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Abstract 

The aquatic pathway is increasingly being recognised as an important component of 

catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to 

their large carbon store and strong hydrological connectivity. In this study we present a 

complete 5-year dataset of all aquatic carbon and GHG species (POC, DOC, DIC, CO2, CH4, 

N2O) from an ombrotrophic Scottish peatland. We show that short term variability in 

concentrations exists across all species and this is strongly linked to discharge. Seasonal 

cyclicity was only evident in DOC, CO2 and CH4 concentration; however temperature 

correlated with monthly means in all species except DIC. Whilst the temperature correlation 

with monthly DOC and POC concentrations appeared to be related to biological productivity 

in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was 

primarily due to in-stream temperature-dependent solubility. Interannual variability in total 

aquatic carbon concentration was strongly correlated with catchment GPP indicating a strong 

potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term 

(19.3 ± 4.59 g C m-2 yr-1), followed by CO2 evasion (10.0 g C m-2 yr -1). Despite an estimated 

contribution to the total aquatic carbon flux of between 8 - 48%, evasion estimates have the 

greatest uncertainty. Interannual variability in total aquatic carbon export was low in 

comparison with variability in terrestrial biosphere-atmosphere exchange, and could be 

explained primarily by temperature and precipitation. Our results therefore suggest that 

climatic change is likely to have a significant impact on annual carbon losses through the 

aquatic pathway, and as such aquatic exports are fundamental to the understanding of whole 

catchment responses to climate change.   
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Introduction 

Compared to other ecosystems peatlands store disproportionally large amounts of soil carbon 

and subsequently have a significant impact on the atmospheric carbon and greenhouse gas 

(GHG) pool and the earth’s radiative balance [Frolking et al., 2006]. The most widely 

accepted estimate of contemporary peatland carbon accumulation in the Northern 

Hemisphere is -23 g C m-2 yr-1 [Gorham, 1991; reaffirmed by Nilsson et al., 2008; and Roulet 

et al., 2007]. However there is still significant uncertainty in both the value itself and the 

predicted rate of change in response to climatic and anthropogenic influences. Reducing the 

uncertainty in current estimates and predicting future changes in peatland sink/source 

strength is an important research challenge. Greatest uncertainty exists around the magnitude 

of the aquatic flux term [Billett et al., 2010].  

Our knowledge of peatlands systems is strongly bias towards soil-atmosphere fluxes, 

highlighting water table depth, temperature and plant functional group as important drivers of 

net ecosystem CO2 exchange (NEE), and CH4 uptake and emission [Bubier et al., 2003; 

Dinsmore et al., 2009b; Dinsmore et al., 2009c; Gray et al., in press; Lafleur et al., 2005; 

Roulet et al., 1993; Strack et al., 2004]. However, Dinsmore et al. [2010] showed that 41% of 

carbon uptake via NEE at Auchencorth Moss, Scotland, was lost via the aquatic pathway, 

highlighting the importance of stream losses in the full catchment net ecosystem carbon 

balance (NECB). Similarly, losses through the aquatic pathway accounted for 51% of carbon 

uptake via NEE at Mer Bleue, Canada [Billett and Moore, 2008; Roulet et al., 2007], and 

34% of carbon uptake via NEE in a Swedish mire complex [Nilsson et al., 2008].   

The global surface area of streams and rivers has recently been estimated at between 485 000 

and 662 000 km2 (0.3-0.56% of total land surface area), with first order streams representing 

~6% of this water surface area and 52% of total stream and river length [Downing et al., 
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2012]. Therefore aquatic fluxes are not only important at a catchment scale but play an 

important role in global carbon and GHG cycling.  

Our understanding of aquatic fluxes from peatlands is strongly biased towards DOC [Clark et 

al., 2007; Hope et al., 1994; McDowell and Likens, 1988]. DOC influences river water 

quality through the transport of complexed metals and nutrients and its effect on pH; it also 

represents a significant challenge to water supply companies who may have to remove DOC 

to meet drinking water quality standards [Clark et al., 2005; Driscoll et al., 1989; Hughes et 

al., 1990; Qualls and Haines, 1991]. Particulate forms of organic carbon (POC) usually 

represent only a small proportion of the total aquatic flux, although POC can reach <100 g C 

m-2 yr-1 in eroding systems [Evans et al., 2006; Pawson et al., 2008]. Therefore although 

POC is unlikely to represent a major flux within the NECB, changes in aquatic POC 

concentrations may provide an early indication of peatland degradation [Billett et al., 2010]. 

POC fluxes tend to be highly variable and episodic in their rate of export [e.g. Dinsmore et 

al., 2010; Dyson et al., 2010], often linked to discreet high flow events, making them difficult 

to quantify unless sampling is carried out over long timescales. Dissolved inorganic carbon 

(DIC) is largely derived from the bedrock-soil system and controlled by processes such as 

weathering, decomposition of organic matter and root respiration, or produced in-stream as a 

result of either terrestrial or aquatic derived substrate decomposition [Billett et al., 2007; 

Johnson et al., 2007; Köhler et al., 2002]. The in-stream speciation of DIC is strongly 

controlled by pH through the carbonate equilibrium system [Dodds and Whiles, 2010]. 

Therefore in peatland drainage waters where pH is typically low, the majority of DIC is likely 

to take the form of free CO2 making it susceptible to evasion from the water surface.  

Recent studies now recognise the importance of downstream export and evasion of CO2 

[Butman and Raymond, 2011; Dinsmore et al., 2010; Huotari et al., 2011; Nilsson et al., 

2008; Richey et al., 2002; Wallin et al. 2011]; data on CH4 and N2O are less commonly 
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reported. CO2 supersaturation is common to many natural drainage water systems, with CH4 

supersaturation linked primarily to peatlands [Aufdenkampe et al., 2011; Cole et al., 1994; 

Cole et al., 2007; Dawson et al. 2004; Kling et al., 1991; Richey et al., 2002]. Although N2O 

supersaturation is less common, as a GHG with a 100-year global warming potential of 298 

[IPCC, 2007], even small evasion losses could contribute significantly to catchment GHG 

budgets. Uncertainty in GHG exports comes primarily from two main sources, i) a lack of 

long-term studies which encapsulate enough of the temporal variability to accurately quantify 

concentrations in systems with complex hydrological regimes, and ii) a lack of direct 

measurements of gas transfer coefficients required to calculate evasive fluxes. Evasion of the 

dissolved gas component therefore remains a major source of uncertainty in catchment scale 

budgets. As many eddy covariance systems are set up to specifically exclude water bodies 

and stream channels from their footprint (as these introduce significant areas of spatial 

heterogeneity), evasion fluxes need to be quantified and included as independent flux terms 

in the NECB. 

