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1. Executive summary  

The Scoping Study was requested by The Environment Agency to assess the validity of 

analysing a wide range of metals, semi-metals, metalloids and organic compounds from the 

MASQ (CS2000) soil samples based on several criteria from national relevance to 

recommended analytical methods. Therefore, the aim of this scoping study is to determine, 

within the strict financial constraints of the project, what approach to sampling and analysis 

would best meet the regulatory and policy requirements of the Agency and the Department, 

and the scientific needs of CEH. 

 

For metals/metalloids, the analytical list of Pb, Zn, Cu, Cd, Ni, Cr by ICP-OES with Hg by 

cold vapour AAS was recommended. Provisional analytical costs are provided for all options. 

Total metal concentrations were identified are the most appropriate given current status of 

standard analytical methods.  

 

The study takes a practical approach to developing a satisfactory work plan for the organics 

analyses (MASQ-O). First, it compares the existing analytical capability at ITE Monks Wood 

with the Agency wish- list set out in the Introduction, and identifies which of the compounds 

in the wish- list can be quantitatively analysed in soil samples without undue time being 

devoted to method development. Approaching the problem in this way maximises the number 

of samples that can be analysed and minimises (but does not eliminate) methodological 

development. Augments are then advanced to show that the “selective list” is a good match to 

the overall aims of MASQ-O. Analytical methods and their costs are then outlined. 

Consideration is then given to the various factors that need to be taken into account in 

selecting which of the 1,000-odd soil samples should be analysed, and to the scientific 

strategy of MASQ-O. Finally, because the resources in MASQ-O will not permit all available 

soil samples to be analysed for the elective list of compounds, a tentative work plan is 

outlined to form the basis for a discussion with the Agency. This includes proposals for a 

modest amount of method development that might considerably increase either the number of 

squares analysed or the number of determinands. 
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2. Background 

The Environment Agency (EA) has requested that the Institute of Terrestrial Ecology carry 

out a Scoping Study for the analyses of metals, metalloids and organic compounds as part of 

the jointly funded MASQ project (CS2000 Soils module 6: Soils and Pollution; NERC, EA 

and DETR funded). This study will assess these substances for priority in analyses from the 

soils collected in the Countryside Survey 2000. These analyses will be used to produce 

baseline data-sets for metals/metalloids and organic pollutants from a uniform, stratified and 

distributed sampling of the range of land and land cover types in UK which have detailed 

supporting vegetation and environmental data. These datasets can then be used, in conjunction 

with the other MASQ soil components (e.g. biota, pH, LOI, type) in producing or addressing 

the following: 

 

I  A national overview on the “state” of soils in the U.K.; 

II  A baseline against which target values can be set and specific sites can be compared; 

III  The first stage in the development of soil quality indices for the UK; 

IV An assessment of changes in soil quality; 

VI  Critical loads for metals and persistent organic pollutants; 

VII Issues of contaminated land and land reclamation/restoration.  

 

3. Specifications of the Scoping Study 

The following specification were provided by the Environment Agency (02/02/99): 

“The Agency has supplied a list of elements and compounds that it would ideally like to have 

analysed from the CS2000 soils, if resources were not limited. Following initial discussion, 

this list has been shortened slightly but it is still too extensive for the available resource. The 

aim of the scoping study is to help the Agency to decide what is the optimum list of 

substances that it would like included. There is scope for the Agency to provide extra funds to 

have additional analyses done, beyond those to be agreed under the collaborative project. The 

Agency would like the scoping study to include more detail on each of the proposed analyses 

and their methods. It should include the following information, broken down for each 

substance or group of substances as appropriate, for those listed below.”  
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The additional information to be included in this assessment is: 

 

♦ Potential groupings of substances - for ease and efficiency of analysis. 

♦ Proposed methods for each analyses or group of analyses. To include a brief 

description of all parts of the analysis process (e.g. sample preparation, extraction and 

analysis). The Agency would prefer all methods used in the project to be standard and 

validated. 

