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Summary  1 

1. Volunteer-based ‘citizen science’ schemes now play a valuable role in deriving 2 

biodiversity indicators, both aiding the development of conservation policies and 3 

measuring the success of management. We provide a new method for analysing such 4 

data based on counts of invertebrate species characterised by highly variable 5 

numbers within a season combined with a substantial proportion of proposed 6 

survey visits not made. 7 

2. Using the UK Butterfly Monitoring Scheme (UKBMS) for illustration, we propose a 8 

two-stage model that makes more efficient use of the data than previous analyses, 9 

while accounting for missing values. Firstly, generalized additive models were 10 

applied separately to data from each year to estimate the annual seasonal flight 11 

patterns. The estimated daily values were then normalized to estimate a seasonal 12 

pattern that is the same across sites but differs between years. A model was then 13 

fitted to the full set of annual counts, with seasonal values as an offset, in order to 14 

estimate annual changes in abundance accounting for the varying seasonality. 15 

3. The method was tested and compared against the current approach and a simple 16 

linear interpolation using simulated data, parameterised with values estimated from 17 

UKBMS data for three example species. The simulation study demonstrated accurate 18 

estimation of linear time trends, and improved power for detecting trends compared 19 

to the current model.  20 

4. Comparison of indices for species covered by the UKBMS under the various model 21 

approaches showed similar predicted trends over time, but confidence intervals 22 

were generally narrower for the two-stage model.  23 
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5. In addition to creating more robust trend estimates, the new method allows all 1 

volunteer records to contribute to the indices and thus incorporates data from more 2 

populations within the geographic range of a species. On average, the current model 3 

only enables data from 60% of 10km2 grid squares with monitored sites to be 4 

included, whereas the two-stage model uses all available data and hence provides 5 

full coverage at least of the monitored area.  As many invertebrate species exhibit 6 

similar patterns of emergence or voltinism, our two-stage method could be applied 7 

to other taxa.  8 

 9 

Keywords: butterfly monitoring, citizen science; count data; generalized additive 10 

models; missing data 11 

 12 

1. Introduction 13 

The importance of biodiversity is widely recognised for its multifaceted role in 14 

controlling our ecosystems (Chapin et al. 2000; Díaz et al. 2006). Land-use change, 15 

climate change and other human-induced factors have been recognised as important 16 

causes of declines in biodiversity (Chapin et al. 2000; Rands et al. 2010). In 1993 the 17 

Convention on Biological Diversity (CBD; Glowka, Burhenne-Guilmin & Synge 1994) 18 

came into force as an international treaty which aimed for the conservation and 19 

sustainable use of biological resources. In response to the Convention the UK set up the 20 

UK Biodiversity Action Plan (UKBAP; Ruddock et al. 2007). At a UK and country level, 21 

biodiversity conservation efforts include maintaining protected areas, consideration in 22 

relevant policy and decision-making, action for declining species and habitats and 23 
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conformity to international agreements. The use of biodiversity indicators was also 1 

recommended to measure and communicate progress in reaching biodiversity targets 2 

(CBD 2004). Species population data are required as a source for robust biodiversity 3 

indices and to answer both ecological and environmental questions. 4 

Monitoring invertebrates presents a number of technical challenges, such as sampling 5 

frequency to cover seasonal patterns and the specialised expertise required for 6 

identification (Thomas, 2005).  However, a growing number of participatory schemes 7 

for monitoring insects, predominantly butterflies, have been developed (Table 1).  8 

Improved statistical techniques are required to make the most efficient use of data 9 

collected by volunteer contributors to such schemes. Butterflies, as the most 10 

comprehensively monitored insect taxa, will be used to illustrate the methods of this 11 

paper. Butterflies are increasingly recognised as an environmental indicator for changes 12 

in biodiversity because they respond rapidly and sensitively to climatic and habitat 13 

changes and act as a representative for other species, particularly other insects (Roy & 14 

Sparks 2000; Maes & Van Dyck 2001; Roy et al. 2001; Thomas 2005; Pearman & Weber 15 

2007). Abundance indices for butterflies form one of 18 indicators used to assess 16 

general trends in UK biodiversity (Defra 2011). Butterfly indicators for the UK and 17 

Europe are discussed further in van Swaay et al. (2008) and Brereton et al. (2011b). 18 

