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Abstract

We present a simple method of probabilistic risk analysis for ecosystems. The only
requirements are time series—modelled or measured—of environment and ecosystem
variables. Risk is defined as the product of hazard probability and ecosystem vulnerability.
Vulnerability is the expected difference in ecosystem performance between years with and
without hazardous conditions. We show an application to drought risk for net primary
productivity of coniferous forests across Europe, for both recent and future climatic

conditions.

Keywords: carbon cycle, drought, uncertainty, vulnerability

1. Introduction

Climate change is expected to affect both average weather
patterns and the occurrence of extreme events (IPCC 2012).
Process-based simulation models are key tools for quantifying
the risks posed to ecosystems by such events. However, there
is no agreed method for analysing the results produced with
such models in order to quantify vulnerabilities and risks. We
propose a simple method here.

Terminology for risk analysis was developed under
the auspices of the United Nations (DHA 1992). Risk
was then defined as ‘expected loss’, to be calculated as
the ‘product of hazard and vulnerability’. Hazard was
defined as ‘the probability of occurrence of a potentially
damaging phenomenon within a given time period and
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area’, and vulnerability as the degree of loss that results
if the phenomenon does occur (DHA 1992). To facilitate
quantitative analysis, we here make the further distinction
between hazard as the potentially damaging phenomenon
itself, and the probability of the hazard actually occurring. So
risk is zero if the probability of hazard or the vulnerability is
zero, and risk is only large when both components are large. A
similar definition, ‘risk = probability x consequence’, was
more recently used by the Intergovernmental Panel on Climate
Change (IPCC 2012). These definitions were set up primarily
to facilitate risk analysis for hazards threatening human life,
but they can be made operational for ecosystem modelling too.

The risks we quantify here are those related to the
carbon cycle of ecosystems, e.g. the expected loss of net
primary productivity (NPP). The hazards we are interested
in relate to meteorological variables, so we quantify the
probability of hazardous weather conditions such as droughts
and heat waves. Vulnerability, in this context, is the impact
that hazardous weather has on the carbon fluxes. In the
following, we shall refer to the quantification of risk and its
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two components, the probability of hazardous conditions and
the vulnerability, as ‘risk analysis’.

Our method of risk analysis can be applied to time series
of empirical data and to ecosystem modelling results, but
we focus on the latter here. In case the time series come
from modelling, the hazards, vulnerabilities and risks to be
quantified are restricted to the environmental input variables
and ecosystem output variables of the model in question.

Environmental and ecosystem variables are characterized
by uncertainty. Environmental variables may be measured
or modelled, e.g. using GCMs, so they reflect uncertainties
about measurement or modelling error. Simulated ecosystem
variables reflect uncertainties in the inputs, parameters and
structure of the ecosystem model. To account for these
uncertainties, we base our risk analysis method on probability
distributions for all variables. Our approach thus is as an
example of probabilistic risk analysis (PRA; Bedford and
Cooke 2001; IPCC 2012). The proposed methodology is
inspired by ideas from the literature on PRA (going back to
Kaplan and Garrick 1981), but we have tried to make it more
general and more rigorously probabilistic. PRA tends to focus
on risks associated with discrete hazardous events (tsunamis,
storms, epidemics, etc) whereas we analyse the responses
of ecosystems to any value that environmental variables
such as rainfall or temperature can take. Our basic tools
will therefore be continuous probability distributions rather
than discrete ones. And although PRA commonly expresses
the occurrence of hazardous events probabilistically, based
on observed frequencies, it generally ignores the fact that
the response to any such event is not precisely known. In
contrast, we also express vulnerability to environmental stress
probabilistically.

