
This version available at http://nora.nerc.ac.uk/501787/ 
 
 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 

© Copyright 2013 American Meteorological Society (AMS). 
Permission to use figures, tables, and brief excerpts from this work 
in scientific and educational works is hereby granted provided that 
the source is acknowledged. Any use of material in this work that is 
determined to be “fair use” under Section 107 of the U.S. Copyright 
Act September 2010 Page 2 or that satisfies the conditions 
specified in Section 108 of the U.S. Copyright Act (17 USC §108, as 
revised by P.L. 94-553) does not require the AMS’s permission. 
Republication, systematic reproduction, posting in electronic form, 
such as on a web site or in a searchable database, or other uses of 
this material, except as exempted by the above statement, requires 
written permission or a license from the AMS. Additional details are 
provided in the AMS Copyright Policy, available on the AMS Web 
site located at (http://www.ametsoc.org/) or from the AMS at 617-
227-2425 or copyrights@ametsoc.org. 

 

  
 
 
Article (refereed) – Published version 
 
 
 
Naveira Garabato, Alberto C.; Nurser, A.J. George; Scott, Robert B.; Goff, John A.. 
2013 The Impact of Small-Scale Topography on the Dynamical Balance of the 
Ocean. Journal of Physical Oceanography, 43 (3). 647-668. 10.1175/JPO-D-12-
056.1  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Contact NOC NORA team at  
publications@noc.soton.ac.uk 

 
The NERC and NOC  trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other 
countries, and may not be used without the prior written consent of the Trademark owner. 

http://nora.nerc.ac.uk/501787/
http://nora.nerc.ac.uk/policies.html#access
http://www.ametsoc.org/
mailto:copyrights@ametsoc.org
http://dx.doi.org/10.1175/JPO-D-12-056.1
http://dx.doi.org/10.1175/JPO-D-12-056.1
mailto:nora@ceh.ac.uk


The Impact of Small-Scale Topography on the Dynamical Balance of the Ocean

ALBERTO C. NAVEIRA GARABATO

University of Southampton, National Oceanography Centre, Southampton, United Kingdom

A. J. GEORGE NURSER

National Oceanography Centre, Southampton, United Kingdom

ROBERT B. SCOTT
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ABSTRACT

The impact of small-scale topography on the ocean’s dynamical balance is investigated by quantifying the

rates at which internal wave drag extracts (angular) momentum and vorticity from the general circulation.

The calculation exploits the recent advent of two near-global descriptions of topographic roughness on

horizontal scales on the order of 1–10 km, which play a central role in the generation of internal lee waves by

geostrophic flows impinging on topography and have been hitherto unresolved by bathymetric datasets and

ocean general circulation models alike. It is found that, while internal wave drag is a minor contributor to the

ocean’s dynamical balance over much of the globe, it is a significant player in the dynamics of extensive areas

of the ocean, most notably the Antarctic Circumpolar Current and several regions of enhanced small-scale

topographic variance in the equatorial and Southern Hemisphere oceans. There, the contribution of internal

wave drag to the ocean’s (angular) momentum and vorticity balances is generally on the order of ten to a few

tens of percent of the dominant source and sink terms in each dynamical budget, which are respectively

associated with wind forcing and form drag by topography with horizontal scales from 500 to 1000 km. It is

thus suggested that the representation of internal wave drag in general circulation models may lead to sig-

nificant changes in the deep ocean circulation of those regions. A theoretical scaling is derived that captures

the basic dependence of internal wave drag on topographic roughness and near-bottom flow speed for most

oceanographically relevant regimes.

1. Introduction

The dynamical balance of the ocean’s general circu-

lation, commonly expressed in terms of the steady,

depth-integrated (angular) momentum and (potential)

vorticity budgets, is presently understood as a leading-

order balance between an acceleration of the ocean by

wind stress and a deceleration by pressure forces on the

bottom topography (e.g., Hughes and de Cuevas 2001;

Vallis 2006). This may be illustrated by invoking, for

example, the depth-integrated momentum equation,

fk3U1$P1R5 tw1 pb$H2 tb , (1)

where steadiness has been assumed. In (1) f is the Coriolis

parameter; k is the unit vector in the vertical (upward)

direction; U5
Ð h
2H ru dz is the depth-integrated mass

transport (withH as the depth of the ocean floor, h as the

height of the ocean surface, r as density and u as velocity);

P5
Ð h
2H pdz is the depth integral of pressure (denoted by

p); the term R amalgamates contributions to the lateral

redistribution of momentum by lateral viscous stresses

and nonlinearities in u; pb is the bottom pressure; tw is the
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wind stress at the ocean surface; and tb is the bottom

frictional stress. The termRmay be locally significant but

averages out to zero when integrated over a wide enough

area (Hughes and de Cuevas 2001; Eden and Olbers

2009), so it can be neglected. With this approximation

in place, Eq. (1) states that the component of the lateral

transport of momentum not balanced by thermal wind

(i.e., fk 3 U 1 $P) is locally forced by a source of mo-

mentum from the wind (tw) and sinks of momentum as-

sociated with pressure forces on the bottom topography

(pb$H) and bottom friction forces (drag) in a viscous

boundary layer (2tb).
1 While the latter term had been

portrayed as the primary (and only) momentum sink

by classical theories of ocean circulation (e.g., Stommel

1948; Munk 1950), it was later argued to be largely neg-

ligible by numerous authors [see, e.g., Vallis (2006) and

references therein]. Thus, the resulting momentum bal-

ance indicates that the ocean is set in motion by the wind

and that its flow is ultimately arrested by a topographic

form drag.

Investigations of this fundamental balance in general

circulation models have confirmed its validity (Hughes

and de Cuevas 2001; Eden andOlbers 2009). Themodels,

which have resolutions ranging from eddy-permitting

[O(10 km)] to coarse [O(100 km)], reveal the deceler-

ating action of topographic form drag to be associated

with the occurrence of pressure gradients across prom-

inent features of the bottom topography (such as conti-

nental slope regions, major ridges and plateaus) typically

measuring 500–1000 km across [see e.g., Fig. 4 in Hughes

and de Cuevas 2001 or Fig. 7b in this article]. The

prevalence of this length scale in the ocean momentum

sink as portrayed by general circulation models may be

understood by examining the (friction-based) physical

mechanism mediating the setup of pressure gradients

across the large-scale topographic features resolved by

the models. This is done in section 2. There, it is shown

that the effectiveness of topography in arresting the

ocean circulation generally increases as the height, steep-

ness, and horizontal dimensions of the topographic fea-

tures increase. Thiswould appear to imply that topography

with horizontal scales comparable to or smaller than

those resolved by general circulation models is in-

effective at arresting the ocean circulation. However,

as the horizontal scale of topography decreases, a nar-

row range of small horizontal scales is encountered

for which topographic form drag is underpinned by

distinct, comparatively more effective physics: the gen-

eration of internal lee waves by geostrophic flow im-

pinging on topography (e.g., Bell 1975; Gill 1982). The

horizontal dimensions of the small-scale topography im-

plicated in lee wave generation typically range from

hundreds ofmeters to up toO(10 km), as is characteristic

of abyssal hills, and are unresolved by conventional

global topographic datasets and the general circulation

models regularly used to investigate ocean dynamics.

In this article, we exploit the recent advent of several

near-global descriptions of topographic roughness on

horizontal scales less thanO(10 km) to assess the impact

of small-scale topography on the ocean’s dynamical

balance. We note that the time-mean internal lee wave

drag examined here contains information on the large-

scale, time-mean ocean circulation that is distinct and

largely independent from the time-mean internal lee

wave energy flux computed by Scott et al. (2011) and

Nikurashin and Ferrari (2011). This is because, while

the instantaneous internal lee wave drag is essentially

equivalent to the concurrent internal lee wave energy

flux (the energy flux is equal to the drag multiplied by

the near-bottom velocity), significant differences be-

tween the distributions of the two quantities are in-

troduced by time averaging.2 Physically, the time-mean

internal lee wave energy flux mainly reflects the dissi-

pation of mesoscale eddy flows as they impinge on

small-scale topography and generate internal waves,

whereas the time-mean internal lee wave drag mea-

sures the rate of deceleration of the time-mean ocean

circulation associated with the same wave generation

process in the presence of a time-mean flow or a skewed

eddy field. Thus, if there is no time-mean flow and the

eddy field has zero skewness, the time-mean internal

lee wave drag must be zero, but the time-mean internal

lee wave energy flux may still be large. The two vari-

ables become increasingly equivalent as the magnitude

of the mean flow substantially exceeds the character-

istic amplitude of eddy motions: this is a rare scenario

in the ocean, where the kinetic energy of geostrophic

eddies is typically greater than that of the time-mean

circulation by an order of magnitude (Ferrari and

Wunsch 2009).

Our key finding is that, while internal lee wave drag

associated with small-scale topography is commonly

1 Note that since a horizontal stress is a downward flux of hori-

zontal momentum the depth-integrated drag force (which we term,

rather loosely, the drag in the following) is opposite in sense to the

bottom stress.