Butterfly population data in the UK are principally gathered through an intensive, wide-19 

scale monitoring system of weekly transect walks which form the UK Butterfly 20 

Monitoring Scheme (UKBMS). The main objective of the scheme is to provide data for 21 

assessment of the status and trends in the abundance of UK butterfly species for both 22 

conservation and research purposes. Abundance estimates derived from the UKBMS 23 

data play an important role in acting as indicators for trends in biodiversity, habitat 24 
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change and climate change (Brereton et al. 2011b). In 2010, population trends could be 1 

calculated for 54 of the 59 butterfly species regularly found in the UK to demonstrate 2 

whether the overall population abundance of each species has changed over time 3 

(Botham et al. 2011).   4 

A key element of such schemes is the high level of volunteer participation required to 5 

gather such a large dataset, who are often referred to as citizen scientists (Cooper et al. 6 

2007; Greenwood 2007; Devictor, Whittaker & Beltrame 2010). Since its inception in 7 

1976, a large network of recorders has contributed to the UKBMS, making around a 8 

quarter of a million weekly visits to almost 2000 different sites and counting over 16 9 

million butterflies (Botham et al. 2011). Ideally, an annual index of abundance for each 10 

site can be calculated as the sum of the weekly counts; the scheme design is for a count 11 

to be made in each of 26 weeks of the year between April and October. Inevitably, some 12 

weeks of the transect season are missed due to unsuitable weather conditions or 13 

recorder unavailability, for example due to illness or holidays, and hence fewer than 26 14 

counts per year are typically made at each site. In common with many invertebrates, 15 

UKBMS counts show pronounced patterns over the summer and each count taken 16 

certainly cannot be considered as a random variable with the same expectation. 17 

Appropriate modelling techniques are therefore required to enable the use of UKBMS 18 

data for monitoring changes in populations.  19 

Initially, estimates of missing counts for butterfly monitoring schemes were obtained 20 

using linear interpolation of the counts either side of the missing value. The use of 21 

generalized additive models (GAM, Hastie & Tibshirani 1990; Wood 2006) as an 22 

alternative method was introduced by Rothery & Roy (2001), who applied models to 23 

both UKBMS and simulated data with varying flight periods, and this procedure is 24 
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currently adopted by the UKBMS. A GAM is a generalized linear model (GLM) where 1 

part of the linear predictor contains one or more smooth functions of predictor 2 

variables (Wood 2006). It is therefore more flexible than the linear approach, but 3 

requires more data to avoid the potential for erratic behaviour. Under the current 4 

method, which fits a GAM to data on an individual site/year basis, where a high 5 

proportion of weeks or the peak of the flight period (defined where the maximum 6 

prediction of a missed count exceeds the maximum of the observed counts) is missed, 7 

data for that particular site and year are currently excluded from analysis. 8 

Under these criteria, on average across the species monitored by the UKBMS 38% of 9 

transect visits made do not contribute to population indices. This represents a 10 

substantial quantity of data not utilised, and in the interest of the optimal use of the 11 

volunteer-collected records, the aim of this paper is to develop a more efficient method 12 

for analysing the UKBMS data and hence more robust estimates of changes in butterfly 13 

abundance. Current models for the estimation of missing counts are extended to allow 14 

for all incomplete series of recordings and annual variation in seasonal pattern, in order 15 

to make more efficient use of the data collected.   16 

2. Materials and methods 17 

We begin this section with an account of the UKBMS protocol. We then revisit the model 18 

currently employed, and introduce the novel method proposed in this paper. The 19 

procedure behind an extensive, simulation-based comparison of a linear interpolation 20 

approach and two GAM-based models, and an application of both GAM-based models to 21 

real data gathered for multiple species by the UKBMS, are then outlined. 22 

2.1 Data - The UK Butterfly Monitoring Scheme 23 
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The UKBMS scheme began in 1976 with 34 sites but by 2010 the network had grown to 1 

over 1000 sites recorded each year (910 line transects as well as 117 sites applying 2 

other sampling methods not considered in this paper, such as larval web/timed counts 3 

(Botham et al. 2011)). The transect method employed is described in depth by Pollard & 4 

Yates (1993) and briefly here. So-called Pollard Walks have been shown to provide a 5 

good representation of large-scale trends in abundance for most species (Isaac et al. 6 

