of both large intrinsic variability in the data
itself, and the bias and uncertainty of the inferred scaling
exponents. A topical example from another area of complex
systems research has been the debate around the Lévy
foraging hypothesis (LFH) in ecology, where researchers
had proposed that early indicative observations, evidence
for optimal properties of Lévy flights, and the fractal proper-
ties of some environments, all motivated non-Brownian
models for animal foraging [e.g., Viswanathan et al.,
2011]. Experimental indications of heavy-tailed pdfs and
long-range memory were taken to be direct evidence for
the LFH, reminiscent to the way in which researchers
(including the present author) had directly interpreted the
ionospheric AE index within the SOC paradigm (Section
7). An increased awareness of statistical hypothesis testing
as a tool for model comparison [e.g., Buchanan, 2008;
Clauset et al., 2009; Edwards et al., 2007] has contributed
to bringing a broader range of possible foraging models into
the discussion, which do not all have exactly the same
signatures. Rather than being specific to ecology, this issue
of the interface between statistical inference, statistical
mechanics and stochastic processes has been recognized
for at least a decade as a frontier problem in other complex
systems. Mandelbrot et al. [1997]) for example, wrote of
their own Multifractal Model of Asset Returns (MMAR)
that: “the main disadvantage . . . is the dearth of applicable
statistical methods. We propose that new econometric meth-
ods are needed for models which are both time-invariant
and scale-invariant.” This, and other challenges, exemplifies
why the interface of complexity science and the more
traditional mathematical disciplines continues to be so
stimulating and fruitful.
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