In short, this letter aims to make PRA operational for
ecosystems analysis where both the environment and the
ecosystem are imperfectly known and variable, so risks,
hazards and vulnerabilities must be defined in probabilistic
terms. We give the definitions in the form of mathematical
equations and show that they allow writing risk as the
product of hazard probability and ecosystem vulnerability.
We conclude with an example illustrating how the method
can be used to analyse how environmental change may alter
risks posed by environmental change to carbon fluxes in
ecosystems. The specific goal of the analysis is to quantify
how drought risks to carbon sinks in coniferous forest may
change across Europe, and whether the underlying causes will
mainly be changes in drought frequency or changes in forest
vulnerability.

In section 2.1, we present the underlying theory
in a formal way; concrete suggestions for practical
implementation are provided in section 2.2, and examples of
application follow in sections 3 and 4.

2. A method for probabilistic risk analysis using
ecosystem models

2.1. Theory

We refer to the environmental variables which may or may
not attain hazardous conditions as ‘env’, and to the ecosystem

variables at risk as ‘sys’. Our risk analysis is based on the
probability distributions for these variables, denoted as P(env)
and P(sys). The degree to which the environment accounts
for the state of the system is represented by the conditional
probability distribution P(sys|env). The three distributions are
linked through the law of total probability:

P(sys) = / P(env)P(sys|env) d env. (D)

Average environmental conditions and ecosystem be-
haviour are given by the expectations E(env) and E(sys).
Our aim is to use the three probability distributions to define
‘hazards’, ‘vulnerabilities’ and ‘risks’ such that risk equals
the product of hazard probability and vulnerability. We define
hazard as a factor that can cause damage. Because any
environmental variable can, on occasion, be too low or too
high for optimal ecosystem performance, each constitutes
a hazard. We shall say that an environmental variable is
hazardous if it is in the range of values whose negative
impacts we want to study. How to set that range will be
discussed in section 2.2.

Vulnerability is defined here as a property of the con-
ditional response distribution P(sys|env). It is the difference
in expected system performance between hazardous and
non-hazardous environmental conditions:

Vulnerability = E(sys|env non-hazardous)

— E(sys|env hazardous), 2)

where the conditional expectation values are calculated as:

E(sys|e) = /sysP(sys|o) d sys. 3)

Equation (2) implies that vulnerability is defined as the
average difference in system performance between ‘good’ and
‘bad’ conditions. Finally, risk is defined as the product of
the probability of hazardous conditions and the ecosystem’s
vulnerability to such conditions:

Risk = P(env hazardous) x Vulnerability. @

If we expand the vulnerability term in the last equation,
using the definition given in equation (2), we can derive an
alternative but mathematically equivalent formula:

Risk = E(sys|env non-hazardous) — E(sys). ®))

This alternative formula emphasizes that risk can be seen
as the average loss that a system experiences due to occasional
hazardous conditions. In conclusion, our definition of terms
both obeys the common meaning of risk as ‘expected loss due
to a hazard’ (equation (5)) and it allows decomposition of risk
in the two terms given in equation (4).

2.2. Implementation of the method in ecosystem modelling
studies

In practice, when we perform computer modelling of
ecosystems, we do not calculate the theoretical distributions
and integrals described in section 2.1, but we approximate
them using results from model simulations. We propose the
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following six-step procedure for implementation of the risk
analysis:

(1) Select a relevant ecosystem model.

(2) Choose from the model’s input variables (env) those that
constitute hazards.

(3) Set the threshold criteria for hazardousness.

(4) Choose from the model’s output variables (sys) those that
are considered at risk.

(5) Set the boundary conditions for time and space and
perform the model simulations.

(6) Use the resulting input—output relationships and the
equations of section 2.1 to calculate E(sys|env non-
hazardous), E (sys|env hazardous), P (env hazardous),
vulnerability and risk.

In step 1, we may decide to use more than one ecosystem
model, which would make the analysis more comprehensive
by taking into account uncertainty about model structure.