♦ A brief assessment of the suitability of each method (e.g. for preparation, extraction 

and analysis) for soil samples in general, and for the soil samples as taken and stored 

in CS2000.  

♦ How do the storage methods used relate to the ideal method for particular applications 

and what are the resulting limitations? 

♦ Cost, per sample or groups of samples. Preferably these costs should be broken down 

into costs for sample preparation, extraction, analysis and interpretation. 

♦ Where ITE have no existing methods, do such methods exist in other laboratories? If 

so, is there a case for sub contracting those analyses? If not, the Agency needs to know 

that the proposed methods will be validated and quality assured in their laboratories, 

for instance using trials on “known” soil samples. 

♦ Quality assurance and quality control methods proposed for each stage of the analysis 

process, to include a discussion of the likely confidence levels, detection limits or 

other potential areas of uncertainty 

♦ Any other information that ITE think would support the proposed approaches and help 

in prioritising the substances for inclusion and deciding on the optimum list of 

substances for the available resource. 

♦ Recommendations of which substances ITE think should be included, preferably with 

one or more options and a discussion of the advantages and disadvantages of each 

option. 

 

A wide range of metals, metalloid and organic compounds are be considered significant 

environmental pollutants. A select set has been identified by the Environment Agency for 

relevance to the Agency’s priorities in the UK and as potential substances for analyses in 

the CS2000 Soils Module project (MASQ). This full list is given in Appendix 1. The 

main human sources of these elements and compounds are listed in Table 1.  
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Table 1: Potential contaminants associated with main industrial sectors. Adapted from 

USEPA, 1999. 

Sector Eaxmple of contaminants  
Gasworks  Coal tar creosote, phenol, Cyanide free/complex, sulphide/sulphate  
Iron + Steel 
works  

Metals copper, nickel, lead Acids sulphuric, hydrochloric Mineral oils - Coking works residues (as for 
gasworks ) 

Metal finishing  Metals cadmium, chromium, copper, nickel, zinc Acids sulphuric, hydrochloric Plating salts cyanide 
Aromatic hydrocarbons benzene Chlorinated hydrocarbons 1,1,1-Trichloroethane  

Non ferrous 
metal 
processing  

Metals copper, cadmium, lead zinc Impurity metals antimony, arsenic Other wastes battery acids  

Oil refineries  Hydrocarbons various fractions Acids, sulphuric, Alkalies caustic soda, Insulation asbestos Spent 
calalysts lead, nickel, chromium  

Paints  Metals lead, cadmium, barium Alcohols toluol, xylol Chlorinated hydrocarbons Methylene Chloride 
Fillers, extenders silica, titanium dioxide, talc  

Petrochemical 
plants  

Acids, alkalies sulphuric, caustic soda Metals copper, cadmium, mercury Reactive monomers styrene, 
acrylate, VCM Cyanide toluene di-isocyanate Amines analine Aromatic hydrocarbons benzene, Toluene  

Petrol stations  Metals copper, cadmium, lead, nickel, zinc Aromatic hydrocarbons benzene Octane boosters lead, 
MTBE M ineral oil - Chlorinated hydrocarbons trichloroethylene Paint, plastic residues barium, 
cadmium, lead 

Rubber 
processing  

Metals zinc, lead Sulphur compounds sulphur, thiocarbonate Reactive monomers isoprene, isobutylene 
Acids sulphuric. hydrochloric Aromatic hydrocarbons xylene, Toluene  

Semi-
conductors  

Metals copper, nickel, cadmium Metalloids arsenic, antimony, zinc Acids nitric, hydrofluoric 
Chlorinated hydrocarbons trichloroethylene Alcohols methanol Aromatic hydrocarbons xylene, Toluene  

Tanneries  Acids hydrochloric Metals trivalent chromium Salts chlorides, sulphides Solvents kerosine, white spirit 
Cyanide methyl isocyanate Degreasers trichloroethylene Dyestuff residues cadmium, benzidine  