2 In contrast to the energy flux, which is a positive-definite scalar

with a positive-definite time-mean value, the drag is a signed vector

quantity for which time-averaging in the presence of a mesoscale

eddy field incurs substantial cancellation. Note, however, that as

the drag is nonlinearly dependent on the near-bottom velocity, this

cancellation is not perfect in the presence of a mean flow and/or

a skewed eddy field.
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unimportant in arresting the ocean circulation over

much of the globe, it plays a significant role in the dy-

namics of extensive regions of the ocean (most notably

the Southern Ocean). A theoretical perspective on the

form drag associated with large- and small-scale topog-

raphies is offered in section 2 along with the method-

ology and data sources underpinning the various terms

in the ocean’s dynamical balance examined in this arti-

cle. The results of our calculations are presented in

section 3. In section 4, the implications of this work are

discussed, and conclusions are drawn.

2. Theory, methodology, and data

In this section, we present the methodology and data

sources underpinning the four basic terms of the ocean’s

dynamical balance identified in section 1 [i.e., the source

of (angular) momentum or vorticity linked to wind

forcing and the sinks associated with form drag by large-

scale topography, with form drag by small-scale topog-

raphy, and with frictional drag at the sea floor] and

provide brief theoretical accounts of how the two classes

of form drag come about. In section 2a, we report on

the estimates of wind stress considered in this work. In

section 2b, we derive a theoretical scaling for the de-

pendence of the effectiveness of form drag by large-

scale topography on the topographic dimensions, and

combine it with observations of the spectral properties

of the global sea floor to shed light on the characteristic

length scale of form drag seen in general circulation

models. We also introduce the form drag calculated in

one such model, which is treated as a representative

estimate of large-scale topographic form drag through-

out the remainder of this study. In section 2c, we outline

internal lee wave generation theory and explain how we

use it to estimate the form drag by small-scale topog-

raphy. Finally, the calculation of frictional drag is de-

scribed in section 2d.

a. Wind stress

The primary wind stress dataset considered in this

work is the EuropeanCentre forMedium-RangeWeather

Forecasts wind stress climatology of Siefridt and Barnier

(1993), which forces the Ocean Circulation and Climate

Advanced Modeling (OCCAM) project model (see,

e.g., Webb et al. 1998) from which an estimate of the

large-scale topographic form drag is extracted (see

section 2b). The NavyOperational Global Atmospheric

Prediction System (NOGAPS) dataset (Rosmond et al.

2002) used in forcing the Hybrid Coordinate Ocean

Model (HYCOM) (see, e.g., Scott et al. 2010), the

model implicated in the calculation of the small-scale

topographic form drag (see section 2c), was also

examined. A high degree of consistency between cli-

matological means of the two wind stress datasets was

found, so only the ECMWF climatology is presented in

this article.

b. Form drag by large-scale topography

1) DEPENDENCE OF FORM DRAG ON THE

SCALES OF TOPOGRAPHY

As commented on in section 1, the decelerating action

of topographic form drag in general circulation models

is found to be associated with topographic features typi-

cally measuring 500–1000 km across. The dominance

of this length scale in the ocean momentum sink in the

models may be understood by examining the physical

mechanism mediating the setup of cross-topographic

pressure gradients for topography of horizontal di-

mensions greater than O(10 km). One example of the

setup of topographic form stress by friction is of course

the simple barotropic Stommel gyre in a rectangular

flat-bottomed ocean. Assuming the wind to be westerly

in the northern part of the subtropical basin and de-

caying to zero at the southern end, then pressure is

almost constant along the bounding streamline of flow

moving (weakly) southward on the eastern boundary

and westward along the southern boundary. However,

bottom friction acting on the rapid northward flow in

the subtropical western boundary current gives a pres-

sure drop from south to north on the western sidewall.

The resultant lower pressure on the western sidewall,

compared to that on the eastern sidewall, gives the net

westward form drag that balances the eastward wind

stress. Although the zonal frictional stress is insignifi-

cant, the meridional frictional stress permits the setup

of a zonal form drag.

To elicit this point more generally, consider the simple

scenario of a quasi-zonal eastward barotropic flow with

velocity scaleU on an ocean with depthH2 impinging on

an idealized rectangular plateau-shaped topographic

feature (Fig. 1). We assume for simplicity that relative

vorticity is unimportant in the potential vorticity budget.

This assumption may not always hold, and its validity

requires either (i) that the frictional spindown time scale

is less than the time scale for fluid to cross topography or

(ii) that all length scales (zonal, meridional, and skirt

widths) of the topography are much greater than the

Rhines scale (U/b)1/2 ; 100 km for U ; 0.1 m s21, b ;
1.0 3 10211 m21 s21. Over realistic ocean topographic

features with scales on the order of the Rhines scale,

variation of relative vorticity along streamlines will in

fact often lead to substantial additional zonal form

drag—Rossby wave drag—as Rossby waves are emitted

(McCartney 1975; Gill 1982).
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The plateau has a height DH5H2 2H1, longitudinal

scale Lx, latitudinal scale Ly, and ‘‘skirts’’ (sloping areas

around the sides) of widthLT and slope ST5DH/LT.We

assume that the plateau is sufficiently high that fN/H1 ,
fS/H2 (writing fS and fN as the Coriolis parameters at the

southern and northern ends of the plateau), so flow

cannot penetrate onto the plateau. The whole of the

upstream flow therefore follows f/h contours that enter

the western skirt of the plateau, thread through the

northern skirt (as appropriate to the Southern Hemi-

sphere), and then emerge from the eastern skirt. By

continuity, flow speeds along the skirt will thus be on the

order ofUT 5 (Ly/LT)U. Of course, this is only an order

of magnitude estimate: the flow may not occupy the

whole of the skirt (thus giving stronger flow), and flow

speed will vary around the plateau.

In the absence of any frictional processes within the

boundary currents or change in relative vorticity along

geostrophic streamlines, the pressure on an f/h contour

is the same at exit from the eastern skirt as at entry into

the western skirt, and there is no net bottom pressure

drag against the plateau. However, where there is fric-

tion, the pressure will differ from west to east, so the

plateau will provide a net drag. Characterizing friction

with a quadratic bottom drag 2cdjuju (where cd is a

constant drag coefficient), the pressure difference along

a streamline entering the skirt a distance aLy (where 0#

a# 1) south of the northern edge of the plateau from the

west and exiting the east will be

Dp(a);
cd
H

U2
T(2aLy 1Lx) .

The total zonal pressure force exerted by the plateau on

the ocean is thus

P5DHLy

ð1
0
Dp(a) da; cd

DH

H
U2

TLy(Ly1Lx) ,

while the direct zonal frictional drag integrated over the

northern skirt is

F 5LTLxcdU
2
T .

The ratio of the net pressure force to the frictional force

is then given as

P
F 5

DH

H

Ly(Ly1Lx)

LTLx

5
DH

LT

Ly

H

(Ly1Lx)

Lx

. (2)

Expression (2) illustrates how the presence of sloping

topography greatly enhances the decelerating action

of friction over that of direct frictional drag, by virtue

of friction’s role in enabling the setup of a net cross-

topographic pressure force. Note that the form drag has

no impact on the energy budget; it only affects mo-

mentum. Friction on the other hand has a direct impact

on the energy budget, but a lesser (direct) impact on

momentum. Equation (2) implies that the net pressure

force is relatively most important for plateau-shaped

topography whose heightDH is comparable to the depth

of the ocean H and varies over a skirt length scale LT,

much smaller than the meridional extent of the topog-

raphyLy. For ameridionally elongated ridgelike plateau

with Ly � Lx, the zonal frictional force becomes in-

significant, but the form drag remains important. Thus,

the characteristic horizontal length scale of relatively

high, steep and meridionally elongated topographic

features present in the ocean should define the size of

topography that is most effective at arresting the oceanic

flow.

To obtain an estimate of the horizontal dimension

characteristic of large-scale topographic form drag, ex-

pression (2) must be combined with information on the

properties of sea floor topography. To gain such infor-

mation, we compute a semivariogram (a type of struc-

ture function that is widely used in geostatistics) over all

ocean depths in excess of 1000 m (Fig. 2a). The semi-

variogram is defined as

g(l)5E[(h(x)2h(x1 l))2]/2 , (3)

where h(x) is the topography at position x, l is the lag

distance (here restricting to a one-dimensional func-

tion), and E[ ] is the expectation operator. The semi-

variogram is estimated by averaging the square of

differences as a function of lag distance and dividing by

2. The global semivariogram is well matched by a von

Kármán model (Goff and Jordan 1988):

FIG. 1. Plan view schematic of a zonal flow (denoted by the thick

lines and arrows) of speedU impinging on an idealized rectangular

plateau (shown by the thin lines) in the Southern Hemisphere. The

plateau has zonal lengthLx, meridional widthLy and a sloping edge

of width LT.
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gvK(l)[ h2rms

�
12

Gn(k0l)

Gn(0)

�
, (4)

where

Gn(r)5 rnKn(r), 0# r,‘, n 2 [0, 1] . (5)

Here Kn is the modified Bessel function of the second

kind of order n. The von Kármán model is a band-limited

fractal with self-affine scaling at wavenumbers much

less than k0 and a flat spectrum at wavenumbers much

greater than k0. The parameter hrms is the rms height

variability, and n is the Hurst number, from which the

fractal dimension can be determined as D 5 3 2 n for

a surface. At n5 0.5, the von Kármán model is identical

to an exponential form. Best-fit model parameters to the

global semivariogram (Fig. 2a) are hrms 5 965 m, k0 5
0.001 45 km21, and n 5 0.42 (D 5 2.58).