In step 2, the easiest choice would be to focus
on individual input variables such as precipitation or
temperature. Alternatively, we may decide to use composite
environmental variables, such as weather indices which
combine the values of multiple input variables, e.g. the
Standardized Precipitation-Evapotranspiration Index (SPEI;
Vicente-Serrano et al 2010). The analysis can also be
performed using combinations of environmental variables
without formally combining them in one index. The
env-variable would then be multidimensional and P(env)
would be a multivariate probability distribution. For example,
the combined hazard probability of low rain and high
temperature can be defined as P(env hazardous) = P(rain <
cl AND temperature > c2), where cl and c2 are constants
chosen by the analyst.

In step 3, we may select criteria for hazardousness
from the literature, e.g. by choosing a common definition of
meteorological drought. We can also base our criterion on
the frequency distribution of the env-variable. An example
would be to consider as hazardous any annual rainfall less than
the current 25% quantile. In that approach, P(env hazardous)
would be 0.25 under current climatic conditions, but it would
change if the climate becomes drier or wetter. Note that
if we would let the threshold vary over time, by always
defining hazardousness with respect to the contemporary
weather frequency distribution, P(env hazardous) would
remain constant, and the analysis of risk in terms of its two
components would become meaningless. We may however
vary the reference climatic conditions across space. Amounts
of rain that constitute a drought in wet regions may be above
average elsewhere, but we can define as hazardous those
weather conditions that are locally extreme.

In step 5, we define the region, spatial resolution and
time period for which we carry out model simulations
underpinning the risk analysis. We may be interested in the
spatial distribution of hazards, vulnerabilities and risks, how
they change over time, and how they differ between ecosystem
types. In such cases, the ecosystem-specific environment and
system distributions P(env) and P(sys) can be determined

Table 1. Example of model input—output pairs. In bold: results for
hazardous conditions.

env (rainfall, mm d—1) sys (NPP, gCm~2d™!)

1 2
2 3
2 4
3 7
3 8
3 8
4 9
4 10
4 10
4 11

separately for individual spatial grid cells and by inspection of
model outputs over limited periods of time, e.g. thirty years.
Compared to P(env) and P(sys), the response distributions
P(sys|env) will differ less between grid cells—because they
are primarily determined by underlying universal mechanisms
as represented in the models. If so, and if the selected
env-variables cover the key sensitivities of the system,
P(sys|env) can be derived from modelling results across larger
regions or strata consisting of multiple similar grid cells.

In step 6, we use the modelling results to calculate
risk and its components. This is done by interpreting the
frequencies of input and output values as approximations of
their probabilities. We suggest carrying out the calculations in
the following order:

(A) E(sys|env non-hazardous), see equation (3).
(B) E(sys|env hazardous), see equation (3).

(C) Vulnerability = A — B, see equation (2).
(D) P(env hazardous).

(E) Risk = C % D, see equation (4).

3. Example 1: analysis of virtual modelling results

The following is a simple example using virtual data. Say we
have carried out simulations for a certain site for ten different
time periods, and we have the results shown in table 1, sorted
in order of increasing rainfall levels.

In this example, we have just one env-variable (rainfall)
and one sys-variable (NPP). We assume here that P(env) and
P(sys) can be approximated by the frequency distributions
of the values in the table. For a serious analysis, we
would need more than ten simulation results. We see
that E(env) = 3 mm d~! and E(sys) =72 ¢ P
Say we define the hazardous range of env as values less
than the average of 3 mm d=!, so that the first three
rows in the table represent hazardous conditions and the
remaining seven non-hazardous ones. The expectation values
for NPP then are 9 and 3 g m~2 d~! for non-hazardous
and hazardous conditions, respectively. Vulnerability is then
calculated, using equation (2), as 9 — 3 =6 g m2 d~ .
The probability of hazardous conditions, P(env hazardous), is
three out of ten = 0.3. Risk is the probability of hazardous
conditions times the vulnerability (equation (4)), i.e. 0.3 X
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6=1.8gm 2 d"!. We could also have calculated the risk
using equation (5), as the expected NPP under non-hazardous
conditions minus average NPP =9 — 72 =18 gm~2d .
So the risk analysis has the following results:

(A) E(sys|env non-hazardous) =9 gm~—2 d~!.