Textiles Metals aluminium, tin, titanium, zinc Acids, alkalines sulphuric, caustic soda Salts sodium hypochlorite 
Chlorinated hydrocarbons Perchloroethylene Aromatic hydrocarbons phenol Pesticides dieldrin, aldrin, 
endrine Dyestuff residues cadmium, benzidine  

Wood 
processing  

Coal tar creosote Chlorinated hydrocarbons pentachlorophenol Metalloids /  metals arsenic, copper, 
chromium  

Sewage sludge Metals Copper, chromium, zinc, cadmium, arsenic, mercury, nickel, lead 
Burning of 
Fossil Fuels 

Metals / metalloids  mercury, lead (petrol additive), copper, nickel , zinc, vanadium, chromium, 
cadmium, antimony, beryllium,  

Waste 
incinerators 

Metal/metalloids Zinc, chromium  
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4. Metals, metalloids, semi-metals and other compounds  

The “metals, metalloids and semi-metals” from the Agency’s specification are listed in Table 

2 with current recommendations for analyses, soil protection limits and requirements for 

human health for each substance. Most of these metals/metalloids occur naturally, either as 

elements or various compounds, in the environment but anthropogenic sources result in the 

contamination of air, water and soil. A brief description of the natural and human sources of 

each of these metals and metalloids, and their potential environmental impacts, are given in 

Appendix Two. A mini- review of the relevance of heavy metals to soil microbial 

communities is to be found in Appendix Three; both of these were used in the prioritising 

exercise. 

 

Cyanide and sulphur were also present in the metal/metalloid/semi-metal list received from 

the Agency. Cyanide has been included in the assessment exercise in this scoping study since 

it can cause environmental concern in certain industrial areas (see Appendix Two) but not in 

the costing exercise, as explained below. Sulphur has been excluded from the scoping study at 

this stage as has been considered of lower priority than the other substances. Atmospheric 

sulphur dioxide levels have been declining from the early 1970’s, principally due to the 

industrial pollution control measures with deposition now low enough to cause deficiencies in 

certain crops e.g. wheat, pasture grasses, oilseed rape and barley (McGrath and Withers, 

1996; Jones et al., 1997). Point sources (fossil- fuel power stations without de-sulphurisation 

equipment) may produce levels of high deposition (>40 kg ha-1.), however these levels are 

rarely exceeded within the UK. It is recognised that certain soils, that have exceeded their 

critical load, may continue to cause acidifying problems for the foreseeable future or if 

drained. These soils have, however, been identified from critical load assessments. Site 

specific sampling would be the optimum method by which to obtain an appropriate soil 

sample for extractable sulphate or sulphide analyses. 
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Table 2:  Potential metals, metalloids and other compounds for analyses in MASQ: CS2000 

Soils Module: form, dietary requirements, analytical techniques and examples of 

soil protection levels. 
Substance Element 

form 
Trace element 
requirements 
A = animals 
P = plants 

U = ultratrace5 

Analytical 
techniques 

Correlation 
of totals 

and 
extractables

1 R2 

Soil 
protection 

limits2 
mg kg-1 

n.b. use 
dependant 

Target and 
intervention 

values3 

mg kg-1 

Soil 
protection 

limits4 
mg kg-1 

Beryllium 
(Be) 

Metal  ICP-OES     

Cadmium 
(Cd) 

Metal U ICP-OES 0.78 3 0.8/12 0.3 - 1.5 

Chromium 
(Cr) 

Metal A ICP-OES - 600 100/380 20 – 130 

Copper (Cu) Metal A P ICP-OES 0.64 140 36/190 20 - 70 
Lead (Pb) Metal U ICP-OES 0.68 300 85/530 25 - 100 
Manganese 