The global semivariogram model (Fig. 2a) demon-

strates that sea floor features increase in a self-affine

manner up to horizontal scales of;1000 km; 80% of the

semivariance is contained in features smaller than this

scale. Above this scale, sea floor features do not ap-

preciably increase in height as their lateral scale in-

creases. The upper limit of the self-affine regime can be

thought of as a ‘‘characteristic scale’’ of the topography

(Goff and Jordan 1988). If we assume that, in the self-

affine regime, the skirt length LT is approximately a

constant proportion of ‘‘feature length’’ (Lx and Ly),

then Eq. (2), in the absence of knowledge of the ratio

Ly/Lx, reduces to a dependence onDH/H; that is, the net

pressure force increases with increasing feature height.

At larger scales, however, Lx and Ly increase while

DH/H does not. Because slopes are decreasing rapidly

with increasing scale in this regime, it is reasonable

to assume that LT will increase as a proportion of Lx

and Ly, thereby decreasing net pressure force with in-

creasing scale. Although this argument depends on overly

simplistic generalities, it nevertheless provides a rea-

sonable expectation for a peak in influence on oceanic

drag related to the characteristic horizontal scale of the

seafloor of ;1000 km. This interpretation is consistent

with the aforementioned finding that topography of the

same approximate scale dominates the ocean momen-

tum sink in general circulation models.

2) ESTIMATE OF LARGE-SCALE TOPOGRAPHIC

FORM DRAG

The estimate of form drag by large-scale topography

examined here is taken from the work of Hughes and de

Cuevas (2001). The estimate is based on fields from the
1/48-resolution OCCAM model and is quantitatively

similar to diagnostics from other general circulation

models of coarse or eddy-permitting resolution (e.g., Lu

and Stammer 2004; Eden and Olbers 2009). See Hughes

and de Cuevas (2001) for details of the calculation

procedure.

c. Form drag by small-scale topography

1) INTERNAL LEE WAVE GENERATION THEORY

AND CALCULATION PROCEDURE

The generation of internal lee waves by geostrophic

flow over topography has been studied from a theoreti-

cal perspective by Bell (1975) and Gill (1982), amongst

others. Adopting the traditional approximation of ig-

noring the horizontal components of the Coriolis force,

the linearized density equation and nonhydrostatic,

vertical momentum equation provide a relation between

FIG. 2. Semivariograms computed from (a) global topography

(Smith and Sandwell 2004) and (b) multibeam bathymetry data

from the flanks of the northern Mid-Atlantic Ridge (Goff et al.

1995) (solid lines). The global semivariogram was limited to depths

in excess of 1000 m and latitudes in the range from 758S to 758N.

Dashed lines indicate the best-fit von Kármán model, with pa-

rameters as shown, estimated by least squares fit.
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pressure and vertical velocity. For small-amplitude si-

nusoidal topography the vertical velocity is imposed by

the kinematic boundary condition, and one can solve

for the vertical flux of horizontal momentum resulting

from the pressure–topographic slope correlation. The

momentum flux is nonzero if the oscillations generated

by flow over topography can propagate as waves, that is,

if their intrinsic frequency s 5 k � u [where k 5 (k, l) is

the horizontal wavenumber of the topography and u 5
(u, y) is the near-bottom horizontal velocity] lies be-

tween the inertial ( f) and buoyancy (N) frequencies,

jf j, jsj,N. The horizontal momentum extracted from

the background flow is carried upward by the waves as

they radiate away from the boundary and is deposited

when the waves break, thereby exerting a drag on the

background flow. Throughout this work, we will assume

that the internal lee waves generated by geostrophic

flow over topography do not experience significant

horizontal propagation (relative to the horizontal spac-

ing of the calculation grid) and that they break at some

level within the water column, such that the depth-

integrated internal wave drag matches the vertical flux

of horizontal momentum associated with the waves at

generation. The first assumption follows from the in-

trinsic role that the geostrophic flow plays in the gen-

eration and persistence of the internal lee waves, which

locks them to the horizontal proximity of their genera-

tion site (e.g., Nikurashin and Ferrari 2010a). The sec-

ond reflects our present lack of knowledge on the

characteristic evolution of internal lee waves as they

propagate vertically, and the high likelihood of eventual

breaking, particularly in the presence of nonlinearity

in the internal wave field and buoyancy scaling effects

(see Naveira Garabato et al. 2004; Nikurashin and

Ferrari 2010a for a discussion). Note, though, that, if the

dissipation of the internal lee waves within the water

column is not complete, the wave drag will be reduced

proportionally.

Representing the topography by a two-dimensional

power spectrum P(k, l; x, y) that varies slowly on spatial

scales much larger than the wavelengths of internal lee

waves, it may be shown that the net topographic form

drag resulting from the sum of all contributions within

the internal wave band is given by

2tliniw (x, y, t)5
r0
4p2

ð‘
2‘

ð‘
2‘

S(s)
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 l2
p P(k, l)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N22s2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 f 2

q
dk dl , (6)

where r0 is the fluid density and

S(s)5

8<
:
1 if jf j, jsj,N; s. 0,

21 if jf j, jsj,N; s, 0,

0 otherwise.

Generally, abyssal N varies little on time scales of up to

decades, so N 5 N(x, y) will be approximated with cli-

matological values. In contrast, s 5 s(x, y, t) varies

significantly in space and time because of the time de-

pendence of the background flow. It will be assumed

that the flow is quasi-steady on time scales longer than

the inertial period, although forcing by near-inertial

flows could be an additional contribution to generation

not accounted for in this study (Kasahara 2010).

Note that the internal lee wave drag is not necessarily

aligned with the near-bottom flow. For instance, the

trivial case with monochromatic topography with wave-

number k0 gives from (6) a drag in the k0 direction. This

makes physical sense, as the flow parallel to such mono-

chromatic topography does not interact with it; only the

flow across topography generates waves. In fact, oceanic

topographies are generally sufficiently nonisotropic that

the internal wave drag is generally closely aligned to the

normal direction of the topography (see the detailed

discussion in section 1c of appendix B and Fig. B4). Of

course, only the component of the velocity parallel to the

wave drag contributes to the energy transfer tiw � u into

the internal wave field discussed in Scott et al. (2011).

The linear theory above describes well the generation

of internal lee waves whenN� jf j so that the traditional

approximation applies and when the topography has

small amplitude in the sense of

1

Fr
[

HN

U #
1

Frc
, (7)

where Fr is the Froude number of the flow, U is a back-

ground velocity scale, H is the amplitude of the topo-

graphic variations, and Frc is a critical Froude number.

As topographic amplitude and buoyancy frequency in-

crease or as background velocity decreases, the flow

becomes increasingly blocked by the topography lead-

ing to substantially less form drag than given by (6).

Empirical corrections for this phenomenon have been

put forward and tested with laboratory experiments and

numerical simulations. These are reviewed by Scott

et al. (2011) and will not be discussed here. We follow

those authors in adopting a correction for topographic

blocking of the form
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tiw5 tliniwG5 tliniw
L

p

h
arccos(122L)22(122L)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(12L)

p i
,

(8)

where

L5

8><
>:
1 if Fr21#Fr21

c ,

Fr

Frc
if Fr21.Fr21

c .

Our results are insensitive (to better than 1%) to the

choice of other possible corrections (Scott et al. 2011).

As in Scott et al., Fr21
c is taken as 0.7, and the ampli-

tude of the topography in (7) is defined as

H25
1

4p2

ð‘
2‘

ð‘
2‘

jS(s)jP(k, l) dk dl . (9)

This is a metric of the amplitude of the topographic

variations contributing to the generation of internal lee

waves and is therefore time-dependent (through s).

Note that, despite the recent convergence between

different corrections for blocking effects in the literature

[including (8)], this expression is unlikely to be definitive

and may be associated with substantial uncertainty. The

clearest illustration of this point is provided by the

poorly known extent to which (8) and other equivalent

corrections adequately capture the form drag associated

with highly nonlinear high-drag states, occurring for

Fr21 values of O(1) (e.g., Eckermann et al. 2010). Such

high-drag states are characterized by hydraulic jumps,

intense internal wave breaking, and vortex shedding at

and around topographic obstacles, and may be largely

described in terms of internal wave dynamics (Peltier

and Clark 1979; Bacmeister and Pierrehumbert 1988;

Welch et al. 2001). Their effective drag has been found

to exceed linear theory predictions by O(10%–100%),

depending on various aspects of topographic configu-

ration (Welch et al. 2001; Wells et al. 2008; Eckermann

et al. 2010). Expression (8) may thus provide a lower-

bound estimate of jtiwj for Fr21 ; 1. Nonetheless, since

such high Fr21 values occur only rarely in the ocean

(specifically, in less than 10% of all the spatiotemporal

points in our calculation; see Scott et al. 2011), this and

other blocking-related issues are unlikely to have a ma-

jor impact on our results.