(B) E(sys|env hazardous) =3 gm=2d~L.

(C) Vulnerability =A —B=6gm2d~!.

(D) P(env hazardous) = 0.3.

(E) Risk =C%D=A—E(sys) = 1.8 gm=2d L.

The vulnerability of this system is high, with drought
reducing NPP by two-thirds on average. However, the risk is
less because droughts only occur 30% of the time.

4. Example 2: analysis of drought risks across
Europe using a forest model

We now give a more complex example. We use the dynamic
model BASFOR to analyse risks posed by drought to
coniferous forests across Europe. Because we focus on
presenting the method for probabilistic risk assessment,
rather than on the properties of any single model, we
keep the following model description brief. BASFOR
is a forest model that requires as input meteorological
variables (radiation, temperature, precipitation, wind speed,
atmospheric humidity), atmospheric CO, concentration and
N-deposition rate. The model runs on a daily time step and
simulates the dynamics of pools of carbon, nitrogen and water
in tree organs and soil. For details about the model, including
comparison with measurements in various applications, see
(Van Oijen et al 2005, 2011). Here we consider the model’s
predictions of NPP (g C m~2 d~!). In a recent comparison of
models for growth of Scots pine (Pinus sylvestris L) across
Europe, the NPP-predictions from BASFOR were found to be
the closest to independent observations from forest inventories
and ecological research sites (Cameron et al 2013).

The model is applied on a latitude-longitude grid of
0.25 x 0.25° across Europe, using two time periods:
1971-2000 and 2071-2100. For the first period, CO»
concentrations and daily weather data were based on
observations as assembled by the WATCH project and
downscaled from 0.5° using CRU CL 2.0. For the second
period, the forcing variables were generated by the MPI-Remo
model assuming the SRES A1B scenario for greenhouse gas
emissions. Data on N-deposition across Europe for the year
2000 were downloaded from EMEP.

In this example, we define hazardous conditions as annual
average precipitation being less than the 25% quantile (Q25).
The absolute threshold for ‘hazardousness’ will thus be lowest
in the driest regions. The results of the risk analysis over
Europe are displayed in figure 1. Figures 1(A) and (B) show
that NPP under both ‘good’ and ‘bad’ conditions (annual
average precipitation larger or smaller than Q25) in the period
1971-2000 is highest in Central Europe. Vulnerability, the
difference in NPP between good and bad years, is highest in
eastern Spain and around the Black Sea (figure 1(C)). The
probability of bad conditions is everywhere 0.25 because of

the Q25 criterion. Therefore the risk map (figure 1(E)) is
just a rescaling of the vulnerability map, with risks being
proportional to vulnerability.

We repeated this risk analysis for the years 2071-2100
(figure 2), but kept the threshold for hazardousness as the Q25
for 1971-2000. Across much of Europe, NPP is expected to
increase under both non-hazardous and hazardous conditions
(figures 2(A) and (B)), mainly because of elevated [CO;].
However, the increases are not of the same magnitude in
all areas and drought vulnerability is expected to increase
in Southern Europe but decrease further north (figure 2(C)).
Drought probability changes in a similar way, with increases
predominantly in the Mediterranean area and decreases
in Northern Europe (figure 2(D)). Overall, future drought
risk will be highest in Spain and Anatolia (figure 2(E)).
These regions are already at relatively high drought risk
in 1971-2000 (figure 1(E)), but this is increased further
due to the regional increases in both hazard probability and
vulnerability.