(Mn) 
Metal A P ICP-OES 0.69    

Mercury (Hg) Metal  cold vapour 
AAS 

  0.3/10 0.1 - 2.1 

Nickel (Ni) Metal  ICP-OES 0.31 75 35/210 10 - 85 
Vanadium 

(V) 
Metal A ICP-OES     

Zinc (Zn) Metal A P ICP-OES 0.21 300 140/720 60 – 200 
Antimony 

(Sb) 
Metalloi

d 
 ICP hydride 

elements 
    

Arsenic (As) Metalloi
d 

A ICP hydride 
elements 

  29/55  

Boron (B) Metalloi
d 

P ICP-OES     

Selenium (Se) Metalloi
d 

A P ICP hydride 
elements 

    

Sulphur (S) Non-
metal 

   2- 30 ug 
m-3 6 

  

Cyanide 
(HCN) 

Non-
metal 
salt of 
HCN 

U    1/20 free 
5/50-650 
complex 

 

 
1 = McGrath and Loveland (1992). 
2 = CEC recommendations (agricultural soils mainly for sewage sludge input controls) 
3 = Vries de and Bakker (1998) 
4 = Haan de (1996)  
5 = Hopkin (1989) and ASTDR (see appendix two). 
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4.1 Potential groupings and an optimum list 

In the process of prioritising and grouping substances for analyses from CS2000 soils, 

extensive literature searches were carried out using BIDS, BIOSIS, the WWW and the CEH 

library service. The literature was examined for data on emissions/sources, toxicity (human, 

plant, microbial and animal) and current recommendations/legislation (soil protection, human 

exposure, critical loads and land remediation) for each of the listed substances. It is 

recognised that certain substances, potentially significant pollutants, may have been excluded 

from this exercise. This is principally due to a lack of appropriate risk assessments and/or 

adequate toxicological data; there are insufficient toxicity or eco-toxocity data for preliminary 

OECD risk assessments for 50 to 75% of chemicals (CMA, 1998; EEA, 1998). 

 

The results from these searches were used to produce a guide to what is known about each of 

the substances and to be able to produce a ranked order of priorities (Table 3). The results 

indicate the following list of priorities, from high to low; 

Pb>Zn=Hg=Cu=Cd>Ni=Cr>As>Mn>B>V=Se=Sb=HCN=Be.  

 

Analytical techniques (Table 2) and sample requirements can be used to further prioritise 

these substances. A significant issues is the limited amount of soil available for analyses (140 

CS2000 soil samples <50 g; the remaining >100g; min. 25 g to be retained). Subsequent 

analyses may be limited by the sample available. This is especially relevant for ICP-OES 

where one 5 g sample can be used for the analyses of all relevant metals. Therefore, it is 

recommended that all metals required by ICP-OES should be analysed from a single sample 

at the same time. Cyanide soil chemistry samples (air-dried) or the remaining sol microbial 

sample (frozen but too small). Site specific sampling and analyses could be carried out in 

conjunction with planned re-sampling for volatile organic compounds.  

 

The options for groupings of metals and metalloids for analyses are presented in Table 4 

along with analytical costs for each, based on analyses of all 800 samples from England and 

Wales. It is recommended that minimum analyses should be carried out on Option Three; Hg, 

Pb, Zn, Cu, Cd, Ni, Cr.  
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Table 3: Metals, metalloids and cyanide: a guide to what is known about each of the substances and a ranking of each according to these criteria. 

Each criterion is scored 1 if it can be referred to individual substances. 

 

Element/ 
compound 

Listed on 
Aarhus 
Protocol 

DETR UK 
Sustainable 

Development 
Indicators 

Release in 
sewage 
sludge 

monitored by 
DETR 

Used for soil 
protection/ 

critical loads 

In: 
McGrath & 
Loveland 

(1992) 

Data on soil 
faunal 

responses 
available 

Data on soil 
microbial 
responses 

available: see 
appendix 3  

Mammalian 
health risk 

data 

Known to 
bio-

accumulate 

Phyto- 
toxicity data 

available 

Ranked by 
all criteria 

Beryllium (Be)        1  1 2 
Cyanide (HCN)    1   1 1   3 
Antimony (Sb)       1 1 1  3 
Selenium (Se)        1 1 1 3 
Vanadium (V)       1  1 1 3 