Numerical integration of (6) is performed using 1003
100 grid points separately over each quadrant in (k, l)

space. Wavenumber points increase geometrically in mag-

nitude, from kmin 5 lmin 5 1026 rad m21 to kmax 5 lmax 5
0.1 rad m21; this provides adequate numerical conver-

gence. To produce a global map of the climatological

(time-mean) value of the topographic form drag asso-

ciated with internal lee wave generation, 2tiw(x, y, t)

(where the overbar indicates an average over many

mesoscale eddy periods), knowledge of the spatial dis-

tribution of the topographic power spectrum P(k, l),

the buoyancy frequency N, and the time-varying geo-

strophic flow near the ocean floor, u, is required

throughout the global ocean. The sources of these data

are detailed in the following subsections.

2) SMALL-SCALE TOPOGRAPHY

In order for small-scale topography to exert a drag on

ocean circulation, internal lee wave generation (and, ulti-

mately, breaking)must occur. The precise horizontal scales

of the topography exerting a drag at any one location and

time can therefore be determined from the condition for

internal lee wave generation: jf j , jsj 5 jk � uj , N.

Substituting characteristic values of jf j ; 124 rad s21,

N ; 1023 rad s21 and near-bottom background veloci-

ties juj in the range 0.01 m s21 to 0.1 m s21, it may be

inferred that the topographic features implicated in in-

ternal lee wave generation have horizontal wavelengths

of 100 m to 10 km. At these small scales, abyssal hills

are the most prominent feature of the topographic

fabric of the ocean floor and prevail over larger-scale

features such as spreading ridges, fracture zones,

and seamounts. They are created at midocean ridge

spreading centers by faulting and volcanism, and are

modified in time by sedimentation. They exhibit char-

acteristic scales from 50 to 300 m in height, 2 to 8 km

in width, and 10 to 25 km in length and obey fractal

scaling below a corner wavenumber (Goff and Jordan

1988, 1989; Goff et al. 1997); see Fig. 2b. Utilizing the

two-dimensional anisotropic spectral form of the von

Kármán model, these authors put forward a represen-

tation of small-scale topography by a power spectrum

of the form

P(k, l)5 4pn
h2rms

knks

"
jkj2
k2s

cos2(u2 us)

1
jkj2
k2n

sin2(u2 us)1 1

#2(n11)

, (10)

where ks and kn are the wavenumbers in the strike and

normal directions, respectively, with kn $ ks; us mea-

sures the angle clockwise from true north to the strike

direction; u 5 arctan(k/l) is the angle clockwise from

true north of the wavenumber vector; the Hurst number

n indicates the steepness of the spectrum at high wave-

numbers; and hrms is the rms topographic height vari-

ability, defined such that
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P(k, l) dk dl .

In subsequent analysis, the set of parameters (hrms, ks,

kn, n, us) is used to characterize the small-scale topog-

raphy.

A major difficulty in understanding the role of small-

scale topography in arresting the ocean circulation is

that abyssal hill scales cannot be resolved by conven-

tional global topographic datasets, which are largely

reliant on satellite altimetric gravity measurements and

have a characteristic horizontal resolution of 10–20 km

(e.g., Smith and Sandwell 2004). In the present work, we

take advantage of the recent development of two quasi-

independent, near-global datasets of small-scale topo-

graphic parameters by Goff and Arbic (2010) and Goff

(2010) (respectively referred to as GA2010 and G2010

hereafter) verified by comparison with available multi-

beam bathymetric observations. The GA2010 dataset

predicts abyssal hill roughness statistical parameters via

relationships for the average statistical properties of

abyssal hills as a function of spreading rate and di-

rection, and for the modification to these roughness

parameters as a function of sediment thickness. The

G2010 dataset is derived by relating the small-scale

variability in satellite altimetric gravity measurements

to the statistical properties of the abyssal hill morphol-

ogy using the upward continuation formulation. Details

of the construction of the two datasets may be found in

GA2010 and G2010. Further discussion of how the da-

tasets compare is provided by Scott et al. (2011). While

the two datasets are found to compare well in most re-

spects, here we draw on the conclusions of those authors

and make use of the slightly superior G2010 dataset for

our default calculation, while considering theGA2010 in

sensitivity tests (appendix A). Our treatment of the two

datasets for computational purposes is identical to that

by Scott et al. (2011), and we refer the reader to that

article for a description of those methodological details.

Here hrms is found to be the most important topographic

parameter in shaping the spatial patterns of internal lee

wave generation. Its distribution for theG2010 dataset is

mapped in Fig. 3a. Enhanced abyssal hill roughness is

seen primarily in the slow-spreading midocean ridges of

the Atlantic and Indian basins, their extensions into the

Southern Ocean, and the Pacific–Antarctic Ridge.

3) NEAR-BOTTOM BUOYANCY FREQUENCY

Our estimate of the near-bottom stratification is based

on the World Ocean Atlas 2009 (WOA2009) seasonal

temperature and salinity climatology (Locarnini et al.

2006; Antonov et al. 2006). Details of the calculation,

gridding, and validation procedures are given in Scott

et al. (2011). The resulting distribution of abyssal N is

shown in Fig. 3b. Near-bottom N values span a range

of approximately an order of magnitude. They are de-

pendent primarily on ocean depth, with an increase

(decrease) in N in relatively shallow (deep) water. Wa-

ter mass age is also seen to have an imprint in the dis-

tribution of near-bottom stratification, with, for

example, lowN values across the old waters of the North

Pacific.

4) NEAR-BOTTOM GEOSTROPHIC FLOW

The statistics of the near-bottom geostrophic flow are

estimated using a specific run of the global 1/128 Hybrid

Coordinate Ocean Model (HYCOM) conducted at the

Naval Research Laboratory, Stennis Space Center. The

run in question (hereafter DA) assimilates available

satellite altimetric and sea surface temperature mea-

surements and a collection of hydrographic observations

from various sources. Further details of the DA run and

references on the model are given by Scott et al. (2010,

2011). The former set of authors assessed the realism of

the kinetic energy of the DA run and a companion free-

running HYCOM simulation along with two other global-

eddying ocean general circulation models by reference

to over 5000 moored current meter records scattered

around the globe. They found the DA (free running)

run to overestimate (underestimate) near-bottom kinetic

energy by a factor of 1.3 (3). Thus, we will consider the

DA run to be our best estimate of the near-bottom

geostrophic flow. Following Scott et al. (2011), we will

analyze 360 days of data and use 5-day averages of the

model flow field in our calculations to filter out high-

frequency ageostrophic signals. Like those authors, we

will take the velocity on the second deepest vertical level

(level 2) at each location of the HYCOM ocean as our

best estimate of the near-bottom flow, for this is the

deepest model level outside of the frictional bottom

boundary layer. However, we will consider the data at

the deepest and third deepest levels (levels 1 and 3, re-

spectively) in sensitivity tests (appendix A). See Scott

et al. (2011) for a more detailed description of our

HYCOM data processing procedure.

The time-mean velocity and kinetic energy on level 2

of the DA run for year 2006 (used in our default calcu-

lation) are displayed in Figs. 3c and 3d, respectively. It is

shown in section 4 that, over a range of conditions that

hold widely in the ocean, jtiwj scales approximately with

juj elevated to a power in the range of 1 to 2 for rea-

sonable values of n, such that both the time-mean ve-

locity and kinetic energy are valuable descriptors of

the forcing flow. The two variables have many broad

similarities. Although kinetic energy reflects primarily
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mesoscale eddy variability rather than the time-mean

flow, the two are inextricably linked through dynamical

(mainly baroclinic) instability processes (e.g., Smith

2007). It is thus no surprise that both variables indicate

energetic flows in the same regions, most obviously in

the Antarctic Circumpolar Current (ACC) in the

Southern Ocean and the western boundary currents of

the three major ocean basins. Note, however, that the

mean velocity has a more filamented structure than

the kinetic energy. This reflects the contrast between the

jetlike nature of mean ocean flows and the smearing out

of such mean filamentary structures by mesoscale eddy

variability.

d. Frictional drag

The frictional drag is calculated from the HYCOM

DA velocity field at the deepest grid point in each lo-

cation in the model ocean (i.e., in the set of grid points

embedded in the frictional bottom boundary layer in the

model). The calculation is conducted using a quadratic

formulation of the frictional drag,

2tb(x, y, t)52r0cdjubjub . (11)

Here cd is the frictional drag coefficient, set to 0.0022

as in HYCOM (which contains quadratic frictional

drag), and ub is the velocity vector within the frictional

boundary layer.

3. Results

To assess the role of small-scale topography on the

ocean’s dynamical balance, in this section we examine

the significance of internal wave drag in the context of

other source and sink terms in the oceanic budgets of

momentum, angular momentum, and vorticity. Only

FIG. 3.Maps of (a) small-scale bottom roughness fromG2010, (b) near-bottombuoyancy frequency fromWOA2009, (c) time-mean (for

2006) near-bottom (second grid above bottom) speed from HYCOM DA, and (d) near-bottom kinetic energy from the same period in

HYCOM DA. White contours in (c), black in (d), indicate time-mean sea surface height in the model (contour interval 0.2 m).
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time-mean (in the sense of an average over many me-

soscale eddy periods) quantities are considered here,

as pertains to the dynamics of the time-mean ocean

circulation.