2011).  An observer records all butterflies observed within a set limit (an estimated 7 

distance of 5 metres ahead and to the sides of the recorder) along a fixed line transect 8 

route. Counts are taken weekly from the beginning of April until the end of September, 9 

within specified periods of the day and when weather conditions are suitable for 10 

butterfly activity. Transects are typically 2-4 km long and divided into a maximum of 15 11 

sections which correspond to different habitat or management units, though in this 12 

paper we aggregate counts for all sections within a transect. The scheme design allows 13 

for counts to be made throughout the season for butterfly activity, during which 14 

abundance will vary according to different seasonal patterns of emergence.  15 

2.2 Current method for calculating population indices 16 

Currently, values for weeks with missing counts are imputed by fitting a GAM with 17 

Poisson distribution and a log link function to the observed counts at individual sites 18 

and years (Rothery & Roy 2001). If  represents the count at a site on day  in an 19 

example year then  20 

 E[yt] = µt  = exp[s (t ; f )], (1) 

where the function s (t ; f ) denotes a cubic regression spline with f  degrees of freedom. 21 

Here,  each represents a day in the monitoring season from April to 22 
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September. Thereafter, real counts are used where taken and the weeks with missing 1 

counts are allocated predicted values, , from the GAM for the middle day of that week.   2 

Annual site indices of abundance (an index value for each site and year recorded) are 3 

then calculated by an estimate of the area under the flight period curve. For a series of T 4 

counts y1, y2,…,yT (real or imputed) at times t1, t2,…,tT , as in Rothery & Roy (2001), the 5 

trapezoidal rule is used to approximate the integral of the curve to give the index 6 

 
Index =                    (2) 

Across-site, ‘collated’ indices are then derived by fitting a single log-linear regression 7 

model to the annual indices at all sites, with site and year as additive predictors (Roy, 8 

Rothery & Brereton 2007). This can be fitted using any of the widely-available software 9 

packages for GLM (van Strien, Pannekoek & Gibbons 2001). The model accounts for the 10 

fact that some years yield higher counts than others, and also that the population varies 11 

geographically, across sites.  12 

2.3 Proposed new method – a two-stage modelling approach 13 

A new method is proposed for interpolating the missing data. Whilst the current 14 

strategy involves fitting a GAM to counts on an individual site/year basis, here a GAM is 15 

applied across all sites within a year, to estimate the average annual seasonal flight 16 

curve. 17 

A GAM with Poisson distribution and a log link function is used to estimate the annual 18 

seasonal pattern (constant across S sites). If  represents the count at site i = 1,…,S on 19 

day , then  20 

 E[yit] = µit  = exp[ηi  + s (t ; f )], (3) 
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where ηi  represents a site effect and s (t; f) denotes a smoothing function with f  degrees 1 

of freedom. This creates a curve representing the flight period which is common for all 2 

sites for that year, but varies (via ηi) in magnitude between sites with respect to varying 3 

abundance between sites. Estimation of an average seasonal pattern across sites for 4 

each year allows for even those with a high proportion of missing counts to be included 5 

in abundance estimation.  6 

Studies of butterfly phenology confirm that butterfly flight periods vary from year-to-7 

year (Roy & Sparks 2000). Therefore, due to an interaction between the day and the 8 

year, a single-stage extension of equation (3) for the full dataset with an additional 9 

simple year effect would be too restrictive, since this would only estimate a single flight 10 

period across all years. A direct comparison of total annual abundances, obtained by 11 

summing the expected values at all sites, which can each be estimated via equation 3, 12 

cannot be made due to the variation in the set of sites covered each year. Therefore an 13 

additional stage to the model is introduced.  14 

If  represents the count of a species at site =1,…,S in year =1,…,J on day , 15 

then the mean count is given by  16 

 E[yijt ] = µij (t) = exp[αi + βj + γj (t) ]  (4) 

where αi and βj represent effects for the i th site and the j th year respectively and γj (t) 17 

allows for the seasonal pattern, which can vary between years, but not over sites. A site 18 

index,   for year j, can be calculated as the sum of the expected counts for that season, 19 

which is given by summing equation 4 over t as follows 20 

 (5) 
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The annual effects, , provide an index proportional to total abundance provided that 1 

the  sum to one. Since both the annual effects and seasonal effects in the 2 

model vary with respect to year, we constrain so that  = 1. Hence 3 

equation (4) is fitted to the counts for all years as a Poisson GLM with the values of  4 

as an offset, where  were obtained by scaling the output from the first stage 5 

(equation (3)) and represent the annual seasonal pattern. Missing values can also be 6 

estimated from equation 4 and thereafter the approach is the same as for the current 7 

model, as site indices are derived from formula (2). Collated indices can then be 8 

estimated, and βj taken as an index of abundance, as before, via a further GLM with site 9 

and year as multi-level factors. GAMs were fitted throughout using the mgcv package in 10 