The factors which influence concentration variability in the stream channel can be classified 

into two distinct categories: i) those which influence the concentration of solutes at their 

source, i.e. environmental factors such as temperature and soil moisture which control 

microbial and vegetation productivity,  and ii) flowpath dynamics which control soil-stream 

connectivity. These two categories are likely to influence variability at different temporal 

scales. Whereas vegetation productivity is strongly seasonal, flow path variability occurs on a 

much shorter time scale in relation to individual precipitation or snowmelt events.  

In this study we present the first complete 5-year time series of concentrations and fluxes of 

aquatic carbon and GHG species (POC, DOC, DIC, CO2, CH4 and N2O) in a peatland stream. 

The study aims to analyse and explain temporal variability in concentrations and fluxes (both 
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downstream export and evasion) at weekly, seasonal and annual scales. Specifically, we aim 

to test the following hypotheses: 

1) Concentration variability in instantaneous spot samples of all carbon and GHG 

species are primarily controlled by changes in the dominant hydrological flowpath 

and can therefore be explained by stream water discharge. 

2) Concentrations of POC, DOC, CO2, CH4 and N2O, which are linked to terrestrial 

vegetation and microbial productivity, will vary seasonally in relation to temperature 

patterns (a proxy for multiple seasonal variables including day length and 

photosynthetically active radiation). DIC derived primarily from ground water sources 

will not follow a temperature related seasonal pattern. 

3) Exports of carbon and GHG will be greatest in late summer when both productivity 

and rainfall are high, and lowest in spring/early summer when source concentrations 

are depleted. 

4) Significant interannual variability in export of all carbon and GHG species is related 

to differences in climatic variables. 

 

Materials and Methods 

Site description 

Auchencorth Moss (55° 47’ N, 03° 14’W) is a 3.4 km2, low-lying (249-300 m), ombotrophic 

peatland (histosols cover 85% of the catchment)  in SE Scotland [Billett et al., 2004]. The 

land-use is primarily low intensity sheep grazing with a small area of peat extraction in the 

southwest corner. The catchment vegetation consists of a patchy mix of grass (e.g. 

Deschampsia flexuosa) and sedges (e.g. Eriophorum vaginatum and Juuncus effusus) 
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covering a primarily Sphagnum base layer on a hummock/hollow microtopography; shrubs 

such as Calluna vulgaris, Erica tetralix and Vaccinium myrtillus are also present in the 

southern part of the catchment. Although hollows may become submerged after periods of 

intense rainfall, no permanent pools of standing water exist in the catchment. Peats, which 

range in depth from <0.5 m to >5 m, are underlain by glacial till and an Upper 

Carboniferous/Lower Devonian sequence of sandstones and shaly sandstones with minor 

limestone, mudstone, coal and clay layers [Billett et al., 2004]. Annual mean water table 

depth in the catchment is 12.5 cm ranging from >55 below to 4.5 cm above the peat surface 

[Drewer et al., 2010]. Mean water extractable DOC from 5 to 30 cm below the peat surface is 

312 ± 15.9 (SE) μg C g-1 dry soil and KCl extractable NO3
- and NH4

+ are 4.45 ± 0.48 (SE) 

and 21.8 ± 1.85 (SE) μg N g-1 dry soil, respectively [Dinsmore et al., 2010]. Total N 

deposition is 0.8 g N m-2 yr-1 [Drewer et al., 2010]. 

The catchment drains NE through a series of natural tributaries and overgrown (>100 yr old) 

drainage ditches into the main stream channel, the Black Burn [Dinsmore et al., 2010]. The 

total length of stream channel between the stream source and the catchment outlet, including 

both the main stem and tributaries, is 5.2 km with an average channel width of 0.65 m. The 

stream hydrograph is characterised by a rapid (‘flashy’) response to storm or snowmelt 

events.  

 

Methods 

Streamwater sampling was carried out approximately weekly on the Black Burn (55º 47’ 41 

N, 3º 14’ 52 W) between January 2007 and December 2011. The following analysis is 

therefore based on a total of between 176 to 216 concentration measurements for each species 

(sample numbers differ due to difficulties in sample collection, sample loss or 
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contamination). On each sampling occasion a water sample was collected in a 300 mL glass 

bottle for analysis of POC, DOC and DIC and a headspace and ambient air sample collected 

in gas-tight syringes for analysis of CO2, CH4 and N2O. As N2O was only analysed on four 

occasions in 2008, that year is excluded from seasonal and annual analyses of N2O. Stream 

water pH, temperature and electrical conductivity (EC) were also measured using hand-held 

devices in-situ on each sampling occasion. 

Stream water samples were filtered within 24 hours of collection through pre-ashed (6 hours 

at 500ºC), pre-weighed Whatman GF/F (0.7 µm pore size) filter papers. POC was calculated 

using loss-on-ignition, following the method of Ball [1964]. The filtrate was stored in the 

dark at 5ºC until analysis within 2 weeks of sampling. The filtrate was analysed for DOC and 

DIC concentration using a Rosemount-Dohrmann DC-80 total organic C analyser (2007) or a 

PPM LABTOC Analyser (2008 onwards). Both instruments had a detection range of 0.1-

4000 mg L-1.  

Dissolved CO2, CH4 and N2O were calculated using the headspace technique [Billett et al., 

2004; Dinsmore et al., 2010; Kling et al., 1991]. A 40 mL water sample was equilibrated with 

20 mL of ambient air at stream temperature by shaking vigorously under water for one 

minute; the equilibrated headspace was then transferred to a gas tight syringe and returned to 

the laboratory for analysis. On each sampling occasion two replicate headspace samples were 

collected alongside a separate sample of ambient air. Headspace samples were analysed 

within two weeks of collection on an HP5890 Series II gas chromatograph (Hewlett-

Packard), with electron capture (ECD) and flame ionisation detectors (with attached 

methaniser) for N2O and CH4/CO2, respectively. Detection limits for CO2, CH4 and N2O were 

7 ppmv, 84 ppbv and 8 ppbv, respectively. Concentrations of CO2, CH4 and N2O dissolved in 

the stream water were calculated from the headspace and ambient concentrations using 

Henry’s law [e.g. Hope et al., 1995]. 
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Stream height was measured at 10-min intervals at the sampling site using a Druck PDCR 

1830 series pressure transducer from 2007 until April 2009. After April 2009, water height 

was also measured approximately 2 km downstream on an In Situ Inc. Level Troll® pressure 

transducer with atmospheric correction from a BaroTroll® sensor located above the water 

surface. Stage height readings from both pressure transducers were converted to discharge at 

the sampling site using manually calibrated rating curves (r2 > 0.90) based on dilution 

gauging measurements.  