Figure 4 shows estimated spatial distributions of the

source (wind stress tw) and two sinks (internal wave

drag 2tiw and frictional drag 2tb) of the ocean’s mo-

mentum. The other sink (form drag by large-scale to-

pography) is not shown because displaying it in this

manner (without first having integrated spatially across

large-scale topographic features) would simply reveal

very large numbers of alternating sign associated with

reversing topographic slopes and would thus be un-

informative.

It is readily seen that both internal wave drag (Fig. 4b)

and frictional drag (Fig. 4c) account for a relatively

minor fraction of the local wind stress (Fig. 4a) over

large areas of the global ocean. There are, however,

a number of important exceptions. Themost obvious of

these is the ACC in which the combination of strong

near-bottom flows (Figs. 3a,b) and sizeable small-scale

topographic roughness (Fig. 3d) leads to tiw values that

are commonly in the range from 0.03 to 0.08 N m22, or

approximately 10%–50% of the local wind stress. In-

ternal wave drag is also a significant momentum sink in

several regions of rough small-scale topography in the

equatorial and Southern Hemisphere oceans, most

notably over the axial ridge systems of the Indian and

Atlantic basins.

As highlighted in section 1, the internal wave drag is

nonlinearly dependent on the near-bottom velocity,

such that the time-mean internal wave drag is nonzero in

the presence of a skewed mesoscale eddy field as well as

of a time-mean flow. The relative contributions of time-

mean and eddy flows to the time-mean internal wave

drag are quantified in Fig. 5. This illustrates that the

time-mean internal wave drag associated with the time-

mean flow (Fig. 5a) and that associated with eddy effects

(Fig. 5b) have similar spatial distributions to, and ac-

count for, comparable fractions of the total time-mean

wave drag. The latter finding is brought out most clearly

in Fig. 5c, which shows that the contribution from the

time-mean flow characteristically exceeds that from

eddy effects by a little less than a factor of 2.

It was noted in section 2c.1 that the presence of two-

dimensional topography may cause the internal wave

drag to be misaligned with the near-bottom flow. In fact

(see appendix B section 1c and Fig. B4) for typically

anisotropic topography, the internal wave drag is ap-

proximately aligned along the normal orientation of the

topography, that is, perpendicular to the strike, what-

ever the orientation of the bottom flow. This effect is

quantified in Fig. 6, which shows the probability density

FIG. 4. Maps of time-mean terms in the ocean’s momentum

balance: (a) climatological wind stress from OCCAM; (b) internal

wave drag from the default calculation; and (c) frictional drag from

the default calculation. White contours in (b),(c) indicate time-

mean sea surface height in the model (contour interval 0.2 m). The

topographic form drag associated with large-scale topography is

not shown for the reasons stated in section 3.
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function of the angle between the internal wave drag

and the near-bottom flow for both instantaneous (dashed

black line) and time-mean (solid black line) versions of

those variables. In both cases, internal wave drag is di-

rected broadly, but not exactly, in opposition to the

near-bottom velocity vector. The function denotes a

plateau-shaped distribution: angles of6608 around 1808
have an approximately equal likelihood of occurrence,

whereas significantly greater angles occur much less

frequently. The rms deviation of2tiw (2tiw) from exact

misalignment (i.e., a 1808 difference in direction) with

u (u) is 36.98 (3.858).
Frictional drag is generally a less significant momen-

tum sink than internal wave drag by a factor of 2–4. It is

enhanced in the ACC (though often in different regions

to those of strong internal wave drag) and, to a lesser

extent, in western boundary currents. Its alignment at

1808 to the (time-mean) near-bottom velocity vector is

much closer than for the internal wave case, with the

great majority of calculation grid points exhibiting an-

gles between 2tb and ub that are within 208 of that

direction (see gray line in Fig. 6). Naturally, the proba-

bility density function of the angle between the instan-

taneous frictional drag,2tb, and near-bottom velocity, ub,

is 1808 by definition [Eq. (11)].

The prevalence of internal wave drag over frictional

drag and the regional significance of the former are also

apparent in the ocean’s angular momentum balance.

The four terms of this balance (i.e., the angular mo-

mentum sources and sinks contributed by the zonal

FIG. 5. Maps of the contributions to the time-mean internal wave

drag (Fig. 4b) from (a) the time-mean flow and (b) eddy effects.

White contours indicate time-mean sea surface height in the model

(contour interval 0.2 m). (c) Histogram of the ratio between the

time-mean internal wave drag and the contribution from the time-

mean flow. The red dashed line indicates a ratio of 1.

FIG. 6. Probability density functions (pdfs) of the angle between

the annual-mean internal wave drag and near-bottom velocity from

the default calculation (solid black line), the instantaneous internal

wave drag and near-bottom velocity from the same calculation

(dashed black line), and the annual-mean frictional drag and bot-

tom velocity (gray line).
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components of the wind stress, the large-scale topo-

graphic form drag, the internal wave drag, and the fric-

tional drag) are shown in Fig. 7. In OCCAM, the bulk of

the angular momentum input by the wind stress is bal-

anced by the large-scale topographic form drag term.

Both are characterized by values ofO(106) N m21. The

frictional drag contribution is, as in our estimate, smaller

than the dominant terms by at least an order of magni-

tude. Internal wave drag, however, changes the ocean’s

angular momentum at a rate that is typically several

times that of the frictional drag and peaks at magnitudes

of ;4 3 1027 N m21, approximately 10% of the global

peak in the wind stress term. Thus, despite the occur-

rence of considerable cancellation between internal

wave stresses of opposite sign in the zonal integral, in-

ternal wave drag provides a significant contribution to

the ocean’s angular momentum budget, primarily in the

Southern Hemisphere.

An alternative perspective of the role of internal wave

drag in the ocean’s dynamical balance is provided by

Fig. 8, which illustrates the distributions of the sources

and sinks of oceanic vorticity. These are the wind stress

curl ($3 tw), the large-scale bottom pressure torque

($pb 3$H), the small-scale bottom pressure torque

associated with internal wave drag (2$3 tiw), and the

frictional torque (2$3 tb). The driving of the ocean

circulation by the wind is apparent in Fig. 8a. The wind

inputs vorticity to the ocean with the sign characteristic

of the general circulation at a rate of O(1027) N m23.

Thus, input of positive vorticity to the ocean takes

place over the subpolar gyres and equatorial region of

the Northern Hemisphere, the subtropical gyres of the

Southern Hemisphere, and the northern flank of the ACC;

negative vorticity is sourced to the ocean in the subtropical

gyres of the Northern Hemisphere, the equatorial region

of the Southern Hemisphere, and the southern flank of

the ACC. The arresting action of large-scale topography

can be appreciated in Fig. 8b. North of the Southern

Ocean, this takes the form of a series of pairs of quasi-

meridional bands of oppositely signed bottom pressure

torque near western boundaries and certain midocean

topographic features. The sign of the bands indicates that

topography is generally a source of cyclonic (anticy-

clonic) vorticity in the anticyclonic (cyclonic) flanks of

boundary flows, and thereby decelerates those flows. In

the Southern Ocean, the arrest of the ACC by large-scale

topography stands out as two quasi-zonal bands of posi-

tive (to the south) and negative (to the north) bottom

pressure torque. Broadly speaking, the characteristic

magnitude of the large-scale bottom pressure torque is

comparable to that of the wind stress across much of the

global ocean.

The opposite is true of the small-scale bottom pres-

sure torque associated with internal wave drag (Fig. 8c),

which represents a minor contribution (�1027 N m23)

to the depth-integrated vorticity balance over large

areas of the ocean. Nonetheless, the same important

exceptions mentioned in the preceding discussion of the

momentum balance are readily noted, that is, the ACC

and several regions of rough small-scale topography

in the equatorial and Southern Hemisphere oceans.

There, bottom pressure torques of O(1027) N m23

(comparable to the wind stress curl) are widespread,

indicating that internal wave drag leads to a significant

deceleration of the ocean circulation. In several sub-

tropical regions of the Indian and SouthAtlantic Oceans,

small-scale topography appears to contribute at least

as much as large-scale topography to the arrest of the

flow. In the ACC, the large-scale term is generally

dominant, but the internal wave contribution com-

monly amounts to 10%–30% of the large-scale bottom

pressure torque. Finally, the contribution of frictional

drag to the depth-integrated vorticity balance is illus-

trated by Fig. 8d. The frictional torque is small com-

pared to the other terms. The only noticeable frictional

contribution is seen in the ACC, but even there the

frictional term is smaller than the internal wave term,

typically by a factor of 2–3.