R (Wood 2000; Wood 2006; R Development Core Team 2012), which selects the level of 11 

smoothing internally using generalized cross-validation (GCV).  12 

2.4 Simulation study 13 

The two GAM-based models described above (current and two-stage) were applied to 14 

simulated count data to assess model performance. Estimation of missing values via 15 

simple interpolation was also tested. In order to create realistic simulation data, the 16 

expected counts were based on observed UKBMS data for three target species, which 17 

were chosen for their differences in voltinism (the number of generations per year). The 18 

Chalkhill Blue Polyommatus coridon is a univoltine species with a single brood per year. 19 

The Adonis Blue Polyommatus bellargus has a bimodal flight period in the UK, with two 20 

quite distinct generations per annum. The Speckled Wood Pararge aegeria has a more 21 

complex annual flight period, with up to three overlapping broods per year. Fig. 1 22 

demonstrates example flight periods these three species. 23 
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Initially, to fill in the missing counts in these series prior to simulation, GAMs were fitted 1 

to each species’ UKBMS data for individual years as in equation 3 (using data between 2 

1990 and 2000) and the missing counts replaced by their predicted values. A GLM was 3 

then fitted to the complete dataset with day and site effects considered as factors and 4 

annual change modelled as a constant slope parameter. Normal random variables with 5 

mean and standard deviation equal to those of the estimated site effects from the GLM 6 

were used to generate 100 random site effects. Expected count values for the 7 

simulations were then produced for year 1 based on these random site effects and the 8 

estimated daily effects. In order to account for annual variability that exists in the 9 

seasonal pattern, we assume that the overall shape of the flight period is the same 10 

between years, but we shifted the values gradually backwards by 7 days over 10 years 11 

to reflect observed phenological changes (Roy & Sparks 2000). An annual  trend was 12 

then imposed to simulate data exhibiting a constant rate of change in the expected 13 

annual total counts over 10 years, with declines of (i) 0%, (ii) 5%, (iii) 10% and (iv) 14 

20%, thus generating a site × day × year matrix of expected values (100 sites × 182 days 15 

× 10 years) for scenarios (i)-(iv).  16 

For each of 1000 simulations under (i)-(iv) in turn, random variables were taken from 17 

the Poisson distribution with expectation given by these values, as in Rothery & Roy 18 

(2001). In order to have a matrix of weekly values that portrays the UKBMS data, one of 19 

seven daily values for each week was randomly selected from the expected values. The 20 

day was selected at random since the UKBMS data did not show a particular tendency 21 

for counts to be made on certain days of the week. Thus 26 counts were retained for 22 

each site and year, i.e. a reduced site × day × year matrix (100 sites × 26 days × 10 23 

years) consisting of only one day per week to reflect the scheme design.   24 
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To mimic the missing counts in the real data, a proportion of the simulated counts were 1 

removed. Analyses of cases where data are complete (26 counts made in the season) 2 

and where 30% of data are missing are both given, the latter in order to represent the 3 

observed pattern in the UKBMS data. On average, approximately 29% of counts across 4 

the UKBMS dataset are missed, equivalent to roughly 8 out of 26 weeks of the transect 5 

season.  6 

In practice, a higher proportion of counts are missed at the beginning and end of the 7 

transect season. Therefore removal of counts for simulations was based on the average 8 

observed pattern of missing data in the UKBMS dataset. Although the percentage of 9 

counts missing will not be the same across sites and years, this approach should be 10 

sufficient to assess the model. The current and two-stage GAM-based models, as well as 11 

a linear interpolation approach, were applied to these sets of simulated data to 12 

determine the statistical power (percentage of simulations that detected a significant 13 

trend) and assess the statistical performance of the models (Elston et al. 2011). Model 14 

accuracy was also evaluated by comparing the mean estimated annual trend over ten 15 

years from all simulations against the ‘true’ value of change (the pre-specified declines 16 

of 0%, 5%, 10% or 20% over ten years). The standard error of the mean estimated 17 

trend from all 1000 simulations also provided information on the confidence of the 18 

precision of the trend estimates. 19 

2.5 Application of the current and two-stage model to an example set of species 20 

For comparison, collated indices were calculated from real data for a selection of 21 

