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The effects of forestry on soils, soil water and surface

water chemistry

M HORNUNG, P A STEVENS and B REYNOLDS

Institute of Terrestrial Ecology, Bangor Research Station, Penrhos Road, Bangor, Gwynedd LL57 2LQ

Summary

The changes in soils, soil waters and drainage waters,
resulting from afforestation with exotic conifers in the
uplands, are discussed. The changes result partly from
the replacement of the grassland, moorland or bog
vegetation with forest vegetation, and partly from
forest management practices. The impacts on soils are
discussed for 2 groups: (i} brown podzolic soils and
brown soils, and (i} stagnopodzols, stagnohumic gleys
and peats. The results of recent work on soil solution
chemistry of brown podzolic soils and stagnopodzols
under moorland and conifer plantations are outlined
and linked to differences in chemistry of streams
draining from moorland and forests. The impact of
clearfelling on soil water and drainage water chemistry
is reported; the impact of losses at felling on site
fertility is considered. The long-term consequences of
the changes in soils and soil waters, resulting from
afforestation, are discussed.

1 Introduction

Vegetation is one of the major factors influencing soil
properties and processes (Jenny 1941, 1980); studies
in natural communities have clearly demonstrated
changes in soil chemistry, biology and processes
following invasion of heath or grassland by forests, or
even by single trees (eg see review by Hornung 1985).
The establishment of large conifer forests in upland
Wales represents a drastic change in the plant cover of
the planted areas. In most cases, the forests have
replaced low-growing grassland, moorland or bog
vegetation, but in some areas they have replaced
hardwood stands. It would not be surprising if such a
change in the vegetation, especially the conversion
from non-tree vegetation to forest, resulted in changes
to the underlying soils.

The establishment of forests in upland areas of Britain
also involves site management which will influence
the physical, biological and chemical properties of
soils, eg ploughing, drainage, fertilization. The cycle of
forest management, site preparation—planting—thin-
ning—clearfelling—replanting, also introduces a series
of perturbations into the ecosystem. These perturba-
tions are likely to produce a cyclical pattern of variation
in soil conditions which themselves may be reflected
in changes in direction, or rate, of soil processes.

The physical, biological and chemical properties, and
processes, of soils are also major factors influencing
the chemistry of surface drainage waters. Physical
properties influence water pathways, from surface to
stream, and the residence time of water within the soll

system. The chemical properties influence soil/water
reactions, and hence the chemistry of drainage wa-
ters. Biological processes in soils often control the
uptake and release of elements in soils, and to and
from soil waters, and have a major impact on drainage
water quality. If the creation and management of
coniferous plantations cause modifications in soil
properties and processes, there are likely to be
consequent changes in water quality.

This paper identifies the changes in the site and soil
environment consequent upon afforestation, reviews
the results of relevant research, and assesses the
long-term consequences ‘of any changes. It draws
upon data from recent and current research in Wales
but, where relevant, also uses information from
studies on similar soil types in the rest of Britain and in
western Europe.

2 Changes in the site and soil environment following
afforestation

Before reviewing the results of specific studies on the
impact of conifers on soils, it is useful to identify those
changes in the site and in vegetation/atmosphere, and
vegetation/soil interactions consequent upon
afforestation. We will consider 2 groups of interacting
changes: :

— those resulting from growth of the coniferous trees
— those resulting from forest management practices.

2.1 Changes resuiting from tree growth

For the purpose of this discussion, we will concentrate
on those situations where plantations have replaced
grassland, moorland or bog vegetation. During the
early years of a plantation, the trees probably exert
little influence on the soils, and site management
impacts will dominate at this stage. The main impacts
of the trees probably become evident following
canopy closure. In western Britain, interception losses
of precipitation from the tree canopy are some
10-20% greater than those from grass or moorland
vegetation (Calder & Newson 1979). Thus, 10-20%
less moisture reaches the ground surface, and solute
concentrations in precipitation will be increased in
proportion. The tree canopy is also a much more
efficient collector of particulate and aerosol material
from the atmosphere than the low-growing grass,
heath and bog species (Miller & Miller 1980). Conifers
are more efficient collectors than broadleaves, such as
oak (Quercus spp.) or beech (Fagus spp.) (Ulrich 1983).
A particularly important effect in the uplands of
western Britain seems to be the very efficient capture
of aerosols in occult precipitation {mist, fog and cloud)
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by conifer canopies (Unsworth 1984): this occult
deposition has much higher concentrations of solutes,
pollutant and non-pollutant, than rain or snow (Dollard
et al. 1983; Lovett et al. 1982). As a resuit of this
increased load of solutes ‘captured’ from the atmos-
phere, plus the concentration effect due to the
enhanced transpiration and solutes washed from the
tree canopy by canopy leaching, the waters reaching
the ground below the forest canopies differ markedly
in chemistry from those below grass or heath vegeta-
tion (eg Table 1). The higher concentrations of solutes
in the throughfall under conifers than under grass or
heath vegetation may be a more important factor
influencing soil/solute interactions than the slightly
increased acidity.