FIG. 7. Zonally integrated terms in the ocean’s angular mo-

mentum balance: climatological wind stress contribution from

OCCAM, large-scale topographic form drag term from OCCAM,

internal wave drag term from the default calculation, and frictional

drag term from the default calculation.
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To conclude, we note that the quantitative description

of the impact of internal wave drag on the ocean’s dy-

namical balance presented in this section is robust to

a range of plausible changes in the calculation’s input

parameters. This is demonstrated by the sensitivity tests

outlined in appendix A, which show that our estimate of

the contributions of internal wave drag to the ocean’s

depth-integrated (angular) momentum and vorticity

budgets is most sensitive to the choice of near-bottom

velocity field. Varying the HYCOM vertical level at

which the near-bottom velocity is extracted from the

default value (2) to 1 or 3, or changing the simulation

year used in the calculation, leads to relatively modest

changes in the magnitude of internal wave drag terms of

approximately 10%–25%, with no significant variation

in spatial patterns. Changes in other input parameters

(including the small-scale topographic dataset) induce

variations in the amplitude of internal wave drag terms

of ;10% at most.

4. Discussion and conclusions

The results of the preceding analysis suggest that,

while internal wave drag is a minor contributor (com-

parable to friction) to the dynamical balance of the

ocean circulation over much of the globe, it is a signifi-

cant player in the dynamics of extensive areas of the

ocean (notably, the ACC and several regions of en-

hanced small-scale topographic variance in the equa-

torial and Southern Hemisphere oceans). There, the

contribution of internal wave drag to the time-mean,

full-depth balances of oceanic momentum, angular

momentum, and vorticity is generally on the order of ten

to a few tens of percent of (although less spatially

FIG. 8. Maps of time-mean terms in the ocean’s vorticity balance: (a) climatological wind stress curl from OCCAM, (b) large-scale

bottom pressure torque, (c) internal wave torque from the default calculation, and (d) frictional torque from the default calculation. The

black contours in (c),(d) indicate time-mean sea surface height in HYCOM DA (contour interval 0.2 m).
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coherent than) the dominant source and sink terms in

each dynamical budget, which are respectively associ-

ated with wind forcing and large-scale topographic form

drag. To our knowledge, no direct measurements of in-

ternal wave momentum fluxes exist in these regions that

may support or challenge the results presented here.

Nonetheless, some indirect evidence of regionally en-

hanced internal lee wave activity is available, particu-

larly in the ACC, that lends credence to our results. This

evidence is found, for example, in the finestructure

analyses of Naveira Garabato et al. (2004), Sloyan

(2005) and Kunze et al. (2006), which suggest that ele-

vated levels of internal wave energy and inferred tur-

bulent dissipation are consistently present in wide

sectors of the deep ACC overlying rough small-scale

topography. Nikurashin and Ferrari (2010b) combine

observations of the circulation and bathymetry in one of

those sectors (Drake Passage) with wave radiation the-

ory to show that the internal lee wave generation rate in

the area is large enough to support the turbulent dissi-

pation rates estimated by Naveira Garabato et al.

(2004). A systematic intensification of internal wave

energy andmicrostructure-derived turbulent dissipation

within ACC jets is revealed byWaterman et al. (2013) in

the ACC standing meander around the northern edge

of the Kerguelen Plateau and by St. Laurent et al. (2012)

in theACCflowover thePhoenixRidge inDrakePassage.

The significance of internal wave drag in the regions

identified by our analysis echoes the findings of studies

of the dynamical balance of the atmosphere. While form

drag by large [horizontal scales in excess ofO(100) km],

essentially nonwave-radiating orographic obstacles has

been argued to be the dominant sink of (angular) mo-

mentum in the time-varying atmospheric flow over

a wide range of frequencies, internal wave drag (linked

to orography with horizontal scales of 10–100 km) and

friction have also been shown to make a substantial

contribution, typically at the level of several tens of

percent of the large-scale orographic form drag (see e.g.,

the reviews by Egger et al. 2007; Fritts and Alexander

2003, and references therein). It has been extensively

shown that the inclusion (via parameterization) of in-

ternal wave drag in general circulation models of the

atmosphere that do not resolve the wave-radiating

scales leads to significant improvements in a range of

important features of the atmospheric circulation, such

as the structure of the winter jets, horizontal tempera-

ture gradients near the tropopause, and surface wind

distributions (e.g., Alexander et al. 2010). If the atmo-

spheric analogy holds in the regions highlighted here, we

expect that the representation of internal wave drag in

ocean general circulation models will lead to significant

changes in the local deep ocean circulation, such as the

arrest of large-to-mesoscale geostrophic flows and the

induction of ageostrophic secondary circulations as wave

breaking deposits horizontal momentum away from the

ocean floor. While the arrest of the ocean’s geostrophic

flow is made explicit in Figs. 4, 6, and 7, the ageostrophic

effects of wave drag can be illustrated by considering the

force balance of a deep ocean layer subject to wave drag,

f ẑ3 ua52r21
0

›tiw
›z

, (12)

where ẑ is the unit vector in the vertical direction and

ua is the time-mean horizontal ageostrophic velocity

induced by the divergence of the vertical flux of hori-

zontal momentum associated with internal lee waves.

Substituting a value for jtiwj characteristic of the ACC

(;0.05 N m22) and assuming a vertical scale O(1 km)

(see e.g., Naveira Garabato et al. 2004), we obtain

juaj; 0:5 mm s21. Locally, this is comparable in mag-

nitude to the zonally averaged ageostrophic velocities

implicated in the meridional overturning circulation of

the Southern Ocean (;1 mm s21, e.g., Hallberg and

Gnanadesikan 2006), and thereby suggests that internal

waves are likely to play a significant role in shaping the

ageostrophic circulation in that and other regions where

wave drag is of dynamical importance.

While the development of a parameterization is beyond

the scope of this article, we propose that a reasonable

strategy for such an effort is to represent (depth-integrated)

internal wave drag by a quadratic law, as for frictional

drag, but with a drag coefficient ciw that is primarily

dependent on topographic roughness, near-bottom flow

speed and the Coriolis parameter,

jtiwj5 rjuj2ciw , (13)

where the possibly significant misalignment between the

internal wave drag and the near-bottom velocity (Fig. 6)

has been neglected. A detailed derivation of the de-

pendence of ciw on topographic and flow parameters is

given in appendix B. This analysis yields that

ciw ; ~h
2

rmsG
1

2
np21/2

G

�
n2

1

2

�
G(n1 1)

N

f
~f
22n12

m � û , (14)

where ~hrms 5 hrmsk; k5
ffiffiffiffiffiffiffiffiffi
kskn

p
; G 5 jtiwj/jtiwjlinj [from

Eq. (8)]; ~f 5 jf j/kjuj; m is a vector function of n, topo-

graphic anisotropy, and flow orientation; and û is a unit

vector in the direction of the flow. Expression (14)

applies in the limit that ~f � 1, which is common in the

mid- and high-latitude oceans. It reveals that, for the

nonblocking conditionG; 1—thought to hold widely in

the ocean [section 2c(1)]—ciw is proportional to h2rms and
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juj22(12n), implying that jtiwj scales with h2rms and juj2n
(values of n range from 0.85 to 0.95 in the G2010 and

GA2010 datasets). This scaling progressively fails as the

flow becomes increasingly blocked by topography (G�
1), in which case ciw becomes independent of hrms—or,

as the flow speed increases such that ~f � 1, the result is

a far more pronounced decrease of ciw with juj and an

eventual decrease in jtiwj.
The extent to which the scaling (14) captures the de-

pendence of the internal wave drag calculated in this

study on topographic roughness and near-bottom flow

speed is illustrated by Fig. 9, which shows the distribu-

tion of ciw computed from (13) and binned as a function

of hrms and juj (in color) and the result of a simple ap-

plication of the scaling in (14) using characteristic values

of factors other than hrms and juj (contours). It may be

readily seen that the scaling captures the behavior of the

numerical calculation of ciw with reasonable accuracy

over much of the hrms 2 juj space. Note, for example,

that at low juj the approximate quadratic dependence of

ciw on hrms and the decelerated decrease of ciw with in-

creasing juj are both reflected in the scaling. The two

limits outlined above in which the scaling performance

deteriorates can also be gleaned from Fig. 9. Thus, the

dependence of ciw on hrms becomes less pronounced as

blocking occurs more frequently, which tends to occur

for combinations of relatively high hrms (values of;100 m

and greater) and juj (values in excess of ;0.2 m s21).

Conversely, the dependence of ciw on juj becomes more

acute for high flow speeds (see, for example, the relatively

rapid decrease of ciw with juj for hrms 5 150 m), as the

limit ~f � 1 is approached.
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APPENDIX A

Sensitivity of Internal Wave Drag Terms to the
Calculation’s Input Parameter Choices

Our calculation of the contribution of internal wave

drag to the depth-integrated (angular) momentum and

FIG. 9. Logarithm of themean value of ciw as a function of hrms and the near-bottom speed for

the calculations in this study (colors) and the scaling in (14) (contours). Characteristic values of

G5 1, n5 0.9,N5 1023 rad s21, f5 1024 rad s21, k5 23 1024 rad m21. A scaling factor of 2

(to account for m � û) has been used in applying the scaling.
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vorticity budgets is subject to several, somewhat sub-

jective, parameter choices. In this appendix we assess

the extent to which plausible variations of those pa-

rameters influence the calculation’s results. We focus on

quantifying the sensitivity of the climatological internal

wave drag2tiw to such changes in input parameters, but

examining the equivalent terms in the angular momen-

tum and vorticity budgets leads to a very similar out-

come. The choice of small-scale topographic dataset

turns out to be the only one that affects the spatial dis-

tribution of tiw appreciably, whereas variations in other

parameters are found to primarily impact themagnitude

of tiw and not its spatial pattern. Consequently, we il-

lustrate the calculation’s sensitivity to the choice of

small-scale topographic dataset with a map of 2tiw es-

timated by replacing G2010 by GA2010 in the default

calculation (i.e., the equivalent of Fig. 4a calculated

from GA2010). Sensitivities to changes in other pa-

rameters are instead synthesized as the percentual

change in jtiwj arising from changing one parameter at

a time in the default calculation, averaged over the re-

gions where internal wave drag is significant (defined as

jtiwj. 0:01 N m22) in that default.