Meteorological data including air pressure, air temperature, rainfall and water table depth 

were measured at a flux tower located approximately 400 m from the stream water sampling 

site (M. Coyle, unpublished results, 2012). 

 

Data analysis  

Instantaneous concentrations are expressed in units of mg L-1 or µg L-1 with datasets 

summarised using the arithmetic mean ± standard error, median, range and flow weighted 

mean concentrations (FWMC). FWMC was calculated using equation 1 where ci is the 

instantaneous concentration, qi is the instantaneous discharge and ti is the time step between 

subsequent concentration measurements. 

 

Where average pH values are presented, these are based on the average H+  ion concentration 

reconverted back to a pH value on the logarithmic scale. All datasets were tested for 

autocorrelation and 1º autocorrelation residuals used in further analysis where appropriate. 
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This removed autocorrelation and allowed the statistical assumption of independence to be 

met. 

Seasonal and interannual variability are displayed using box-plot diagrams where the box 

represents the interquartile range with a line showing median concentration. Whiskers extend 

to the highest/lowest data values within the upper/lower limit defined as 1.5 times the 

interquartile range. Outliers are defined as any data point beyond the upper/lower whisker 

limit; maximum and minimum outlier values are also plotted.  

Time series deconstruction was carried out on mean monthly concentrations (Minitab® 

version 16) using an additive model. The resulting seasonal indices were normalised to range 

between -1 and 1 and are plotted beneath seasonal box-plots.  Seasonal cyclicity, i.e. the 

presence of a smooth seasonal cycle rather than random variability from one month to the 

next, was tested using an autocorrelation function on the seasonal indices. Where the seasonal 

index in a particular month was correlated with the seasonal index in the previous month, this 

is considered evidence of a smooth seasonal cycle.  Mean annual deseasonalised residual 

concentrations were normalised between 0 and 1 and are shown in a separate plate beneath 

each annual box-plot to illustrate trend. Trends were statistically analysed using linear 

regression of seasonally corrected concentration against time. 

Concentration discharge relationships are plotted with r2 and P-values representing the results 

from linear regression analysis. Drivers of variability at weekly, monthly and annual time 

scales were explored using Spearman’s rank correlations of concentration against discharge, 

rainfall, water table depth, stream temperature, soil temperature, pH and EC. 

Analysis of downstream export and water-atmosphere evasion are carried out on seasonal and 

annual timescales. Where annual values are shown this refers to the calendar year (1st January 

to 31st December) allowing for easy comparison to other catchment fluxes presented in the 
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literature. However, seasons are based on the hydrological year in which the winter season 

runs from 1st October to 31st March and the summer season 1st April to 30th September 

[Gordon et al., 2004]. Here we split the seasons further to prevent one season running across 

two calendar years and therefore follow the nomenclature; early winter (October, November, 

December), late winter (January, February, March), early summer (April, May, June) and late 

summer (July, August, September).  

Downstream export was calculated using Walling and Webb [1985] ‘Method 5’ described in 

equation (2)  where Ci is the instantaneous concentration associated with Qi the instantaneous 

discharge, Qr is the mean discharge for the full study period, and n is the number of 

instantaneous samples analysed. Standard error of the mean load was calculated using 

equation (3) [Hope et al., 1997] where F is the total annual discharge and CF is the flow-

weighted mean concentration. The variance of CF was estimated using equation (4) where Qn 

is the sum of all the individual Qi values. Downstream exports are expressed in units of g m-2 

yr-1 (or derivatives thereof) scaled to the catchment area of 3.4 km2. 

 

 

                   

Water-atmosphere evasion of CO2, CH4 and N2O were calculated using the interfacial mass 

transfer equation [Borges et al., 2004; Dinsmore et al., 2009a] described for CO2 in equation 
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(5) where  is the gas transfer velocity,  is the gas and temperature specific solubility 

coefficient and  is the difference in partial pressure between the surface water and the 

atmosphere.  

 

Solubility coefficients for CO2, CH4 and N2O were derived from Weiss [1974], Wiesenburg 

and Guinasso [1979] and Weiss and Price [1980], respectively. Gas transfer coefficients for 

CO2 and CH4 were calculated by Billett and Harvey [2012], at the same sampling site as this 

study (referred to as AUCH-DOWN), using the volatile conservative gas tracer (propane) 

method. For this study we use median, minimum and maximum gas transfer velocities of 

0.056 (0.013-0.0134) min-1 and 0.062 (0.014-0.151) min-1 for CO2 and CH4, respectively, 

converted to gas transfer velocities by multiplication with the average reach depth of 0.16 m 

[Billett and Harvey, 2012]. The gas transfer velocity for N2O ( ) was calculated using 

equation (6) [Jones and Mulholland, 1998] where  and  are temperature dependent 

gas diffusion coefficients for CO2 and N2O respectively and n is a coefficient which describes 

the characteristics of water turbulence. Here we use the value of n = 0.5 which is considered 

typical for upland streams [Billett and Harvey, 2012; Wallin et al., 2011]. 

 

Equation (5) was applied using water-air concentration gradients calculated from the median 

water and median atmospheric partial pressures of individual gases over the specific time 

periods being analysed. 
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Results 

Discharge over the measurement period was “flashy” with a rapid response to precipitation 

events and a seasonal cycle characterised by low flows in June (Figure 1a). Daily mean 

discharge ranged from 0.95-1815 L s-1 with a median of 25.9 L s-1 (Table 1). Stream water 

temperature displayed a very clear seasonal pattern with highs of approximately 14ºC in late 

July and lows of <1ºC in early January (Figure 1b), and was negatively correlated with 

discharge (r = -0.23, P < 0.01). pH averaged 4.68  over the full measurement period with 

maxima and minima of 7.07 and 3.50, respectively (Table 1). EC showed clear interannual 

differences; mean EC excluding 2010 was 52.0 µS cm-1, compared to the 2010 mean of 108 

µS cm-1
.  