Table 1. Mean solute concentrations for one year in throughfall
beneath Sitka spruce and mat-grass grassland at

Plynlimon (concentrations in mg 17!, except pH)

Sitka spruce Mat-grass
pH 4.4 46
Na 35 24
K 2.2 2.0
Ca 1.0 0.7
Mg 0.7 0.5
NH,-N 0.28 0.156
NOs-N -~ 0.22 0.07
SO.-S 2.31 0.96
Cl 59 5.0
DTOC* 53 11.8

* Dissolved total organic carbon

The amount, and chemistry, of the water reaching the
ground also varies spatially. Stemflow is concentrated
.around the bases of the stems and can produce a large
input in a small area. Stemflow also contains higher
concentrations of solutes, and is usually more acid
than the throughfall, or canopy drip (Table 2). In
addition, the chemistry of throughfall varies markedly
with tree species and age (Miller 1984a). Of the more
commonly grown species, larch (Larix spp.) produces a
more acid throughfall than spruce (Picea spp.) or pine
(Pinus spp.) {eg Table 3). A study of an age sequence
of Sitka spruce (Picea sitchensis) in Beddgelert Forest
showed that up to 35 years of age throughfall was less
acid than the incoming precipitation, but in older crops
it was consistently more acid (Stevens 1987).

The rooting pattern of trees is very different from that
of the grass, heath or moorland vegetation they
replace; rooting patterns will vary considerably with
species and soils. Tree roots create many large pores
which, in drier soils, provide pathways for water
movement. The increased transpiration of trees,
added to the reduced water input to the soil, can result
in a significant drying and cracking of soils. The rooting
pores and drying cracks facilitate rapid water move-
ment and can significantly alter the hydrological
properties of the soils; they also provide avenues for
air entry into the soil. The drying of the soil will result in

Table 2. Volume-weighted mean solute concentrations for one
year in throughfall and stemflow beneath Sitka spruce
(P.1936) in Beddgelert Forest {concentrations in mg

171, except pH)

Throughfall Stemflow
pH 4.07 3.62
Na 12.3 32.0
K 1.4 3.7
Ca 1.0 32
Mg 1.5 43
NH4-N - 0.65 0.62
NOs-N 0.92 1.17
S0,-S 31 7.7
H,PO,-P 0.027 0.036
Cl 21.3 60.5
DTOC* 2.0 7.0

* Dissolved total organic carbon

changes in biological and chemical processes; the
presence of roots in deeper horizons may also lead to
changes in weathering and element release.

The organic matter on the forest floor may be very
different in type, biology and chemistry to that from
grass or heath vegetation. Most coniferous species
will produce a moder, or mor humus, which may be
significantly more acid than the organic horizons, if
any, produced by the preceding vegetation. The
breakdown products of the humus will also differ from
those of other humus types. Nutrient cycling in the
forest is markedly different to that in the preceding
non-tree vegetation. In the early years of a plantation,
there is a net accumulation of elements in the tree and
the forest floor (the organic horizons which accumu-
late below the forest). At later stages, the release of
nutrients from the forest floor, by decomposition, plus
inputs from the canopy, may balance uptake (Miller
1984b). The pattern of element uptake may also differ
in the forest as compared with the non-tree vegeta-
tion. While most elements will be taken up from
near-surface horizons, there will be some uptake from
deeper soil layers.

Table 3. Mean solute concentrations for one year in throughfall
beneath Sitka spruce (P.1949) and Japanese larch
{P.1949) at Plynlimon {concentrations in mg I=*, except

pH)

Spruce Larch
pH 437 39
Na 35 3.0
K 22 1.0
Ca 1.0 1.0
Mg 0.7 1.0
NH,-N 0.28 0.15
NO5-N 0.22 0.15
S0,-S 2.3 3.4
Cl 5.9 6.4
DTOC* 53 8.2

* Dissolved total organic carbon



The dense canopy produced, particularly by spruce,
will clearly result in reduced light penetration and a
changed microclimate. At canopy closure, the ground
flora will be shaded out, resulting in a large addition of
dead plant material to the soil surface; breakdown of
this material will release elements which may be taken
up by the trees, held in soil or lost to drainage waters.

The temperature regime at ground level will change,
with lower summer temperatures but higher winter
ones than in the preceding non-forest vegetation. The
changed humus and microclimate result in a modified
soil fauna, with consequent influences on decomposi-
tion and mixing of surface organic materials.

2.2 Changes due to forest management practices
2.2.1 Site preparation

Most of the wetter and/or heather-dominated upland
sites are ploughed prior to planting (Thompson 1984).
Ploughing is designed to suppress competing vegeta-
tion, improve surface drainage and aeration, provide an
improved planting position and increase rooting depth
(see Plate 6). It produces inversion and mixing of
surface soil. The disturbance and drying can produce
an increased rate of decomposition, with an enhanced
release of elements: these released elements may be
taken up by the ground flora, retained within the soil or
leached out into drainage waters, with a consequent
impact on water quality. The ploughing also exposes
subsurface soil, which may lead to increased rates of
weathering and element release.
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Drains are designed to remove surface and near-
surface water from the site, and, therefore, to reduce
waterlogging and improve rooting conditions (Thomp-
son 1979). The drainage will cause drying of the soil
and will expose subsoil horizons or drift in the ditch
walls to erosion or weathering. Together, the plough
furrows and drains can radically alter water pathways
between soil surface and stream channel, reducing
residence times of water and consequently water
chemistry. A major effect may be an increase in the
proportion of water reaching the streams from the
surface horizons of soils.

2.2.2 Fertilization

The use of fertilizers will increase the soil store of the
added elements. As the fertilizer breaks down, the
released elements will be taken up by the trees or
ground flora, retained in the soil or leached to drainage
waters. The fertilizer may also change soil pH, leading
to changes in soil processes. Phosphate, applied as
rock phosphate, is the most widely used fertilizer in
Welsh forests; it will add calcium to the soll, in addition
to phosphorus.