FigureA1 shows2tiw estimated fromGA2010.When

this figure is compared to Fig. 4a, it is readily apparent

that both the magnitude and large-scale spatial distri-

bution of the internal wave drag are rather insensitive to

the choice of small-scale topographic dataset. The

magnitude of the internal wave drag is slightly larger on

average (by ;10%) for GA2010 than in the default

calculation, and the drag vector is generally directed in

a similar direction (the rms difference in drag direction

between the two estimates being 198 for regions where
jtiwj. 0:01 N m22 in both calculations). The most sig-

nificant difference between the two estimates is the ab-

sence of a clear enhancement of internal wave drag in

the eastern equatorial Pacific in the calculation with the

GA2010 dataset, which stems from the lack of resolution

of the regional small-scale roughness in that dataset.

Nonetheless, our general finding of internal wave drag

representing a significant momentum sink (on the order

of ten to a few tens of percent of the wind stress) in

several regions or rough topography in the equatorial

and Southern Hemisphere oceans stands.

The sensitivity of our estimate of internal wave drag to

a range of other calculation input parameters [specifi-

cally, the use of near-bottom velocity data fromdifferent

vertical levels and years of the DA simulation of

HYCOM; the adoption of Fr21
c 5 0:5 in the correction

for topographic blocking (8); and the neglect of that

correction, such that tiw 5 tliniw ] is also explored. The

impact of such changes on the calculated drag is sum-

marized in TableA1, which lists the percentual variation

in jtiwj in each sensitivity experiment (changes in

FIG.A1.Map of time-mean internal wave drag froma calculation using theGA2010 small-scale

topographic dataset with other input parameters unchanged with respect to the default.
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direction are minor or zero in all cases). All changes in

the characteristic amplitude of internal wave drag are

relatively modest, ranging between 28% and 126%,

with the larger figure associated with the use of velocity

data from the third HYCOM level above the bathyme-

try. Thus, the overall inference from these sensitivity

tests is that the results presented in this article are ro-

bust.

APPENDIX B

Dependence of Internal Wave Drag on Topographic
Roughness, Flow Speed, and Coriolis Parameter

To gain insight into how a parameterization of in-

ternal wave drag may be developed in the future, we

here show how the drag calculated from (6)–(10) varies

with topographic roughness hrms, near-bottom velocity,

and the magnitude of the Coriolis parameter jf j. We

commence by nondimensionalizing (6)–(10). First, wave-

number coordinates are rotated such that k k u, withU5
juj. Then wavenumbers are scaled by the geometric

mean of ks and kn: ~k, ~l5 k/k, l/k, with k5
ffiffiffiffiffiffiffiffiffi
kskn

p
; jf j,

N and s are scaled by kU: ~f , ~N, ~k5 jf j/(kU),N/(kU),

s/(kU); and hrms is scaled by (kU)21, with ~hrms5 hrmsk.

This gives

2tiw(x, y, t)52r0U
2 ~h

2

rms

2G

4p2

ð ~N

~f

ð‘
2‘

~kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2
1 ~l

2
q ~P( ~k, ~l) d~l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~N
2
2 ~k

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k
2
2 ~f

2

0

q
d ~k , (B1)

where the symmetry of the integrand over ~k52~k al-

lows the replacement of the integral over the internal

wave band ~f , j ~kj, ~N by twice the integral over
~f , ~k, ~N. Here G is the factor jtiwj/jtliniw j from (8), and

the nondimensionalized topographic kernel is defined as

~P(~k, ~l)5k
4 ~h

22

rmsP(
~k, ~l)

5 4pn

(
~k
2
�
kn
ks

cos2(u2 us)

1
ks
kn

sin2(u2 us)

�
11

)2(n11)

, (B2a)

where us and u5 arctan( ~k/~l) are the azimuthal angles of

the topographic strike and the wavenumber relative to

the rotated coordinate frame in which u is eastward.

Expressed directly in terms of ~k and ~l,

~P( ~k, ~l)5 4pn

"
a

 
~l1

1

2
ba21 ~k

!2

1a21 ~k
2
1 1

#2(n11)

,

(B2b)

where

a5 «c21 «21s2; b5 2sc(«2 «21) , (B2c)

and the topographic anisotropy

«5kn/ks . 1 with (s, c)5 (sinus, cosus) . (B2d)

Figure B1 illustrates the distribution of ~P on the
~k, ~l plane, overlaid by the internal wave band ~f , ~k, ~N.

It is worth emphasizing that the typically large ocean-

ographic values of f/NU 10 imply that, unless ~f is small,

there is little topographic kernel remaining over ~k. ~N.

a. Dependence on topographic roughness

The integrand in (B1) is independent of hrms, so the

roughness dependence of tiw comes simply from the

factor ~h
2

rmsG. So, tiw } h2rms until the Froude number

cutoff factor G (8) starts to operate, when Fr21 5
NHU21 .Fr21

c 5 0:7, where H is the ‘‘effective’’ height

given by (9). Writing

H5hhrms , (B3)

TABLE A1. Experiments assessing the sensitivity of internal

wave drag to a range of calculation input parameters, listing the

percentage change in jtiwj arising from varying one parameter at

a time in the default calculation, averaged over the regions where

internal wave drag is significant (defined as jtiwj. 0:01 N m22 in

the default). The sign of the percentage change indicates whether it

is an increase or a decrease. ‘‘Level’’ refers to theHYCOMvertical

level above the bathymetry from which the geostrophic flow field is

extracted.

Level Topography

Change in

jtiw(%)j Comments

2 G2010 n/a Default

2 GA2010 110

1 G2010 28 u in bottom boundary layer

3 G2010 126

2 G2010 28 2004 flow field

2 G2010 27 2005 flow field

2 G2010 111 2007 flow field

2 G2010 110 2008 flow field

2 G2010 26 Fr21
c 5 0:5

2 G2010 111 tiw 5 tliniw
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the ratio h is found by nondimensionalizing (9), again

using the symmetry of the integrand over ~k52~k:

h25
2

4p2

ð ~N

~f

ð‘
2‘

~P( ~k, ~l) d~l d ~k . (B4)

Note that the effective height H is always less than the

rms height hrms (0, h, 1) and that h is independent of

hrms. Hence the cutoff operates for

NhrmsU
21.Fr21

c h21 .Fr21
c . (B5)

For larger hrms giving Fr21 � Fr21
c , equivalent to

L[FrFr21
c � 1 in (8), G ; L2, so

~h
2

rmsG; h2rmsk
2
U2N22H22Fr22

c ; ~N22h22Fr22
c (B6)

and tiw no longer depends on hrms.

If it were the case that H ’ hrms, h ’ 1, then for, for

example, bottom buoyancy frequencyN5 1023 rad s21,

U 5 0.1 m s21, the cutoff would start to operate when

hrms 5 70 m (top left edge of gray band in Fig. B2), and

reduce jtiwj by a factor of 2 [where L[FrFr21
c ’ 1:4 in

Eq. (8) forG] when hrms ’ 100 m (bottom right edge of

gray band). However, generally away from the equator

(see below) h � 1, so the Froude number cutoff is only

attained for much larger hrms: for example, with the

preceding values of N and U, for f 5 5 3 1025 s21, hrms

must reach 140 m (left/top edge of green band in

Fig. B2). For typical Southern Ocean values of f ;
1024 s21, attaining the cutoff may require extremely

large hrms ; 300 m (red band in Fig. B2). As the

equator is approached (e.g., f 5 1025 s21), though,

h ; 1 and the Froude number cutoff occurs much

earlier (blue band in Fig. B2).

By expressing ~P explicitly in terms of ~k and ~l (B2b),

integrating over ~l using the integral representation of

the beta function [e.g., Abramowitz and Stegun (1972),

p. 258, Eqs. (6.2.1) and (2)], and then integrating over ~k

by considering the integral representation of the Gauss

hypergeometric function 2F1(a, b; c; z) [e.g., Abramowitz

and Stegun (1972); p. 558, Eq. (15.3.6)], the integral (B4)

may be expressed in closed form:

h25 J( ~Na21)2 J( ~f a21) , (B7a)

where the orientation of the strike relative to the ve-

locity and the topographic anisotropy « 5 kn/ks (B2d)

control the parameter

a25a5 « cos2us 1 «21 sin2us , (B7b)

and the function J is defined in terms of the Hurst

number n and the gamma function by

J(x)5
2G(n1 1/2)

p1/2G(n) 2F1(1/2, n1 1/2; 3/2;2x2) . (B7c)

This J(x) is monotonically increasing with

FIG. B1. Scaled topography ~P (contours, CI 5 1) and internal

wave zone ~f , ~k, ~N (shaded) in a reference frame in which the

scaled wavenumbers (~k, ~l) have been rotated so that ~k is aligned

with the near-bottom velocity. Azimuths us of the strike and u of

the wavenumber are relative to the rotated ~l axis.