butterfly species currently reported by the UKBMS, using both the current and two-22 

stage models. To ascertain the precision of the derived indices, confidence intervals 23 

were generated via bootstrapping in order to account for all sources of uncertainty. This 24 
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approach involves drawing a random sample, with replacement, from the set of sites, 1 

for a given number of replicates (for this study 100 replicates were obtained for each 2 

species, for each model).  Collated indices were estimated for the sites in each bootstrap 3 

sample and then ordered to derive approximate 95% confidence intervals for each 4 

species (Fewster et al. 2000). This procedure naturally incorporates the uncertainty 5 

inherent in the imputing process as well as general overdispersion relative to the 6 

Poisson. Bootstraps were performed for a sample of UKBMS species; due to the high 7 

level of computational effort required, for widespread species the analysis was 8 

restricted to the last ten years and a random subsample of 300 sites. 9 

3. Results 10 

3.1 Simulations 11 

Application of the two GAM-based models to simulated data shows that both 12 

approaches have virtually 100% power to detect 20% declines (over ten years) of the 13 

three example species (supplementary information, Table 1). With no change in 14 

abundance over ten years, the percentage of simulations that incorrectly predict 15 

significant trends lies reasonably around 5% in all cases.  16 

Compared to the current model and the linear interpolation model, the two-stage model 17 

shows smaller standard errors for the trend estimation and performs better in the 18 

presence of missing data (Figure 2); with 30% of data missing, precision of trend 19 

estimation is reduced for the current or linear interpolation models, but not appreciably 20 

under the two-stage model. This is particularly demonstrated for smaller declines of 5% 21 

and 10% over ten years. For 30% missing data in the case of the Chalkhill Blue, although 22 

power under the two-stage model appears unaffected, that of the current model is 23 

reduced to 75.4% for a 5% decline. The accuracy of the trend estimates is also affected, 24 
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with the declines of 5%, 10% and 20% estimated as approximately 4%, 9% and 19% 1 

respectively, accompanied by an increase in the associated standard errors.   2 

Results for the simulated data based on a bivoltine species, the Adonis Blue, showed 3 

power to detect a negative trend in the presence of missing data to be markedly lower 4 

for the current and linear interpolation models, particularly for declines of 5% and 10% 5 

over ten years. Additionally, trend estimates from the two-stage model are generally 6 

more accurate and the associated standard errors are smaller. 7 

For the Speckled Wood, differences between results for all models are less apparent, but 8 

the general performance of the two-stage model is still superior, with higher power to 9 

detect underlying trends and improved estimation of the trend in the presence of 10 

missing data.  11 

3.2 Application for a wider set of species 12 

We now apply the model to data for 46 species routinely monitored by the UKBMS. The 13 

mean number of sites (across years) that contribute to the two GAM-based models 14 

highlights the substantial improvement in data efficiency of the two-stage model (Fig. 15 

3a). The two-stage model makes full use of the data available, whilst the current model 16 

discards a proportion of the data. For all species, fewer data were used under the 17 

current model and hence a reduced geographical coverage was represented, whereas 18 

results from the two-stage model are fully representative of the area for which data 19 

have been collected. The mean percentage of 10km2 monitored grid squares retained 20 

under the current model was approximately 63% (Fig. 3b), with a range from 31% 21 

(White-letter Hairstreak Satyrium w-album) to 91% (Heath Fritillary Melitaea athalia).  22 
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The collated indices for the 46 species under the two models are generally highly 1 

correlated and produce similar estimated linear trends in abundance (Fig. 4). The 2 

majority of points fall around the line of equality; although predictions from the two-3 

stage model tend to be greater for the larger changes (i.e. estimation of large increases 4 

is more pronounced for the two-stage model).  Results are given for each species in the 5 

Supplementary Information, Table 2. Confidence intervals derived from bootstrapping 6 

the set of sites are in general narrower for the two-stage model (Fig. 5). This is more 7 

pronounced for species recorded at fewer sites. A comparison of the indices over time 8 

(with corresponding bootstrapped confidence intervals) is given in Fig. 6 for selected 9 

species and shows the close correspondence between the collated indices. For the 10 