2.2.3 Felling

Clearfelling, and to a lesser extent thinning, will cause
a series of changes in site conditions, many of which
are reversals of those associated with canopy closure
(Hill et al. 1984). Capture of elements from the
atmosphere, interception and transpiration loss will be
reduced. The input of elements to the soil surface will

Plate 6. Land ploughed prior to planting—Dyfi forest (Photograph J H Williams)
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Plate 7. Brash produced when felling the first rotation—Helmsley Forest, Yorkshire (Photograph J H Williams)

decline, but water inputs will increase. There is a
sudden large addition of plant material to the soil
surface as slash (see Plate 7). Uptake by plants of
nutrients released by decomposition, and from mineral
sources, will effectively cease. Light penetration and
the microclimate at ground level will change. A
significant quantity of nutrients will be removed from
the site in the timber.

3 The impact on soils

3.1 Brown earths and brown podzolic soils

Most of the early, extensive, planting of exotic conifers
in Wales was on brown earths and brown podzolic
soils of the lower valley-sides. These soils would have
carried mixed oak/birch (Betula spp.) woodland prior to
forest clearance and would have largely evolved as
forest soils. There has been little work in Wales on the
impact of coniferous plantations on these soils, but a
great deal of research on broadly similar soils (sol brun
acide, sol brun ochreux, sol brun podzolique) has been
carried out in western Europe.

Most of these studies compare the soils beneath
adjacent stands of hardwoods and conifers, or below
hardwood and conifer stands on soils which are
assumed to have been similar prior to planting the
conifers. Clearly, great care must be taken in this type
of study to ensure that detected soil differences are a
result of the differences in vegetation and not due to
inherent variations in the soils. Because of this kind of
consideration, many early studies which report aci-
dification and podzolization of soils by conifers are now

questioned (Stone 1975). There are, however, a
number of reliable recent comparative studies, based
on carefully evaluated sites, plus process studies
comparing hardwood and conifer systems. Taken
together, these studies identify a variety of soil
changes resulting from growth of monocultures of
exotic conifers, especially spruce. The most consis-
tently reported change is the development of an acid
mor humus, replacing mull or moder, with a lower
nitrogen content and higher carbon/nitrogen ratio (eg
Nihlgard 1971; Herbauts & de Buyl 1981: Nys &
Ranger 1985). One result of the change in organic
matter is an increased proportion of fulvic to humic
acids in the breakdown products. The surface and near
surface horizons are also generally acidified and the
content of both total and exchangeable base cations
reduced. The loss of base cations is generally
assumed to indicate increased mineral breakdown and
leaching, but Nys and Ranger (1985) concluded that
the potassium and magnesium losses from the sur-
face horizon which they measured under spruce were
a result of increased clay illuviation; this clay was
retained in the B horizon and did not represent a loss
from the site. An increased translocation of iron and
aluminium from near-surface horizons has been re-
ported from a number of studies (eg Nys & Ranger
1985; Herbauts & de Buyl 1981); in a few instances,
the development of a clear eluvial horizon has been
reported (Nihlgard 1971; Bonneau 1973). Herbauts
and de Buyl (1981) suggest that the increased ratio of
iron to aluminium in NaOH/Na-tetraborate extracts
from the B horizon below spruce shows evidence of



marked podzolization, compared to below beech. The
same authors report an increased penetration of fulvic
acids into the B horizon. Increased breakdown of clay
minerals under spruce is also reported by Nys (1981)
and Herbauts and de Buyl (1981); this evidence is
taken as an indication of an increased trend towards
podzolization. Structural changes were found by Nys
and Ranger (1985), Schlenker et al. (1969) and Bon-
neau et al. (1977). Nys and Ranger report a 30—40%
decrease in porosity beneath spruce and a reduction in
structural stability. These latter authors also summa-
rize the detected changes beneath coniferous species
and assess whether or not they are reversible (Table
4).

Table 4. Summary of detected changes in soils beneath
coniferous species replacing broadleaves (source:
Nys» & Ranger 1985)

PHYSICAL
Bulk density change
Structural degradation

} Reversible?
Reduction in porosity

Particle migration Irreversible
CHEMICAL AND PHYSICO-CHEMICAL
Structural degradation Irreversible
Organic matter: loss of N Reversible?
Reduction of mineral cation

exchange capacity associated

with leaching
Change in the exchange complex Irreversible

Total loss of elements
— by drainage out of the ecosystem
. — beyond the rooting zone

The impact of conifer plantations will, however, vary
with soil type and with crop species. Bonneau et al.
(1979) stress the importance of variations in soil parent
material, and suggest that the impact on fine-textured
parent materials, and those with high levels of
exchangeable bases, is negligible. Soils with parent
materials derived from crystalline rocks or acid sedi-
ments poor in iron and bases are considered the most
sensitive: In this respect, it is worth noting that the
development of a thick eluvial horizon under spruce,
reported by Bonneau (1973), occurred on freely
drained, sandy, base-poor material. Care must be
taken, therefore, when extrapolating results from one
site to another.