Rainfall was highest in 2008 and lowest in 2010 (Figure 2a), however these values do not 

include snowfall which was significant in 2010. Based on an average rainfall:runoff ratio in 

the years excluding 2010 of 69%, total precipitation in 2010 was estimated as1072 mm. 

Based on total precipitation rather than rainfall alone, 2011 was the driest year. Lowest 

annual mean discharge was recorded in 2007, followed by 2011, 2009, 2010 and 2008, 

respectively. 2011 was the warmest year (biased by high August-October temperatures) and 

2010 was the coolest year (biased by abnormally low January-March temperatures) (Figure 

2b). 

 

Aquatic carbon and GHG concentrations 

Of the carbon species measured DOC had the highest FWMC, followed by DIC, POC, CO2 

and CH4; N2O had a FWMC of 0.36 µg N L-1 (Table 1). Concentrations in all species were 

highly variable (Figure 3) with coefficients of variation (CV) highest for POC and DIC and 
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lowest for CO2 (Table 1). Although the explained variance was low, all species displayed 

significant relationships between concentrations and log-transformed (Ln) discharge (Figure 

4); relationships were positive for POC and DOC, negative for DIC, CO2, CH4 and N2O. 

Clear seasonal cycles were evident in DOC (r = 0.67, P < 0.05), CO2 (r = 0.61, P < 0.05) and 

CH4 (r = 0.74, P < 0.01) concentrations (Figure 5). Annual DOC and CH4 highs were 

observed in August (based on seasonal indices), whereas CO2 concentrations reached an 

annual high in June. Seasonal indices for POC, DIC and N2O were highly variable throughout 

the year with no clear annual cycle.  

Interannual variability was evident in all carbon and GHG species concentrations (Figure 6). 

Variability was greatest in mean annual DIC concentrations (CV= 0.42), followed by POC 

(CV 0.26), DOC (CV 0.16), N2O (CV 0.13), CO2 (CV 0.09) and CH4 (CV 0.04), 

respectively. The only species to exhibit significant trends in concentration over time were 

CO2 (r
2 = 0.05, p < 0.05) and N2O (r2 = 0.14, p < 0.01), both of which showed a decline over 

the sampling period. 

Table 2 highlights groups of species which vary temporally in a similar nature. Strong 

positive correlations were found between CO2, CH4 and DIC. DOC and POC were positively 

intercorrelated and negatively correlated with CO2, CH4 and DIC. No correlation was 

observed between N2O and the DOC/POC grouping, although it was negatively correlated to 

the DIC/CO2/CH4 grouping.  

Spearman’s rank correlation, which was carried out to determine the primary driver of 

variability across different time scales, showed that all C and GHG species (instantaneous 

spot samples) were significantly correlated with at least five of the seven parameters listed 

(Figure 7). Discharge was a significant driver of all species and DIC, CO2 and CH4 showed 

additional negative correlations with water table depth; DIC also showed a positive 
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correlation with rainfall. All species were again correlated with soil and stream temperature, 

pH and EC, however the sign of the relationship was species specific. For POC, DOC and 

DIC the correlation with soil temperature was greater than that with stream temperature; the 

opposite was true for the GHGs.  

Monthly mean soil temperature was the only variable found to explain monthly mean POC 

concentrations; annual concentrations were strongly positively correlated with stream water 

temperature and negatively with soil temperature. Monthly mean DOC concentrations were 

weakly positively correlated with both discharge and rainfall, and both soil and stream water 

temperature were related to high DOC concentrations during mid-summer (Figure 5). 

Discharge was not significantly correlated with mean monthly DIC concentration, which was 

instead associated with low water table and high EC. The best predictor of annual DIC 

concentration was again EC. CO2 and CH4 concentrations showed similar monthly 

correlations with the greatest influence being water table depth or stream temperature. Mean 

monthly N2O concentrations were negatively correlated with stream temperature; interannual 

variability was controlled primarily by rainfall.  

 

Aquatic carbon and GHG fluxes  

Over the full five year period the greatest aquatic carbon flux was downstream export of 

DOC (19.3 g C m-2 yr-1) which accounted for 54.3% of total aquatic carbon losses (25.5 g C 

m-2 yr-1); CO2 evasion was the second largest carbon flux (10.0 g C m-2 yr-1) accounting for 

28.1% of total aquatic carbon loss (Table 3). GHG evasion from the water surface was 

dominated by CO2 which accounted for 97.1% of total GHG losses (42.2 g CO2-eq m-2 yr-1) 

presented as CO2-eq based on a 100 yr time horizon [IPCC, 2007]. Comparing downstream 
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versus evasive fluxes, 71.6% of total aquatic carbon was transported downstream whereas 

89.3% of GHGs were evaded from the water surface. 

When split into seasons based on hydrological year, greatest total carbon export (downstream 

export plus evasion) was observed in late summer (Figure 8a). Early summer was the period 

with both lowest carbon export and lowest mean discharge. Downstream export of DOC 

represented the largest aquatic carbon flux in all seasons except early summer, when CO2 

evasion represented the greatest flux (Table 4). DIC was the next largest flux term with 

greatest export during early winter (0.50 g m-2 month-1); POC export was greatest in late 

summer (0.27 g m-2 month-1). CH4 export was < 0.01 g m-2 month-1 in all seasons, but peaked 

in late summer. Export variability between seasons was greatest for POC (CV 0.84), followed 

by DIC (CV 0.79) and DOC (CV 0.61); seasonal coefficients of variation were <0.5 for all 3 

GHG species.  

Over the five year period 2007 had the greatest total carbon export, dropping sequentially 

until 2011 (Figure 8b), this relates primarily to a decreasing trend in DOC export. Using a 

2010 precipitation value of 1072 mm, >99% of the interannual variability in DOC export 

could be explained using an interaction term between annual precipitation and mean annual 

temperature (P < 0.01); years with high DOC export corresponded to years that were warmer 

and wetter (Figure 2).  