5. Discussion
5.1. Terminology of risk analysis

Many theoretical expositions and applications of risk analysis
can be found in the literature (e.g. Adams 1995; Bedford and
Cooke 2001). However, terminology may be confusing. An
example is the concept which we refer to as ‘vulnerability’,
defined by means of equation (2) as the difference between
expected system performance under non-hazardous and
hazardous conditions. The same concept is referred to by
other authors as ‘susceptibility’, ‘sensitivity’, ‘consequence’
or ‘loss’. Also, in the IPCC-context, the term vulnerability is
defined in a different way, explicitly including people’s ability
to cope with a given situation IPCC 2012). For ecosystems,
the expression ‘biophysical vulnerability’ is sometimes used
(Brooks 2003). Overviews of the many definitions in use
for ‘risk’ are given by Brooks (2003) and Schneiderbauer
and Ehrlich (2004). The definitions are generally not precise
enough to allow mathematical analysis, e.g. where risk is ‘a
function of probability and magnitude of different impacts’
(IPCC 2001). We have tried to circumvent terminological
problems by the precise definitions and equations given in
section 2.1.

5.2. Evaluation of the proposed method for risk analysis

The examples given in sections 3 and 4 show that risk analysis
can be carried out using the inputs and outputs from a dynamic
ecosystem model. Such models provide vast quantities of
numerical results, especially when they are applied across a
large region such as Europe and over a long time period. The
risk analysis may help in extracting important information
from the analysis. The method is internally consistent,
grounded in probability theory (equations (2)—(5)), and
allows for straightforward quantification and decomposition
of ecosystem risks. Admittedly, the examples given in this
paper were limited in scope. The European forestry study
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A: E[NPP | PREC>Q25]
1971-2000

b

B: E[NPP|PREC<Q25]
1971-2000

C: Vulnerability] NPP | PREC<Q25 |
1971-2000

E: Risk[ NPP | PREC<Q25]
1971-2000

D: P[PREC<Q25]
1971-2000

Figure 1. Risk analysis for NPP in 1971-2000 as affected by precipitation. ‘Hazardous’ years have less precipitation than the 25% quantile
(Q25). (A): NPP in hazardous years; (B): NPP in non-hazardous years; (C): Vulnerability = A — B; (D): Probability of hazardous years; (E):
Risk = C * D. Note that in this example, risk (E) is a rescaling of vulnerability (C) because of the constant probability of hazardousness (D).

in section 4 used only one scenario for climate change,
one ecosystem model, one env-variable and one sys-variable.
Nevertheless, even this simple setup allowed us to address
questions such as ‘will risks increase in the future for the given
climate change predictions?’, ‘If yes, will that be because
of changes in the probability of hazardous conditions or
because of changes in ecosystem vulnerability?’, ‘“Which part
of Europe will be most affected?” With minor additional
effort, additional env- and sys-variables could be included to
analyse the risks more comprehensively. However, for some
questions we would need to extend the exercise to other
models, e.g. if we want to know which ecosystem types are
at greatest risk.

The probability distributions underpinning our analysis
represent both temporal variability of env and sys and
uncertainty because of incomplete knowledge about inputs,
parameters and model structure. In every risk analysis, we
therefore need to ask whether all sources of variability
and uncertainty have been accounted for. The example
of section 4 used only one climate change scenario, so
uncertainty about future climate, including the frequency
and intensity of extreme events, was not represented. The
environment distribution P(env) thus only accounted for the
inter-annual variability present in this single scenario for
Europe. The response distribution P(sys|env) also expresses

both variability and uncertainty. Responses to given values of
an environmental variable will vary because of interactions
with the other environmental variables and because of
differences in the state of the ecosystem itself. P(sys|env)
should also account for uncertainty about model structure
and parameterization. These sources of uncertainty can to
some extent be quantified by the use of multiple models and
by sampling from each model’s probability distribution for
parameters. The example of section 4 did not address these
uncertainties.

The quality of the analysis depends on how well
the models simulate ecosystem response to environmental
conditions. This can be evaluated in a standard way, by
comparing simulated versus observed sys-variables for as
many environmental conditions as possible and combining
this with model intercomparison. However, because the
probability distributions in our vulnerability assessment are
partly reflections of uncertainties about data and models,
rather than of some true stochasticity in nature, comparison of
simulated distributions and observed frequency distributions
may be misleading.