Three British studies have examined the impacts of
conifers on brown earths or brown podzolic soils.
Results from a study by Grieve (1978) broadly parallel
those reported from France and Belgium. He com-
pared the soils beneath stands of 50-year-old spruce
with those below mixed oak/beech, last replanted in
1815, in the Forest of Dean. The soils were classified
as brown earths of the Neath series. There was
significant leaching of iron under the spruce, with the
formation of eluvial and illuvial horizons. A discrete
humus horizon had also formed under the spruce,
horizon boundaries were sharper and the structure
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was coarser and weakened. Grieve (1978) concluded
that there had been a change in the balance of the
soil-forming processes with a move towards podzoliza-
tion under the spruce.

Homung and Ball (1972) compared the surface hori-
zons in 30-year-old Sitka spruce plantations, and
adjacent fescue/bent (Festuca/Agrostis) grasslands at
3 sites in north Wales. The soils at all 3 sites were
brown podzolic of the Manod series (Rudeforth et al.
1984). The 0-5 and 5-10 cm depths were compared,
having first removed the forest floor. Both sampled
zones were significantly more acid below the spruce at
all 3 sites. Two sites showed increases in loss-on-
ignition and total nitrogen, whilst the third showed a
reverse trend. Data on exchangeable cations showed
no consistent trends. Page (1968} examined soils
under size sequences of Sitka spruce, Douglas fir
(Pseudotsuga menziesii) and Japanese larch (Larix
leptolepis) in Gwydyr Forest, north Wales: all 3
species were growing on brown podzolic soils. Gener-
ally similar trends were found under all 3 species: litter
thickness and moisture content increased up to a top
height of 18 m (60’) to 27 m (80’) and then declined
again to the level found in unplanted soils. Bulk density
and pH decreased until a top height of 18-27 m and
then increased back to the starting value below 36 m
(120') tall trees. The A, (Ea) horizon below Sitka spruce
showed a gradual and continuous increase with top
height. This study by Page (1968) highlights the

difficulties in drawing conclusions from studies based

on one point in the crop rotation.

Several of the changes in soils discussed above could
be taken as indicating an increasing tendency towards
podzolization, which may actually be an intensification
of already existing processes in the soil. Thus, Her-
bauts and de Buyl (1981) conclude that the soil under
beech shows indications of podzolization which be-
come clearer under spruce.

3.2 Peats, stagnopodzols and stagnogleys

The majority of the extensive forest plantings in upland
Wales have occurred on humic gley soils, stagnohumic
gleys, stagnopodzols and peats. In some areas,
particularly at the lower end of their altitudinal range,
these soils have evolved from former forest soils,
under the influence of heath or moorland vegetation.
The replacement of the forest vegetation led eventual-
ly to the development of soils with organic, or peaty
surface horizons, and zones of intensive weathering
and eluviation in the near surface mineral horizons.
Podzols were developed on rather better drained sites,
with stagnohumic gleys or peats on benches or gentle
slopes. They are all naturally very acid, base-poor soils;
in the mineral horizons, the exchange complex is
dominated by aluminium. There have been very few
studies of the impact of afforestation on the properties
of such soils. There are few areas of similar soils in
mainland Europe, particularly those areas where exotic
conifers have been planted. The emphasis in Britain
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has been on developing improved silvicultural
methods for use on these rather difficult soils, or on
the performance of the treés, rather than on impacts
of the trees on the soils.

There have, however, been a number of studies on the
drying of peat, following afforestation, and the linked
changes in exchangeable cations, nitrogen availability
and acidity (eg Binns 1979; Pyatt 1976; Williams et al.
1978; Boggie & Miller 1976). Pyatt (1976) found that
the extent of drying and the development of shrinkage
cracks in peat were related to the original depth of
peat, degree of humification, tree species and, prob-
ably, climate. In common with other workers, he found
that lodgepole pine (Pinus contorta) produced by far
the greatest drying effect of the commonly planted
species. The drying tended to be more intense and
cracking more rapid in relatively shallow, and well-
humified peat: at a site near Dumfries, shrinkage
cracks had already developed under 9-year-old lodge-
pole pine. Pyatt (1976} also reports that the drying is
irreversible. The increased drying below lodgepole
pine, compared with the adjacent unplanted bog,
increased the percentage air volume down to 40 cm,
doubling it in the top 20 cm, at the site studied by
Boggie and Miller (1976). Binns (1979) and Williams et
al. (1978) report increased acidity of the dried peat,
increased bulk density, increased exchangeable
sodium but decreased calcium. The calcium decrease
seems to be linked to uptake by the crop. The
increased sodium is thought to be due to enhanced
aerosol capture on the canopy. The increased acidity is
said to be a result of increased exchangeable hydrogen
on newly created exchange sites, formed as a con-
sequence of greater organic matter breakdown in the
more aerobic environment.

Similar changes might be expected in the surface
peaty horizons of stagnohumic gley soils {peaty gleys)
and stagnopodzols (peaty podzols). Pyatt (1973) has
reported pronounced drying of the peaty horizon of a
stagnohumic gley in Kielder Forest, Northumberland.
More surprisingly, he found significant drying of the
underlying mineral horizons down to 90 cm, although
rooting was limited to 20-30 cm. Further studies in
Kielder Forest (King et al. 1986) have shown consider-
able lowering of the water table, especially in the
summer months, by Sitka spruce and lodgepole pine
on stagnohumic gley soils, and a corresponding
improvement in the oxygen regime. In a study of water
and oxygen regimes in a range of soils in Newcastle-
ton Forest, south Scotland, Pyatt and Smith (1983)
found healthy roots present in brown earths to a depth
of 85 cm and in an ironpan stagnopodzol to 75 cm. In
the latter soil, the roots had penetrated the iron pan
and the resultant macropores must have had an
important effect on water pathways and movement in
that soil. Recent work by the authors on stagnopodzols
in Hafren and Towy Forests revealed an increase in
cation exchange capacity and exchangeable hydrogen
in the surface peaty horizon, as compared with similar

soils below moorland.