Of all measured carbon and GHG fluxes, DIC export displayed the largest interannual 

variability (CV 0.98), linked primarily to high DIC concentrations in 2010. This was closely 

followed by POC (CV 0.92) which ranged from 0.44 g C m-2 yr-1 in 2011 to 4.49 g C m-2 yr-1 

in 2010. N2O and DOC export showed similar interannual variability (CV 0.48 and 0.35, 

respectively). 
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Discussion 

Comparison of carbon and GHG  concentrations and fluxes 

The relative contribution of the individual species (DOC > DIC > CO2 > POC > CH4) to total 

streamwater carbon concentration was consistent with earlier work by Billett et al. [2004] at 

the same site. Mean carbon concentration in 1996-1998 was 47.5  ± 1.4 mg C L-1 compared 

to 38.4  ± 1.73 mg C L-1 in this study, the primary difference being a 10.2 mg C L-1 decrease 

in DOC concentration. Average DOC concentrations across 13 different UK peatland systems 

range from ~3.4-25.5 mg C L-1 [Billett et al., 2010; Daniels et al., 2012; Hope et al., 2001]; 

examples from non-UK sites include 2.7-11.5 mg C L-1 in Glencar, Ireland [Koehler et al., 

2009],  20.0-76.6 mg C L-1 in Mer Bleue, Canada [Roulet et al., ], 25.3 mg C L-1 (TOC) from 

Degerö Stormyr in N Sweden [Nilsson et al., 2008], and 21 and 33 mg C L-1 (TOC) from two 

sites in N Karelia, Finland [Dyson et al., 2010]. DOC concentrations from Auchencorth Moss 

are therefore within the range of previously measured catchments.  

CO2 and CH4 were consistently supersaturated throughout the measurement period with mean 

concentrations of 2.40 and 0.006 mg L-1, respectively. Concentrations of both gases were 

lower than those measured at Mer Bleue, Canada [Dinsmore et al., 2009a] and Degerö 

Stormyr, Sweden [Nilsson et al., 2008], yet much closer to the ranges presented by Hope et 

al. [2001] for a peatland in NE Scotland (0.29-1.86 mg CO2-C L-1; <0.01-0.02 mg CH4-C L-

1). Carbon and GHG fluxes for 2007 and 2008 were previously reported from the same study 

site in Dinsmore et al. [2010]. Having further refined the discharge rating curve, in particular 

the high-flow discharge calculation, mean annual aquatic carbon export (2007-2008) changed 

from  31.1 to 33.6 g C m-2 yr-1, and mean annual CO2 and CH4 evasion from 12.7 to 9.25 g C 

m-2 yr-1.  The total mean annual catchment-scale aquatic carbon loss over the full 5-year 

measurement period was 35.6 g C m-2 yr-1, equating to a total GHG loss (based on 100-yr 
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GWP and including N2O) of 42.2 g CO2-eq m-2 yr-1. This is very similar to the total carbon 

loss of 35.0 g C m-2 yr-1 calculated by Billett et al. [2004] for the same catchment from 1996 

to 1998, although the proportions of the overall flux comprising CO2 evasion and DOC 

export were different. Other literature estimates of total aquatic carbon loss from peatlands 

include 41.4 g C m-2 yr-1 in the Brocky Burn catchment, NE Scotland [Hope et al., 2001] and 

21.3 g C m-2 yr-1 from Mer Bleue, Ontario [Billett and Moore, 2008; Roulet et al., 2007]. 

The ratio of CO2 and CH4 evasion to total downstream carbon export in the Brocky Burn and 

Mer Bleue drainage waters were 0.52 and 0.17, respectively [Billett and Moore, 2008; Hope 

et al., 2001], compared to 0.15 in the Black Burn in 1996-1998 (Billett et al. 2004) and 0.40 

during this study (2007-2011). Upscaling evasion measurements from short study reaches, 

over a limited flow range leads to significant variability and uncertainty in catchment scale 

flux estimates. This is reflected in the large GHG evasion ranges given in this study. Another 

source of uncertainty in the evasion estimates is the total water surface area within the 

catchment. In this study we have used a more accurate, updated estimate of 3371 m2, instead 

of an initial estimate of 1820 m2 [Billett et al., 2004]. Adjusting their evasion estimate (1996-

98) of 4.6 g C m-2 yr-1 to the updated water surface area, gave an evasion flux of 8.6 g C m-2 

yr-1 significantly closer to the 10.1 g C m-2 yr-1 for the period 2007-11. This gives a total 

evasion:export ratio of 0.28 and significantly improves our confidence in the long-term 

catchment-scale value. 

Seasonal and interannual variability in carbon and GHG concentrations and fluxes 

DOC concentrations followed a seasonal cycle with concentrations reaching an annual high 

in August. This led to high variability in exports between seasons with peak export occurring 

in late summer (August-  October) when high concentrations coincided with high discharge. 

Exports earlier in the summer where restricted by low mean seasonal discharge. 
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Instantaneous DOC concentrations were driven by hydrological parameters linking high 

stream water DOC to shallow flow pathways. Temperature was significantly related to both 

instantaneous and average monthly DOC concentrations, suggesting the seasonal cycle was 

linked to biological productivity. Biological activity is known to follow a similar seasonal 

cycle to temperature, driven by environmental parameters such as day length and 

photosynthetically active radiation [e.g. Frolking et al., 2002]. A greater correlation with soil 

compared to stream temperature supports our hypothesis that DOC is allochthonous and 

therefore linked to productivity within the soil-plant system rather than in-stream processing.  

Interannual variability in DOC export was low relative to the other aquatic carbon species, 

although due to the magnitude of the DOC flux it strongly controlled total carbon export. 

Hence given that 99% of the interannual variability across the 5 study years was explained by 

the interaction between precipitation and air temperature, climatic change is likely to have a 

large impact on catchment-scale aquatic carbon losses. Furthermore, as the aquatic pathway 

itself represents a significant proportion of the total catchment NECB [Billett and Moore, 

2008; Dinsmore et al., 2010; Nilsson et al., 2008; Roulet et al., 2007], changes in DOC 

export may be fundamental in understanding the full catchment response to climate change.  