The response of ecosystems to environmental conditions
at any moment in time depends on the system state at that
moment, and not on its past history. However, over time, the
ecosystem state will keep changing as a result of internal
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A: E[NPP | PREC>Q25]
2071-2100

C: Vulnerability] NPP | PREC<Q25 ]
2071-2100

E: Risk[ NPP | PREC<Q25]
2071-2100

B: E[NPP|PREC<Q25]
2071-2100

D: P[PREC<Q25]
2071-2100

Figure 2. As figure 1 for 2071-2100. Note that ‘hazardousness’ is unchanged: Q25 still refers to 1971-2000.

processes directly or indirectly affected by the environment.
Phenotypic plasticity allows individual organisms to tolerate
climate variability. Genetic variability and natural selection
induce long-term population-scale adaptation to climatic
variability, e.g. in forest stands. Plant community structure,
soil biota and food webs can be modified by climate change.
Management options, especially in agricultural systems, may
accelerate adaptation to climatic variability. The quality of the
risk analysis will depend on the extent to which the model is
able to calculate how much these various adaptation processes
decrease ecosystem vulnerability.

5.3. Scope for application of the risk analysis

The risk analyst can choose from many env- and sys-variables,
only constrained by the available data or model input—output
relationships. The variables studied in the risk analysis may be
the original model variables or derivatives. For example, if an
ecosystem model incorporates no explicit dependence on the
SPEI drought index, we can still calculate the SPEI from the
input data and use the model to quantify the associated risk.

There is also wide choice concerning the timescale of
the env- and sys-variables. We can calculate the risks posed
by summer heat waves to ecosystem productivity in the
same year, the following year, or the following decade, (see
also Rolinski er al 2013). Such choices do not alter the
applicability of the equations of section 2.1.

Our framework further allows wide choice for the
definition of hazardous conditions. Conclusions from risk
analysis may strongly depend on this choice (Arbez et al
2002), so it may be advisable to explore a range of criteria
of hazardousness in any analysis. In the example of section 4,
we used only one criterion for drought (the annual Q25 of
rainfall), but adding other quantiles, timescales and variables
would have provided a more robust analysis. It may also be
informative to define hazardousness using disjoint ranges of
environmental variables. For example, if we want to analyse
the risk posed to NPP by both extremely low and high
values of any env-variable, we could set P(env hazardous) =
P(env < Q10 OR env > Q90). Compared to the one-sided risk
analysis, this would result in both higher hazard probability
and higher vulnerability in those regions where both extremes
can occur.

The interaction between environment and ecosystems is
complex. Risks associated with drought in any given year
may be small if the ecosystems have had the opportunity to
adapt to similar droughts in preceding years. Alternatively,
risks may increase if the drought follows directly after another
drought from which the ecosystem has not yet recovered. Such
complexities do not limit the applicability of the risk analysis.
We can carry out the analysis for stand-alone droughts and
for droughts occurring in sequences. This only requires that
such sequences actually do occur in the time series of our
environmental data.
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6. Conclusions and outlook

We have presented a simple probabilistic method for
calculating hazards, vulnerabilities and risks using dynamic
ecosystem models. The method only requires consideration
of the model’s time series of inputs and outputs. The method
is easy to implement, yet allows formal decomposition of
risk into hazard probability and ecosystem vulnerability.
We aim to apply the approach presented here in project
Carbo-Extreme, to investigate the impact of extreme weather
events on carbon fluxes of diverse ecosystem types across
Europe, for different scenarios of environmental change, and
using a range of ecosystem-specific and generic models. To
help understand the dynamics of carbon sources and sinks, the
analysis will be carried out for net ecosystem exchange (NEE)
and its two components: NPP and heterotrophic respiration.
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