Most sites with peat, stagnogley, gley or stagnopodzol
soils have been ploughed and drained prior to planting.
The drying effects reported from these soils will reflect
the combined influence of increased interception and
transpiration and of ploughing and drainage.

Ross and Malcolm (1982) examined the physical
effects of ploughing on a peaty ferric stagnopodzol in
south-east Scotland. The cultivated soil had lower bulk
density, was better aerated, showed faster infiltration
and had higher mean annual temperatures than
untilled soil. The ploughing produced an intimate
mixing of the organic and mineral horizons to a depth
of 60 cm.

It is very surprising that there are no published data on
the impacts on soil biology and chemistry of such
ploughing and drainage operations.

3.3 Harvesting effects on soils )
At harvesting, heavy machinery is used for felling and
timber extraction. The ground traversed by this
machinery becomes compacted, especially those
areas used as skid trails or for repeated access by
forwarders. A recent study of a site in Scotland
indicated that some 10% of the ground was affected.
by passage of machinery (H G Miller, pers. comm.).
There are, as yet, no British data available on the
impact of this traffic on bulk density or structure, or on
the consequential effects -on infiltration and soil
erosion, or on the growth of the next crop. Studies in
north America and New Zealand, however, have
reported significant increases in bulk density, which
persisted well into the next rotation.

4 The impact on soil water and drainage water
chemistry

4.1 Site preparation

As noted above, ploughing and drainage of sites
involve disturbance and mixing of surface soil, and
exposure of soil to the atmosphere, resulting in drying
of the soil and consequent modification to soil chemic-
al and biological processes. To date, there are no
published studies on the impact of ploughing and
drainage on soil water chemistry, although work is in
progress by the authors as part of the Llyn Brianne
study and at other sites in Wales. The soil changes
produced by ploughing and drainage may be expected
to influence the chemistry of surface waters draining
from the site. There have, however, been few
attempts at characterizing, or quantifying, any changes
in water quality. Robinson (1980) monitored water
quality for a short period during ploughing and drainage.
of a site on stagnohumic gleys and peats in Cumbria,
also drained by the Coal Burn, a tributary of the Irthing.
Concentrations of calcium, magnesium, nitrogen and
potassium increased following ground treatment.
There was also a change in the relative abundance of
the 4 main cations, from Na Ca Mg K before drainage



to Ca Na Mg K after drainage. The additional calcium
and magnesium were probably derived from the glacial
till exposed in the drains and some of the plough
furrows. The increased levels of nitrogen and potas-
sium probably reflect enhanced release from organic
sources. Studies in Finland {eg Hynninen & Sepponen
1983) have found increased tevels of ammonium and
nitrate in drainage waters following ploughing and
drainage of peats; these increases have been linked to
higher rates of decomposition following drying of the
peat.

Unpublished results from a study at Nant-y-Moch in
west Wales show large increases in sulphate, ammo-
nium and aluminium following ploughing and drainage
(A'S Gee, pers. comm.). The sulphate and ammonium
were probably produced by enhanced decomposition
and oxidation as a result of drying, while the aluminium
was probably mobilized from the exposed mineral
horizons. At Llanbrynmair in mid-Wales, ploughing
close to the contour has been used in an attempt to
limit the impact of site preparation on water quality.
Data obtained from a study carried out at this site by
the Institute of Hydrology (Leeks & Roberts, this
volume) have shown no changes in drainage water
chemistry following site preparation. The impacts on
the soils will remain the same, but the products of the
changed decomposition and the drying are being kept
on-site.

4.2 Established crop

4.2.1 Soil waters

The emphasis of most studies on stagnogley soils,
stagnopodzols and peats, discussed above, has been
on physical changes, with only a limited amount of
work on changes in peat chemistry and none on the
chemistry of the deeper horizons. The authors have
recently established a number of studies on soil
solution chemistry at a series of sites in Wales and
northern England (Hornung et al. 1986a, b; Reynolds
et al. 1987). The results to date show clear differences
in solution chemistry between waters extracted from
initially similar soils below coniferous plantations and
nearby grassland or moorland. There are also differ-
ences between the waters from different soils within
the forest, and from below different crop species on
the same soil.

The forest soil waters contain higher concentrations of
most measured solutes than those from the moorland
soils (Table 5). The largest increases are shown by
sodium, chloride, sulphate and aluminium: aluminium
and sulphate concentrations in the mineral horizons of
the forest soil waters are almost 3 times those in the
moorland soil, while sodium and chloride concentra-
tions are some 50% higher. The aluminium appears to
be mobilized from cation exchange sites, by ion
exchange. Hydrogen ions, either input in throughfall or
stemflow, or mobilized by ion exchange in the very
acid, surface organic horizons, exchange for and
displace the aluminium into solution. The process is
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Table 5. Mean soil water solute concentrations for one year in
the E, B and C horizons of a stagnopodzol under Sitka
spruce and mat-grass/fescue grassland at Plynlimon