Temporal variability in weekly concentrations were highest for POC and this translated into 

high variability in both seasonal and interannual exports. Although POC represented a mean 

of 7.5% of the total organic carbon export this varied seasonally and ranged from 11.0% in 

early winter to 3.5% in early summer. A positive correlation between instantaneous POC 

concentration and discharge, and negative correlation with pH and EC both indicate a strong 

dependence on hydrologic flow pathways. As pH and EC were lowest during high-flow 

conditions, high streamwater POC concentrations were likely associated with shallow or 

surface soil water sources. 
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We also found that POC was positively correlated with both soil and stream temperature. The 

average lag-time between rainfall and discharge peaks in the catchment was 7.5 ± 0.9 hours 

[Dinsmore and Billett, 2008] indicating a relatively short water residence time in the 

catchment during high flow conditions. Therefore any changes in terrestrial source 

concentrations (linked to changes in soil temperature) will be quickly translated into changes 

in aquatic concentration changes when associated with high rainfall events. The correlation 

between POC and temperature therefore indicates a biological driver linked to POC 

production within the catchment. We did not however see a seasonal cycle in POC 

concentrations; this was most likely masked by the high variability associated with 

discharge/flow path dynamics. Temperature was also strongly correlated with interannual 

variability in POC concentrations. However the correlation was negative with stream and 

positive with soil temperature, indicating a more complex set of drivers than we were able to 

consider here.  

DIC, CO2 and CH4 concentrations showed significant inter-correlation and a high degree of 

similarity in their drivers across all time scales. Negative correlations with water table depth 

and discharge, alongside positive correlations with temperature, pH and EC in the 

instantaneous datasets, all suggest sources associated with deeper flow pathways. Similar 

correlations with discharge and water table were also seen in the monthly dataset, however 

water table became the strongest driver indicating the importance of integrating current and 

antecedent hydrological conditions. As hypothesised, there was no seasonal temperature 

driver of DIC concentrations, which indicates a disconnect from surface biological processes. 

The seasonal correlation of CO2 and CH4 with stream rather than soil temperature, suggests 

that in-stream temperature dependent solubility (rather than terrestrial biological 

productivity) was the primary driver of seasonal concentrations. Isotopic data from this site 

has shown that CO2 is both significantly older and sourced from greater depths within the 
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peatland than DOC [Billett et al., 2007]. Garnett et al. [2012] also found a strong seasonal 

cycle in the radiocarbon age of dissolved CO2 in the Black Burn, with older CO2 associated 

with deep water tables. However, they found no seasonality or discharge correlation with 

δ13CO2, indicating that the source material was relatively consistent and characteristic of 

decomposition of C3 plant material. Since streamwater CO2 is not linked to young DOC, is 

driven largely by in-stream temperature dependent solubility, and does not contain a 

significant geological signature, we conclude that the primary source of streamwater CO2 in 

Black Burn is decomposition of organic carbon relatively deep within the soil profile. 

However, this will not necessary be true for all peatlands. For example, an isotopic study by 

Billett et al. [2012] found that root/soil respiration was a likely source of evasion CO2 in 

forested Finnish catchments. 

CH4 was highly seasonal with concentrations reaching a maximum in August, correlating 

strongly with the seasonal cycle in stream temperature. CH4 also showed strong negative 

correlations with discharge suggesting linkage to deep flow pathways  associated with higher 

source concentrations. The drivers of CH4 and CO2 across all temporal scales were very 

similar, suggesting commonality in catchment CO2 and CH4 sources.  

Despite high concentrations, downstream export in all species was lowest in early summer 

due to low discharge, and in many cases, highest in late summer when high concentrations 

coincided with high discharge. Evasion therefore became proportionally more important 

during summer months. No studies have yet considered seasonality in headwater gas transfer 

coefficients. However it is likely that these will be highly variable during summer as low 

turbulence stream flow is interspersed with periodic bursts of evasion associated with storm 

flow events, which release supersaturated gases which have built up within the water column. 

Clearly more work is required to consider seasonality and temporal dynamics in evasion 

fluxes.  
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Terrestrial NEE has been measured in the catchment continuously using eddy covariance 

techniques since 2002 [Helfter, in prep]. The direction and strength of prevailing wind in 

relation to the Black Burn stream channel means that except for very rare occasions, the 

footprint of the eddy covariance system does not include the stream channel. To consider the 

link between the terrestrial and aquatic systems further, a set of simple correlations were 

carried out comparing annual NEE, and its individual components, gross primary 

productivity (GPP) and ecosystem respiration (ER), with total annual aquatic carbon flux and 

the annual in-stream FWMC of total carbon. NEE did not correlate significantly with either 

aquatic carbon fluxes or concentrations; however a very strong correlation (r2 = 0.98, P 

<0.01) was found between GPP and annual FWMC of total carbon in the stream. This 

supports the concept that the streamwater carbon signal integrates heterogeneous terrestrial 

processes and as such may provide a useful, and easily measured, indicator of change within 

the catchment [Billett et al., 2010]. 

 

Implications for catchment scale carbon and GHG budgets 

Over the 5 years of this study total annual catchment carbon loss via the aquatic pathway 

averaged 35.6 g C m-2 yr1, of which 10.1 g C m-2 yr1 was lost directly to the atmosphere via 

evasion of CO2 and CH4. In terms of GHG equivalents, direct evasion was responsible for 

37.7 g CO2-eq m-2 yr-1 with a further 4.50 g CO2-eq m-2 yr-1 exported downstream and likely 

to be evaded outside the catchment area. CO2 was by far the most important GHG 

representing >97% of GHG evasion. A very similar ratio (96%) is seen in the relative 

magnitude of CO2 to the total terrestrial GHG fluxes at Auchencorth Moss based on values 

for the period 2006-08 [Dinsmore et al., 2010]. NEE over the period 2007-2010, coinciding 

with the aquatic measurements, was -72.8 g C m-2 yr-1[Helfter, in prep]. Based on these 
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measurements the aquatic pathway accounted for an average carbon loss equivalent to 49% 

of total uptake by NEE. This refined estimate is higher than the 41% previously quoted in 

Dinsmore et al. [2010] for the period 2006- 2007.   

The annual CV in total aquatic export from 2007-2011 was 0.22 (downstream export 0.31; 

evasion 0.09) compared to a CV in NEE from 2007-2010 of 0.64. Hence aquatic exports of 

carbon appear to be much more annually consistent than NEE. However, as with seasonal 

fluxes, the lack of time-specific gas transfer coefficients is likely to mask some of the 

interannual variability in our evasion estimates.  Billett et al. [2007] showed that DOC tended 

to be relatively young in age, however this included DOC fixed since 1955, and here we 

suggest that the primary source of evaded CO2 (the second largest aquatic flux) is deep within 

the soil profile and relatively disconnected from surface processes. Hence stream export is a 

good integrator of carbon fixed over multiple years. Integration over multiple years and 

across a large heterogeneous landscape (the catchment), in addition to greater interannual 

stability could potentially make aquatic carbon flux monitoring a more robust indicator of 

long term change in catchment carbon turnover than NEE measurements (where high 

variability may mask step changes). This is a hypothesis that requires further testing against 

similar long-term datasets. 