Marsh Fritillary Euphydryas aurinia, a localised species with few records, the confidence 11 

interval is considerably narrower under the two-stage model compared to the current 12 

model which shows particularly wide intervals for some years.  However, alternative 13 

sampling methods not included here are utilised by the UKBMS to increase the sample 14 

size of monitoring sites for priorities species, such as Marsh Fritillary. 15 

4 Discussion 16 

Wild animal abundance typically fluctuates both within and between years. 17 

Invertebrates especially can show highly pronounced seasonal patterns, responding 18 

more directly to weather and some exhibiting multivoltine patterns of emergence. This 19 

provides particular problems in interpreting data from repeated visits within a season if 20 

some visits are missed, as simple measures of ‘count per visit’ may not be comparable. 21 

We have addressed the implications of this in documenting annual change via a new, 22 

‘two-stage’ modelling approach, firstly estimating an annual seasonal pattern and then 23 

using this to adjust for incomplete series when modelling changes between years. 24 
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The UKBMS provides a large-scale source of butterfly population data for assessing the 1 

status and trends in abundance for species which serve as key indicators for change in 2 

biodiversity (Brereton et al. 2011b). Its full potential has not been realised because of 3 

limitations in previous analysis methods, particularly due to the substantial proportion 4 

of data gathered, but necessarily excluded from analysis (~38% visited sites per year).  5 

When applied to simulated count data, the two-stage model performed substantially 6 

better than the current GAM approach. Standard errors were smaller, power to detect 7 

declines was greater (especially for small declines) and the trend estimates were more 8 

accurate. Standard errors were most similar between the two models for data matched 9 

to the Speckled Wood, which could be due to the complex seasonal pattern of 10 

overlapping broods. This may lead to a reduced effect of the missing data in the current 11 

model, compared to species which have more peaked-shaped seasonal patterns, where a 12 

single visit missed may have proportionately more impact. Power to predict declines 13 

was particularly low from the current model for the simulated bivoltine species. 14 

Estimation of missing values from separate GAM across sites may be poor for a bivoltine 15 

flight period shape with limited non-zero observations.   16 

Standard errors are likely to be larger in the current model in part because fewer data 17 

are being used. When there were missing counts the current model tended to 18 

underestimate the decline in the simulation data. The performance of the two-stage 19 

model may also be superior as a consequence of the estimation of the annual seasonal 20 

pattern across sites, compared to estimation on an individual site and year basis under 21 

the current model.  22 

Simulated data of course have the advantage that the true change is known and 23 

performance can be accurately assessed. Real data are however inevitably more 24 
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complex. Application of the two models to the UKBMS data showed predictions of large 1 

changes in abundance were generally greater for the two-stage model, which may 2 

suggest that the current model underestimates the magnitude of the change in 3 

abundance for some such species. This could have implications for conclusions drawn 4 

from abundance indices for UKBMS data, for example in the classification of Red Lists 5 

(Fox et al. 2011). The difference in trend estimation from the two models is variable, but 6 

tends to be most notable for rare or elusive species, such as the Brown Hairstreak 7 

Thecla betulae, which may be benefitting from greater coverage under the two-stage 8 

model.  However, national trend estimates published by the UKBMS for such species 9 

(Botham et al. 2011) incorporate data from larval web counts to estimate population 10 

size. Bootstrapped confidence intervals for the collated indices suggest estimates from 11 

the two-stage model have greater precision than the current model. The confidence 12 

intervals tend to be wider for earlier years in the dataset, probably due to the smaller 13 

number of sites available to sample from. The confidence intervals are particularly 14 

narrower from the two-stage model for species with fewer sites, which reinforces that 15 

such species may benefit from the greater usage of data. By applying all stages of each 16 

model to each bootstrap sample, error propagation is accounted for.  17 

Further extensions for the two-stage model could be undertaken. It may be thought 18 

necessary to adopt a geographically varying approach to the model to improve missing 19 

count estimates, since for some species flight periods vary regionally. For example 20 

Common Blue Polyommatus Icarus populations are known to exhibit different levels of 21 

voltinism with latitude across the UK. Additionally, some species, especially those with a 22 

large latitudinal and altitudinal range, exhibit spatial variation in phenology, for 23 

example in their date of emergence (Roy & Asher 2003). Hence the seasonal pattern 24 
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estimation may be over-simplified by the two-stage model, although variation will 1 

generally be greater from year to year than within years. We have considered seasonal 2 

patterns to be consistent at all sites (within a year) for ease of illustration, but as the 3 

correction of variation in species’ flight periods at the site level is based upon a simple 4 