{concentrations in mg I~!, except pH)
Forest Grassland
E B C E B C
pH 41 4.3 45 43 4.4 4.7
Na 49 6.2 5.8 4.3 40 45
K 0.1 0.2 03 0.2 0.2 0.3
Ca 1.1 09 0.7 04 03 03
Mg 0.7 0.7 0.6 05 05 0.6
NH,-N 0.01 002 0.02 002 0.02 002
NOs-N 0.15 0.02 0.22 054 0.39 0.61
SO04-S 2.6 33 30 1.4 1.1 1.2
o] 83 116 100 7.4 6.5 7.2
DTOC* 1138 6.1 41 6.0 37 23
Fe 030 0.05 0.0 0.07 0.04 0.02
Al 1.2 1.5 1.5 05 0.4 0.6
Si 1.6 1.5 20 1.2 1.0 0.9

* Dissolved total organic carbon

driven, however, by the increased input of inorganic
anions, mainly sulphate, to the forest soils (Reynolds
et al. 1987), which are derived, ultimately, from
atmospheric sources. The greater sulphate input to the
forest soils reflects enhanced deposition of aerosols
on to the forest canopy, with deposition of occult
precipitation likely to be particularly important. There
will, however, also be a contribution from the in-
creased chloride input and from organic anions derived
from the forest floor and from decomposition of the
pre-existing peat horizon. The contribution from orga-
nic anions, hdwever, seems to be small.

“ Aluminium concentrations in the waters from the

forest soils under Sitka spruce at sites in Towy, Hafren
and Beddgelert Forest range from 0.7 mg I~ in brown
podzolic soils to 1.0 mg 17" in intergrades between
brown podzolic soils and stagnopodzols, and to over 2
mg 17" in an ironpan stagnopodzol at high altitude.
Preliminary data also suggest a species effect, with
higher aluminium concentrations in similar intergrade
soils under larch (1.5 mg 1™") than Sitka spruce (1.0 mg
I="). This finding may reflect a greater production of
nitrate in the larch forest floor (cf Carlisle & Malcolm
1986); some of the nitrate is apparently leached down
the soil profile, increasing the anion load and leading to
additional aluminium mobilization.

4.2.2 Surface waters :

Recent studies in Wales (Stoner et al. 1984; Stoner &
Gee 1985), north-west England (Bull & Hall 1986) and
Scotland {Harriman & Morrison 1982} have reported
differences in water chemistry between streams
draining from established upland plantations and from
adjacent unplanted moorland on otherwise similar
sites. A number of solutes are present at higher
concentrations in the forest streams than in those
draining moorland. Concern about the differences in
water chemistry has focused, however, on the in-
creased acidity and higher aluminium concentrations in
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the forest streams. For example, mean annual alumi-
nium concentrations in forest streams at our site at
Beddgelert (Table 6) are greater than 0.5 mg i7", but
normally less than 0.2 mg 1™ in a nearby moorland
stream; the pH of the forest stream is 0.4 units lower
than the moorland stream. These particular changes in
chemistry have been linked to reductions in the
diversity of invertebrate populations and reductions in
fish numbers (Ormerod et al., this volume).

Table 6. Discharge-weighted mean solute concentrations in
streams draining Sitka spruce forest and moorland at

Beddgelert (concentrations in mg =", except pH)
Forest Moorland
pH 4.38 4.80
Na 6.2 41
K 0.25 0.12
Ca 1.5 0.9
Mg 0.9 0.6
NO5-N 0.63 0.08
SO.-S 24 1.4
a 115 7.2
Al 0.56 02

The link between increased aluminium concentrations
and acidity, and afforestation is not found at all sites,
and it seems to be restricted to those areas where acid
soils overlie massive, base-poor bedrock. These condi-
tions obtain over a large proportion of the Welsh
uplands. Given these conditions, aluminium concentra-
tions and acidity may be greater in the forest streams
at all flow levels. The differences between aluminium
concentrations in forest and moorland streams are,
however, greatest during periods of high flow. Thus, at
Beddgelert, aluminium concentrations have reached
more than 2.5 mg |=' during flood events, while
remaining below 0.2 mg I in adjacent moorland
streams. The magnitude of the difference in solute
chemistry between forest and moorland streams
seems to vary somewhat with soil type, being less in
catchments dominated by brown podzolic soils than in
those dominated by stagnopodzols and stagnohumic
gleys. The levels reached by aluminium concentrations
during a specific storm vary with the intensity of the
storm and with antecedent conditions. Even when
streams show similar acidity, the aluminium levels
may differ. Thus, Reynolds et al. (1986) found that
forest and moorland streams on similar bedrock, in the
Plynlimon area, had similar pH and calcium levels
(Table 7), but that the aluminium concentrations were
significantly greater in the forest stream.

The causes of the increased acidity and aluminium
concentrations are still being investigated, and it
seems that a number of processes may be involved
(Miller 1985). The increased interception and transpira-
tion of the forest, compared to moorland or grassland,
produce a concentration effect. The deposition, or
capture, of aerosols, especially those in occult deposi-
tion, is greater on to forest canopies than on to

Table 7. Discharge-weighted mean solute concentrations in
streams draining Sitka spruce forest and moorland at

Plynlimon (concentrations in mg 1=', except pH)
Forest . Moorland
pH 4.7 48
Na 4.5 3.7
K 0.16 0.14
Ca 09 08
Mg 0.8 0.7
NO5;-N 0.42 0.21
S0,-S 15 1.2
Cl 7.7 6.3
Al 0.28 0.1

grassland or moorland vegetation. Together, these
mechanisms produce an increased input of salts to the
forest soils. The acid organic layers which develop
below the forest also produce organic acids during
decomposition. Uptake of nitrogen in ammonium
form, by the conifers, will result in the balancing
release of hydrogen ions from the roots. Accumulation
of base cations in the tree may also have a long-term
acidifying effect on the soils (Nilsson et al. 1982).