 

Conclusions 

Temporal variability was evident in all carbon and GHG species concentrations across a 

range of time scales. As hypothesised, variability over short time scales in all species was 

strongly correlated to discharge, highlighting the importance of hydrological flow pathways 

through the catchment. In addition, seasonal cyclicity was observed in DOC, CO2 and CH4 

concentrations, and a correlation between temperature and mean monthly concentrations was 
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seen in all carbon and GHG species with the exception of DIC. In part this supports the 

hypothesis that all measured species with the exception of DIC will vary seasonally following 

temperature. However, as stream temperature was a stronger predictor of CO2 and CH4 

concentration than soil temperature, we suggest the correlation is primarily due to in-stream 

temperature dependent solubility rather than terrestrial biological productivity. Although 

some CO2 and CH4 will be sourced from surface peat layers, the negative concentration-

discharge relationship suggested the majority was from deeper sources with connectivity to 

surface biological processes only occurring during high flow events. Both POC and DOC 

concentrations showed significant inter-correlation and appear to be linked to surface flow 

paths and productivity in the soil-plant system. As hypothesised, total carbon export was 

greatest in late summer when high temperature and high runoff coincide, and lowest in early 

summer following a period of low winter productivity. Our results suggest that CO2 evasion 

becomes proportionally more important in the early summer when evasion remains high and 

downstream carbon export is limited. As CO2 evasion represented the 2nd largest aquatic C 

flux term within the catchment a better understanding of temporal variability in gas transfer 

coefficients is a future research priority. 

We found a very strong positive correlation between aquatic concentrations and catchment 

GPP, indicating a strong linkage between the aquatic system and catchment productivity. The 

largest component of the aquatic flux was DOC (54.3% of total) followed by CO2 evasion 

(28.1% of total). Annual DOC flux was strongly linked to precipitation and temperature with 

the greatest fluxes occurring in warmer and wetter years. Our results suggest that climatic 

change is likely to have a significant impact on annual carbon losses through the aquatic 

pathway, and as such aquatic exports are fundamental to the understanding of whole 

catchment responses to climate change.  
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Tables 

Table 1. Summary of hydrochemical parameters and concentrations over the 5 year measurement 
period where SE refers to the standard error of the mean, CV the coefficient of variation and FWM 
the flow weighted mean temperature, pH, EC or concentration. 

  Mean (± SE) CV FWM Median (Range) 

Daily Mean Discharge (L s-1) 70.6 ± 3.25 1.88 --- 25.9 (0.95-1815) 
Water Temperature (ºC) 7.94 ± 0.29 0.52 7.21 8.74 (0.00-16.7) 
pH 4.68 ± 1.12 0.16 4.58 5.76 (3.50- 7.07) 
EC (µS cm-1) 65.4 ± 4.56 0.99 37.2 45.9 (6.40-463) 

 
POC (mg C L-1) 1.36 ± 0.13 1.36 2.59 0.93 (0.00-17.8) 

DOC (mg C L-1) 28.4 ± 1.07 0.51 28.4 24.4 (4.26-87.5) 

DIC (mg C L-1) 6.25 ± 0.47 1.00 4.55 3.69 (0.00-35.1) 

CO2 (mg C L-1) 2.40 ± 0.06 0.35 1.78 2.28 (0.46-5.09) 

CH4 (µg C L-1) 5.92 ± 0.27 0.68 3.79 4.78 (0.65-28.6) 

N2O  (µg N L-1) 0.48 ± 0.2 0.49 0.36 0.44 (0.12-2.41) 

 

 

Table 2 Spearman’s rank correlation matrix of measured carbon and GHG concentrations based on 
instantaneous spot samples. Results significant at P < 0.05 are indicated by *; results significant at P < 
0.01 are indicated by **. 

  POC DOC DIC CO2-C CH4-C 

DOC 0.35** 
DIC -0.17* -0.40** 

CO2-C -0.19** -0.17* 0.39**

CH4-C --- --- 0.41** 0.77**

N2O-N --- --- -0.49** -0.23** -0.38**
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Table 3 Annual downstream export and evasion of aquatic carbon and GHG fluxes (CO2, CH4 and 
N2O) from 2007 to 2011, with SE and ranges shown for downstream export and evasion respectively. 
CO2 equivalents are based on the most recent IPCC report [2007] equating to 25 and 298 for CH4 and 
N2O respectively.  

  Downstream Export Evasion 

POC (g m-2 yr-1) 1.97 ± 0.23 --- 
DOC (g m-2 yr-1) 19.3 ± 4.59 --- 
DIC (g m-2 yr-1) 3.06 ± 1.75 --- 
CO2-C (g m-2 yr-1) 1.17 ± 0.02 10.0 (2.33 - 24.0)

CH4-C (mg m-2 yr-1) 2.50 ± <0.01 24.0 (5.41 - 58.3)

N2O-N (mg m-2 yr-1) 0.26 ± <0.01 0.28 (0.06 - 0.66)

  
Total C (g C m-2 yr-1) 25.5 10.1 
Total GHG (g CO2-eq m-2 yr-1) 4.50 37.7 

 

 

Table 4. Seasonal export of carbon and GHG species. Where ± terms are given these refer to SE. 
Bracketed terms after evasion estimates refer to the range calculated from minimum and maximum 
gas transfer coefficients. Seasons are defined based on the hydrological year as follows: Early Winter 
= Oct, Nov, Dec; Late Winter = Jan, Feb, Mar; Early Summer = Apr, May, Jun; Late Summer = Jul, 
Aug, Sep. 