GAM, improved estimates of this may be obtained by incorporating covariates such as 5 

altitude and climatic zone.  6 

The model may also be improved by accounting for weather conditions (Roy et al. 7 

2001), which are recorded during each visit to a transect. Moreover, as the second stage 8 

is a GLM, various opportunities offered by this flexible family of models are available. If 9 

the Poisson fit is poor, the model could be reconsidered using negative binomial models 10 

(Hoef & Boveng 2007; Lindén & Mäntyniemi 2011). Alternatively, a Bayesian approach 11 

could be considered, for example using prior knowledge of the likely flight period. Both 12 

a Bayesian approach and parametric bootstrap were tested in Gross et al. (2007), who 13 

applied an alternative modelling method to transect data, using population dynamics to 14 

estimate abundance. A Bayesian approach has also been applied using hierarchical 15 

models for smoothing population indices (Amano et al. 2011). The use of Generalized 16 

Estimating Equations is considered by Brewer (2008). 17 

The new model has the benefit of all volunteer input contributing to the abundance 18 

indices, thus providing confidence that their efforts are valuable and hence aiding the 19 

retention of volunteers, therefore allowing the scheme to continue at its current level 20 

(Lawrence 2005; Bell et al. 2008) and making further expansion more likely. The two-21 

stage model also provides the estimation of site indices for data for which it was not 22 

previously possible, which could be beneficial for studying trends of individual sites, for 23 

example those of conservation concern. Additionally, with the two-stage model there is 24 
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potential to include data from the Wider Countryside Butterfly Survey (WCBS), a 1 

recently established reduced-effort scheme, in order to reduce current bias from 2 

uneven sampling of wider countryside species (Roy, Rothery & Brereton 2007; Brereton 3 

et al. 2011a). 4 

Adoption of the two-stage model will improve the estimation of indices and increase 5 

utilization of the data and thus benefit the calculation of UKBMS abundance indices, 6 

which have an important role as biodiversity indicators, and hence a role in 7 

management and policy. Given the large and increasing number of butterfly and other 8 

invertebrate schemes (Table 1), the two-stage model may also prove useful beyond the 9 

application to UKBMS data and has been shown to perform better than simple 10 

interpolation. Furthermore, some non-invertebrate based surveys can also have a 11 

seasonal component to them (Peach, Baillie & Balmer 1998; Atkinson et al. 2006). The 12 

sensitivity of insects to environmental changes compared to more widely monitored 13 

vertebrate taxa (Thomas et al. 2005), coupled with growth in monitoring schemes 14 

across much of Europe and North America, suggest that they are very good candidates 15 

to build biodiversity indicators. This paper demonstrates a novel analytical method that 16 

is both effective for assessing trends whilst making efficient use of the valuable 17 

contributions from citizen observers. 18 
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Table 1. Monitoring schemes and research applications for (a) butterflies and (b) other 1 

seasonal insect taxa. Number of transects represents approximate number of transects 2 

currently recorded per year. 3 

(a) 4 

Location Reference Year 

Established 

Number of 

transects 

UK http://www.ukbms.org/ 1976 >1000 

The Netherlands http://www.vlinderstichting.nl/  1990 950 

Switzerland www.biodiversitymonitoring.ch 1998 500 

Germany http://www.tagfalter-monitoring.de/ 2005 400 

Ireland http://butterflies.biodiversityireland.