Analysis of our data on soil water chemistry suggests
that ion exchange, driven mainly by the increased input
of anions resulting from enhanced ‘capture’ on the
canopy, explains the raised levels of aluminium in the
forest soil waters (Reynolds et al. 1987). The soils
provide, therefore, a source of water with high
concentrations of aluminium. The ploughing and drain-
ing, and resulting drying cracks, plus the macropores
created by tree roots, alter the soil and site hydrology.
A major result of the changed hydrology is an increase
in the proportion of water reaching streams from the
acid, upper soil horizons. The water is also transferred
to the stream quicker, with less time, therefore, for
buffering. Whitehead et al. (1986) have used hydroche-
mical models to demonstrate the importance of
changing the proportions of streamwater derived from
different sources, in particular the balance between
groundwater and acid surface soil water. These 2
processes of increased solute loadings in the soils, but
especially of sulphate, and changed site hydrology
probably interact to give the detected changes in
streamwater chemistry. At our Beddgelert Forest site,
however, the forest streams are more -acid and
contained higher concentrations of aluminium than the
moorland stream (Table 5), even though the site was
not ploughed or drained. At this site, the dominant
influence appears to be increased mobilization of
aluminium as a result of the greater anion loading.

4.3 Clearfelling

Many studies on the impact of clearfelling on water
quality have been carried out in north America (eg
Likens et al. 1970; Aubertin & Patric 1974; Cole et al.
1975; Vitousek & Melillo 1979), Scandinavia (eg Tamm
et al 1974; Haveraaen 1981) and New Zealand (eg
Neary 1977; Dyck et al. 1981). Several of these studies
have reported increased concentrations of nitrate and



base- cations following felling. The increased nitrate
concentrations, in particular, have given rise to con-
siderable concern about the possible effects on
drinking waters. A series of studies to examine the
impact of felling, in UK conditions, on soils, soil waters
and water quality is now being carried out by the
Institute of Terrestrial Ecology, the Institute of Hydrol-
ogy. and the Forestry Commission at Beddgelert
Forest, in north Wales, Kershope Forest, in Cumbria,
and Hafren Forest, in mid-Wales.

Initial results from Beddgelert Forest show large
increases in concentration and flux of inorganic N,
potassium and phosphate-P in waters in stagnopodzol
soils following felling. The nitrogen flux was greater in
the second year after felling than in the first: 96 kg
ha~' of inorganic N was transferred below the rooting
zone in the second year. This large flux of nitrate
through the subsoil also resulted in an acidification of
the soil waters. The major post-felling flux of potas-
sium was in the upper horizons in the first year, and
the lower horizons in the second year. In the second
year, potassium concentrations in waters from the
upper horizon had reverted to pre-felling levels. It
appears that a front of potassium gradually moved
down-through the soil, taking some 2-3 years from
felling to pass from the O to the C horizons. Phosphate
fluxes declined in the second year after felling, but
were still much greater than before felling, but little
phosphate reached the subsoil, most being immobil-
ized in the upper horizons.

Process studies at Kershope and Beddgelert Forests
have confirmed that the increased K and PO,-P fluxes
after felling are derived from the felling debris. The
~inorganic N, however, is derived from the pre-existing
forest floor and soil organic horizons. Mineralization of
organic N continued after felling but, in the absence of
root uptake, the nitrate produced was lost in drainage
waters.

Drainage water from -the Kershope site showed
marked increases in concentrations of nitrate, ammo-
nium and potassium following felling, reflecting the
increased concentration in the soil solution. A parallel
reduction in the levels of Na, Ca, Mg, SO,-S and Cl in
drainage water is explained by reduced ‘capture’ from
the atmosphere and dilution, and by the increased
water throughput. In the year following felling at
Kershope, output of inorganic N and of K from a
completed cleared plot was 5 times greater than that
of an unfelled control plot. Streamwater concentra-
tions of K and NOs; have increased to a lesser extent at
Beddgelert, where only a proportion of the catchments
were felled, than at Kershope. The Beddgelert situa-
tion of partial felling of a stream catchment seems
more realistic in practice than that at Kershope.

5 Long-term consequences and management options
It seems clear that monocultures of conifers, particu-
larly spruce, cause modifications to the biological,
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chemical and physical properties of some brown
earths, brown podzolic and similar soils. These
changes are most marked on coarse-textured, base-
poor parent material; Bonneau (1975) reports the
development of a podzol with a distinct Ea horizon in
such material. The changes include the development
of a mor humus, surface acidification and leaching, an
increased trend towards podzolization and structural
degradation. While coming to similar conclusions,
Bonneau (1978) and Manil (1966) suggest that, in most
cases, the modifications to the soils are slight, most of
which could be corrected by additions of fertilizer and
lime, and do not represent a significant decrease in
long-term site fertility. Bonneau (1978) does, however,
suggest that there may -be significant short-term
effects on availability of some base cations, and Nys
and Ranger (1985) have identified several soil changes
which they regard as irreversible. The views of Manil
(1966) and Bonneau (1978) are largely addressed to
the continued use of the site for forestry. The mor
humus, and the general surface acidification, may
affect the vegetation which would develop on the site
after felling; certain acid-sensitive species may not
return. The magnitude of this effect will vary with the
initial soil type and the tree species planted. The major

.contro! on post-felling vegetation would probably be

the nature of the available soil seed bank and of nearby
seed sources (cf Hill, this volume).