  Early Winter Late Winter Early Summer Late Summer 

Mean Discharge (L s-1) 88.7  ± 16.3 79.1  ± 10.5 28.6  ± 7.91 82.7  ± 13.4 
Downstream Export 

POC (g m-2 month-1) 0.21 ± 0.06 0.06 ± <0.01 0.02 ± <0.01 0.27 ± 0.12 

DOC (g m-2 month-1) 1.70 ± 032 1.00 ± 0.14 0.52 ± 0.08 2.56 ± 3.49 

DIC (g m-2 month-1) 0.50 ± 0.69 0.17 ± 0.06 0.10 ± 0.03 0.16 ± 0.26 

CO2-C (g m-2 month-1) 0.11 ± <0.01 0.10 ± <0.01 0.05 ± <0.01 0.11 ± 0.01 

CH4-C (mg m-2 month-1) 0.20 ± <0.01 0.14 ± <0.01 0.13 ± <0.01 0.31 ± <0.01 

N2O-N (mg m-2 month-1) 0.03 ± <0.01 0.03 ± <0.01 0.01 ± <0.01 0.02 ± <0.01 

Surface Water Evasion* 

CO2-C (g m-2 month-1) 0.74 (0.17-1.77) 0.57 (0.13-1.37) 0.99 (0.23-2.36) 1.04 (0.24-2.49)

CH4-C (mg m-2 month-1) 1.75 (0.39-4.26) 1.05 (0.24-2.55) 2.62 (0.59-6.37) 3.44 (0.78-8.37)

N2O-N (mg m-2 month-1) 0.01 (<0.01-0.03) 0.02 (0.01-0.05) 0.01 (<0.01-0.03) 0.04 (0.01-0.09)

 

* Due to data limitations, a single set of gas transfer coefficients is applied to calculate 
surface water evasion across all seasons. Therefore values do not represent the true seasonal 
variability and are included only as a comparison to downstream export to complete the 
aquatic carbon and GHG budget. 
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Table 5 Annual export of carbon and GHG species, stream temperature and discharge between 2007-
11. Where ± terms are given these refer to SE. Bracketed terms after evasion estimates refer to the 
range calculated from minimum and maximum gas transfer coefficients. 

  2007 2008 2009 2010 2011 
Mean Discharge (L s-

1) 60.8 95.5 64.1 78.6 62.7 

Downstream Export 
POC (g m-2 yr-1) 0.59 ± 0.02 4.49 ± 2.04 1.22 ± 0.11 2.28 ± 0.78 0.44 ± 0.01 
DOC (g m-2 yr-1) 27.5 ± 31.6 27.6 ± 14.6 17.9 ± 3.24 15.0 ± 4.65 12.4 ± 8.31 
DIC (g m-2 yr-1) 3.20 ± 2.33 0.68 ± 0.19 8.85 ± 10.1 2.27 ± 1.34 1.54 ± 0.34 
CO2-C (g m-2 yr-1) 1.84 ± 0.04 1.21 ± 0.06 1.11 ± 0.02 1.23 ± 0.02 0.97 ± 0.01 
CH4-C (mg m-2 yr-1) 4.49 ± <0.01 2.77 ± <0.01 2.09 ± <0.01 2.22 ± <0.01 2.12 ± <0.01 
N2O-N (mg m-2 yr-1) 0.22 ± <0.01 0.18 ± <0.01 0.32 ± <0.01 0.39 ± <0.01 0.25 ± <0.01 
Surface water 
Evasion*  

CO2-C (g m-2 yr-1) 10.20 (2.37-
24.4) 8.26 (1.92-19.8) 10.5 (2.45-

25.2)
9.91 (2.30-

23.7) 9.91 (2.3-23.7)

CH4-C (mg m-2 yr-1) 24.1 (5.43-58.6) 19.22 (4.34-46.8)
25.5 (5.76-

62.1)
24.6 (5.55-

59.9) 
26.2 (5.92-

63.9)

N2O-N (mg m-2 yr-1) -0.01 (-0.02-
0.00) --- 0.17 (0.04-

0.40)
0.20 (0.05-

0.46) 
0.27 (0.06-

0.63)
 
* A single set of gas transfer coefficients is applied to calculate surface water evasion across 
all years. Therefore values do not represent the true interannual variability and are included 
only as a comparison to downstream export to complete the aquatic carbon and GHG budget. 
 

Figures 

 

Figure 1. Time series of a) daily mean discharge (grey line), b) temperature, c) pH and d) electrical 
EC in the Black Burn from January 2007 to December 2011. Solid black lines represent monthly 
moving averages (30 day window). 

Figure 2. Interannual and seasonal variability in a) rainfall (snowfall not included) and b) mean air 
temperature. Seasons are based on the hydrological year running from 1st October to 30th September. 
Precipitation in late winter 2010 was exclusively snowfall. 

Figure 3. Time series of instantaneous a) POC, b) DOC, c) DIC, d) CO2, e) CH4 and f) N2O 
concentrations in the Black from January 2007 to December 2011. Solid black lines represent monthly 
moving averages (30 day window). 

Figure 4. Concentration discharge relationships for a) POC, b) DOC, c) DIC, d) CO2, e) CH4 and f) 
N2O in the Black Burn from January 2007 to December 2011. Note that in most cases axis are 
displayed on a logarithmic scale. r2 and P values represent the results from regression analysis. 

Figure 5. Boxplots showing monthly concentration distributions of a) POC, b) DOC, c) DIC, d) CO2, 
e) CH4 and f) N2O in the Black Burn. Only maximum and minimum outliers are included. Normalised 
seasonal indices from time series deconstructions are presented in plates beneath each boxplot. 
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Figure 6. Boxplots showing annual concentration distributions in a) POC, b) DOC, c) DIC, d) CO2, e) 
CH4 and f) N2O in the Black Burn. Only maximum and minimum outliers are included. Normalised 
trend indices from time series deconstructions are presented in plates beneath each boxplot. 

Figure 7. Illustration of results from Spearman’s rank correlations of carbon and GHG 
concentration against hydrochemical and meteorological variables at different time scales. 
Colour scale represents r values with the value also displayed within each box; positive 
concentrations are shown in red, negative in blue. Only results significant at P < 0.05 are 
included. Variable labels are defined as Q = Discharge, Rain = Rainfall, WT = Water table, 
Stream T = Stream temperature, Soil T = Soil temperature, pH and EC. 

Figure 8. Bar charts of a) seasonal and b) interannual variability in carbon export separated into 
different carbon species; the dashed line represents changes in mean annual discharge over the 
described period. CH4 and CO2 bars include both downstream export and evasion. Seasons are based 
on the hydrological year and are defined as Early Winter (October, November, December), Late 
Winter (January, February, March), Early Summer (April, May, June) and Late Summer (July, 
August, September). 
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