FIG. B2. Values of U and hrms that give Fr21 5Fr21
c 5 0:7 (the

upper edge of the colored regions) and Fr21 5 1:4Fr21
c 5 0:98 (the

lower edge of the colored regions, for which the topographic

blocking factor used in (8) reduces the internal wave drag from its

linear value tliniw by a factor of 2).
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J(x);

�
x for small x ,

12p21/2G(n1 1/2)G(n)21n21x22n as x/‘ .

(B7d)

Typically the topographic parameter a defined in

(B7b) isO(1); for example, for «5 kn/ks5 5, a decreases

from ;2.24 (flow across topography, ? strike) to

0.45 (flow along topography, k strike). However, ~N is

large (;45 for N 5 1023 s21, k5 2:23 1024 m21, U 5
0.1 m s21), so J( ~Na21); 1. At the equator f 5 0, so

h ; 1: physically, the shaded internal wave band
~f , ~k, ~N in Fig. B1 covers everywhere where the topo-

graphic kernel P( ~k, ~l) is significant. Yet, in the subtrop-

ics and midlatitudes ( f 5 5 3 1025 s21, f 5 1024 s21),
~f ; 2:5 and ;5 is large enough that much of the stron-

gest topographic kernel lies outside the internal wave

band. For flow directed at 458 to the strike, as described

in Fig. B2, the above kn/ks 5 5 gives a ’ 1.61, thus with

the preceding parameters, h ; 0.47 and ;0.27, re-

spectively, implying Froude cutoffs starting at ;149 m

and ;260 m. Even for flow ‘‘across’’ the topography,
~f a21 ; 1 and ;2, giving h ; 0.57 and ;0.36. Of course,

for weaker U, where the Froude number cutoff might

be expected to be more significant, ~f becomes even

larger and h even smaller. The consequence is that

the Froude number cutoff is mostly not attained, so for

fixed U, f, and N tiw } h2rms is a good assumption.

b. Dependence on flow velocity and Coriolis
parameter

The dependence of 2tiw in (B1) on u is both ex-

plicit, from the U2 factor, and implicit from the de-

pendence of the integral in (B1) on u through ~N, ~f and

us. We write

2tiw 52rU2ciwRû , (B8)

where ciw is the IW drag coefficient, R is a rotation

tensor, and û is the unit vector, u5Uû.We then focus on

the velocity dependence of this ‘‘vector drag coefficient’’

ciw 5 ciwRû. This dependence is, in general, complex and

can only be determined by numerical integration of

(B1). However, for the relatively large ~f typical of

midlatitudes and characteristic bottom velocities, the

only part of the topographic kernel within the internal

wave band has ~k � 1, and we can approximate the

kernel (B2b) by

~P( ~k, ~l); 4pn

"
a

 
~l1

1

2
ba21 ~k

!2
1a21 ~k

2

#2(n11)

so that, writing l0 5 ~l/ ~k,

;4pn ~k
22(n11)

"
a

 
~l01

1

2
ba21

!2
1a21

#2(n11)

.

Also, eliminating ~l in ~k/
ffiffi
(

p
~k
2
1 ~l

2
) in favor of l0, it fol-

lows that

ciw ; 2 ~h
2

rmsGnp21

ð ~N

~f

ð‘
2‘

(1, l0)ffiffiffiffiffiffiffiffiffiffiffiffiffi
11 l02

p
"
a

 
~l0 1

1

2
ba21

!2

1a21

#2(n11)

dl0 3 ~k
22n21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~N
2
2 ~k

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k
2
2 ~f

2

0

q
d ~k .

Now the integral over l0 is a (vector) function solely of

the topographic anisotropy «, the azimuth of the strike

relative to the flow us, and the Hurst parameter n. We

write this as m(us, «, n)—it is independent of both ~k

and the flow speed U. Additionally, we assume that ~N is

large enough that the topographic kernel is insignif-

icant for ~k; ~N, so (i) we can replace ~N by ‘ as the

upper bound of the ~k integral and (ii) replace
ffiffiffiffiffiffiffiffiffiffiffiffi
~N
2
2 ~k

2
p

by ~N in the integrand. Rewriting ~k5 ~f k0 in the ~k

integral:

FIG. B3. Dependence of the internal wave drag coefficient ciw on

near-bottom speed (for a velocity at 458 to the strike direction) for

three values of f and for near-bottom buoyancy frequency N 5
1023 rad s21, strike wavenumber ks 5 1024 rad m21, normal wave-

number kn 5 5 3 1024 rad m21, and Hurst parameter n 5 0.9.
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ciw ; 2 ~h
2

rmsGnp21m(us, «, n)
~N ~f

22n11

3

ði
1
k022(n11)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k022 1

p
dk0

; ~h
2

rms3G
1

2
np21/2G(n2 1/2)

G(n1 1)
m(us, «, n)

N

f
~f
22n12

,

(B9)

again using the integral representation of the beta func-

tion to evaluate the k 0 integral. Since ~f 5 f /(Uk), (B9)

predicts a U22(12n) dependency of ciw over parameter

space where ~f � 1.

Figure B3 displays the component of the ‘‘vector’’

internal wave drag coefficient in the flow direction,

ciw � û against near-bottom speed (for a velocity at 458
to the strike direction) for various values of f and

for typical near-bottom buoyancy frequency N 5
1023 rad s21, strike wavenumber ks 5 1024 m21, nor-

mal wavenumber kn 5 5 3 1024 m21, and Hurst pa-

rameter n 5 0.9. Note the general decrease of ciw with

increasing speed, also evident in Fig. 9. However, the

striking feature is that for weak velocities and mid-

latitude values of f (5 3 1025 s21 and 1024 s21), ciw
varies like U20.2, in agreement with (B9), given the

value of n.

The flat ciw evident for smallU and equatorial value of

f5 1025 s21 is the Froude cutoff regime. For ~N� 1, and

‘‘large’’ ~f , we have from (B7d) that

h2; 12 J( ~f a21);p21/2G(n11/2)G(n)21n21( ~f a21)22n .

Using the Eq. (B6) for ~h
2

rmsG, when Fr21 � Fr21
c , and

substituting into (B9) gives the U-independent value

ciw ;Fr22
c

n

2n2 1
a22nm(us, «, n)

f

N
. (B10)

Although the linear drag decreases ;f22n11 with

increasing f (B9), paradoxically, because the cutoff is

attained at lower speeds for larger Coriolis parameter,

the value of the cutoff drag (B10) increases with f.

Asymptotic limits for ciw when U is large are difficult

to obtain. We content ourselves here with mentioning

that, as U increases, ~f and even ~N both decline, so the

area in ~k2 ~l space of the internal wave band reduces

} U21. Additionally, the maximum of the product of

the square roots
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~N
2
2 ~k

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k
2
2 ~f

2
q

; ~N
2
2 (1/2)( ~N1~f )2

reduces } U22. The resulting } U23 behavior is coun-

terbalanced somewhat by the larger values of the topo-

graphic kernel as the internal wave band approaches the

origin, but close to the origin (very large U) these stop

increasing and the steep decline of ciw implies even that

the internal wave drag itself declines asU increases. This

accelerating decrease in ciw with large U is evident in

Fig. B3.

c. Variation of internal wave drag with strike angle

The anisotropy of the topography causes the internal

wave drag to tend to be aligned along the normal di-

rection of the topography, the direction along which the

topography varies most strongly, rather than directly

opposing the flow. This anisotropy is typically signifi-

cant, and the value « 5 kn/ks 5 5 chosen in the earlier

examples in this appendix is not atypical (Scott et al.

2011). Unfortunately, the part of the integral that re-

lates to the flow/topography orientation is not anayti-

cally tractable. In Fig. B4 we simply show how the

numerically evaluated 2tiw varies for different orien-

tations of a bottom speed of 0.05 m s21, with the stan-

dard parameters used here: f 5 1024 s21, hrms 5 50 m,

n 5 0.9, and «5 5. The different colored lines show the

(vector) internal wave drag for different angles of the

flow relative to the normal direction of the topography,

and the corresponding dashed lines the quadratic bot-

tom drag, with opposite sense to the bottom flow, for

a typical cd 5 2.5 3 1023. It is striking how strongly

aligned the tiw is along the normal direction of the

topography.

FIG. B4. Comparison of internal wave drag 2tiw with quadratic bottom drag (with cd 5
2.5 3 1023) for a near-bottom speed 5 cm s21 and strike orientations ranging from 08 (?
to flow) to 908 (k to the flow). Values of other parameters are f 5 1025 s21, hrms 5 50 m,

and n 5 0.9.
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