Structural degradation may have important consequ-
ences. At clearfelling, the exposed soil would be much

" more sensitive to further structural damage due to the

passage of heavy equipment and raindrop impact, and,
as a result, to soil erosion. On sloping sites, it may be
necessary to protect the soils or to limit the size of the
felling coupe. Nys and Ranger (1985) have identified
most of the soil changes consequent upon planting of
exotic conifers as reversible. We are unable, however,
to forecast timescales for the recovery, or, more
properly, the adjustment of the soils to a subsequent
changed vegetation. |t may take a considerable period
to restore soil structure, during which time the site will
be at increased risk to soil erosion.

The main effects on the peats, stagnopodzols, stag-
nogleys and gleys are probably physical. The combined
effects of ploughing, drainage and tree growth pro-
duce a marked drying in many soils, the extent of the
drying depending on initial soil conditions, ground
treatment and tree species. The drying also produces
oxidation of organic nitrogen and sulphur compounds
and more rapid decomposition.. There do not appear to
be large changes in chemistry of the mineral horizons,
but there are important changes in soil water chemis-
try with large increases in aluminium levels. Some of
the drying effects, particularly in peats, are irreversible.
The penetration and disruption of the ironpan in
ironpan stagnopodzols and the general cracking of the
E horizons in stagnopodzols may also have long-lasting
effects. Some sites, especially stagnogley and gley
sites, seem to ‘wet-up’ again remarkably quickly after
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felling (eg Pyatt et al. 1985), even though drains remain
open and active. Some of the initially wetter peat sites
would not, however, return quickly to the wet bog or
moorland vegetation which existed before planting.
The dried, humified and cracked peat may also be
liable to erode following removal of the protection of
the forest canopy. Base cation availability in the
organic horizons has declined on some sites, but this
may be a short-term effect until the forest nutrient
cycle is established. It is unlikely that planting will have
reduced the site fertility on these soil types, although
losses of phosphorus at harvesting may be significant
in the short term. There may also be problems of
synchronizing nutrient availability with nutrient de-
mand in successive rotations. The effects on any
subsequent, non-forest, vegetation will most probably
be linked to the drying, and physical changes, rather
than to alterations in soil chemistry.

Itis difficult to conceive of management options which
will ameliorate the physical impacts. The establish-
ment of a crop on the wetter soils requires some form
of drainage, and the ironpan in ironpan stagnopodzols
needs to be disrupted to improve rooting conditions.
The drying effect due to tree growth is inevitable. The
effects of ploughing and drainage on drainage water
chemistry can be ameliorated by modifying the design
of the ground treatment. The fact that no significant
changes in solute concentrations have been detected
during the second phase of ground preparation at
Llanbrynmair suggests that the approaches now being
used are successful. The increased ion input, especial-
ly sulphate, to forest soils, due to canopy scavenging,
will not be affected by forest management. Enhanced
levels of aluminium in soil waters of forests on
sensitive soils, therefore, seem inevitable, without a
reduction in anion inputs from the atmosphere. Even
given a reduction in sulphur and nitrogen levels, the
additional capture of sea-derived solutes by forest
canopies, compared with moorland or grassland, will
lead to higher aluminium levels in the forest soil
waters, although the difference would be much less
than at present. The impacts of established plantations
on the acidity and aluminium concentrations in
streams may be reduced by changes in design of
drainage schemes. If waters can be kept on site
longer, and ditches not fed directly into streams, then
some additional buffering may take place. These
principles are now being incorporated into new plant-
ing schemes. Liming of forest soils would also reduce
acidity and aluminium levels, but it may prove to be
easier to treat the problem in drainage waters than in
the soils. The Iiming of both waters and soils is,
however, now being explored. It has also been
suggested that increased buffering of drainage waters
would be achieved if the water moved to depth and
came into contact with more base-rich subsail, drift or
rock. This approach may be feasible on some sites and
could be achieved by the use of very deep drains or
specially excavated sumps. The technique does not,
however, seem to have much potential on the very

acid slates and mudstones of central Wales.

The longer-term impacts of soil compaction produced
during harvesting are as yet unknown. In the United
States, reduced growth in the succeeding rotation has
been reported of trees planted in the compacted soils.
The affected trees tended to catch up in the later years
of the rotation, and, in the relatively long rotations used
in Britain, compared with the southern USA, this
timescale may be acceptable. The impact should,
however, be quantified. In the immediate post-felling
period, the most important effects will be a reduction
in infiltration, increased surface wetness and soil
erosion. Some impact on water quality at clearfelling
also seems inevitable. Our work at Beddgelert sug-
gests, however, that felling of the normal-sized coupe
is unlikely to produce changes in stream chemistry
which will require additional water treatment or have
significant impacts on freshwater biota.

The enhanced output of nutrients in drainage waters
after felling is significant, but initial analysis suggests
that it will not have a major impact on long-term site
fertility. The released, and subsequently fixed, phos-
phate, however, represents a large part of the readily
available P in the system, and the availability of the
fixed phosphate needs further study.
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