ie/ 

2007 150 

Illinois, USA  http://www.ohiolepidopterists.org/b

flymonitoring/instructions/introduct

ion.htm 

1987 130 

Catalonia  http://www.catalanbms.org/ 1994 115 

France http://www.bc-

europe.org/subcategory.asp?catid=1

0&SubCatID=135 

2002 100 

Belgium http://www.natuurpunt.be/nl/biodiv

ersiteit/ongewervelden_291.aspx 

1991  98  

Finland  http://www.luomus.fi/nafi/  1991 548 

Ohio, USA http://www.ohiolepidopterists.org/b

flymonitoring/ 

1995 60 

Sweden http://www.dagfjarilar.lu.se/ 2010  59  

Israel http://www.butterfly.org.il/ 2009 30 

China Not available 2010 28 

Jersey http://www.gov.je/ENVIRONMENT/

LANDMARINEWILDLIFE/INSECTS/P

ages/Butterflies.aspx 

2004 25 

 5 

http://www.ukbms.org/
http://www.vlinderstichting.nl/libellen.php?id=92
http://www.biodiversitymonitoring.ch/
http://www.tagfalter-monitoring.de/
http://butterflies.biodiversityireland.ie/
http://butterflies.biodiversityireland.ie/
http://www.ohiolepidopterists.org/bflymonitoring/instructions/introduction.htm
http://www.ohiolepidopterists.org/bflymonitoring/instructions/introduction.htm
http://www.ohiolepidopterists.org/bflymonitoring/instructions/introduction.htm
http://www.catalanbms.org/
http://www.bc-europe.org/subcategory.asp?catid=10&SubCatID=135
http://www.bc-europe.org/subcategory.asp?catid=10&SubCatID=135
http://www.bc-europe.org/subcategory.asp?catid=10&SubCatID=135
http://www.natuurpunt.be/nl/biodiversiteit/ongewervelden_291.aspx
http://www.natuurpunt.be/nl/biodiversiteit/ongewervelden_291.aspx
http://www.ohiolepidopterists.org/bflymonitoring/
http://www.ohiolepidopterists.org/bflymonitoring/
http://www.dagfjarilar.lu.se/
http://www.gov.je/ENVIRONMENT/LANDMARINEWILDLIFE/INSECTS/Pages/Butterflies.aspx
http://www.gov.je/ENVIRONMENT/LANDMARINEWILDLIFE/INSECTS/Pages/Butterflies.aspx
http://www.gov.je/ENVIRONMENT/LANDMARINEWILDLIFE/INSECTS/Pages/Butterflies.aspx
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(b) 1 

Taxa Reference Location 

Dragonflies http://www.anisoptera.org/guideline.html 

http://www.british-

dragonflies.org.uk/content/british-dragonfly-

monitoring-scheme 

http://www.vlinderstichting.nl/libellen.php?id=

92 

US 

UK 

 

 

The Netherlands 

Moths http://www.rothamsted.ac.uk/insect-survey/ 

Spalding (1997) 

Grundy (2011)  

Conrad et al. (2006)  

UK 

 

Aphids http://www.rothamsted.ac.uk/insect-survey/  UK 

Bees Westphal et al (2008)  

Kells, Holland & Goulson (2001) 

Europe 

UK 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

http://www.anisoptera.org/guideline.html
http://www.british-dragonflies.org.uk/content/british-dragonfly-monitoring-scheme
http://www.british-dragonflies.org.uk/content/british-dragonfly-monitoring-scheme
http://www.british-dragonflies.org.uk/content/british-dragonfly-monitoring-scheme
http://www.vlinderstichting.nl/libellen.php?id=92
http://www.vlinderstichting.nl/libellen.php?id=92
http://www.rothamsted.ac.uk/insect-survey/
http://www.rothamsted.ac.uk/insect-survey/
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 1 

Fig. 1) Weekly counts at two example UKBMS sites with the corresponding GAM 2 

(equation 3) fitted with daily and site effects for 2005 (blue/black corresponding to 3 

different sites). 4 

 5 
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 1 

Fig. 2) Power to estimate simulated linear time trends from the current (black) and new 2 

(blue) method, applied to surveys of 100 sites over 10 years. 30% of observations are 3 

assumed missing. 4 
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Fig. 3a) Comparison of the mean number 

of sites included (averaged by year) by 

each model for the set of UKBMS species.  

 

 

 

 

 

 

 

Fig. 3b) Mean percentage of total 

monitored 10km2 grid squares retained 

under the current model (across years) 

against the total number of sites for each 

species from the set of UKBMS species.  
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 1 

Fig. 4) Comparison of the estimated percentage trends of the collated indices for the two 2 

models for each UKBMS species (species and actual values listed in Supplementary 3 

Information). 4 
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 1 

Fig. 5) Difference in the mean width (over years) of the bootstrapped confidence 2 

intervals for the current model and the two-stage model for a selection of UKBMS 3 

species compared to the mean number of sites (averaged by year) for each species 4 

(species listed in Supplementary Information). 5 
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 8 
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Fig. 6) Collated index plots for the current model (black) and two-stage model (blue) 1 

with corresponding bootstrapped confidence intervals (red/green line indicates 2 

significant linear decrease/increase), fitted to UKBMS data for four example species. 3 

Indices (log10(abundance)) are scaled relative to a value of 2.0 (100%) in the initial 4 

year. 5 
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a) Chalkhill Blue  

 

c) Dark Green Fritillary 

 

 

 

b) Grayling 

 

d) Marsh Fritillary  
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