Boron (B)      1 1 1 1 1 5 
Manganese (Mn)     1 1 1 1 1 1 6 

Arsenic (As)   1 1  1 1 1 1 1 7 
Chromium (Cr)   1 1 1 1 1 1 1 1 8 

Nickel (Ni)   1 1 1 1 1 1 1 1 8 
Cadmium (Cd) 1 1  1 1 1 1 1 1 1 9 

Copper (Cu)  1 1 1 1 1 1 1 1 1 9 
Mercury (Hg) 1 1 1 1  1 1 1 1 1 9 

Zinc (Zn)  1 1 1 1 1 1 1 1 1 9 
Lead (Pb) 1 1 1 1 1 1 1 1 1 1 10 
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Table 4. Recommended options for groupings of metals and metalloids for analyses from 

CS2000 soil samples; costs calculated using the quotations given in Table 6.  

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 
Pb, Zn, 

Cu, Cd 

Hg,  

Pb, Zn, 

Cu, Cd 

Hg, Pb, 

Zn, Cu, 

Cd, Ni, 

Cr 

Hg, Pb, 

Zn, Cu, 

Cd, Ni, Cr, 

Mn, B 

Hg, Pb, Zn, 

Cu, Cd, Ni, 

Cr, As 

Hg, Pb, Zn, 

Cu, Cd, Ni, Cr, 

Mn, B, As 

Hg, 12 

ICP-OES 

metals   

Hg, 12 ICP-

OES metals, 

As 

 

£26,140 £40,456 £42,072 £43,688 £55,494 £57,110 £46,920 £60,342 

 

Table 5: Analytical costs (£) for all potential groupings of metals and metalloids.  

Number of metals for ICP-

OES 

4 6 8 12 

Proposed priorities for 

metals and metalloids 

Cost £ (FEC) 

Cd, Zn, Pb, Cu Cd, Zn, Pb, 

Cu, Ni, Cr 

Cd, Zn, Pb, Cu, 

Ni, Cr, Mn, B 

Cd, Zn, Pb, Cu, 

Ni, Cr, Mn, B, V, 

Se, Be, Al 
Metals only 26140 27756 29372 32604 

Metals + Hg 40456 42072 43688 46920 

Metals + As 39562 41178 42794 46026 

Metals + Hg/As 53878 55494 57110 60342 

 

Table 6: Analytical costs of each analyses (£): total cost and itemised for each step in the 

analysis. (not available for the EA cyanide analysis) provided by ITE Merlewood 

for ICP-OES and ICP-hydride, ITE Monkswood for cold vapour AAS. 

   Costs (£ FEC) 

 

Analytical methods 

Total for 

all 

800 

samples 

Itemised  

Sample prep. 

Agate mill grinding  

Itemised 

Extraction  

Booking/ aqua regia/ 

moisture content 

Itemised 

Analyses 

Cold vapour AAS = Hg 14,316 4,194 9,018 14,316 

ICP-OES = 4 metals  26,140 4,194 9,018 12,928 

ICP-OES = 6 metals  27,756 4,194 9,018 14,544 

ICP-OES = 8 metals  29,372 4,194 9,018 16,160 

ICP-OES = 12 metals  32,604 4,194 9,018 19,392 

ICP-hydride extraction = As 13,422  6,711 6,711 

EA methods = cyanide 10,000    

 



   15 

Option 1 includes lead, zinc, copper and cadmium as these would be the first four metals to be 

analysed by ICP-OES, confirming the agreed list for the collaborative project. Two of these 

(Pb, Cd) are listed in the Aarhus protocol while these two with Cu and Zn are included in the 

DETR list of sustainable development indicators (Table 3).  

 

Mercury is also listed in both the Aarhus Protocol and DETR list and is therefore included in 

Option 2; it is recommended that mercury be analysed by cold vapour AAS (see below). 

Nickel and chromium are then added to produce Option 3 as both these metals are released 

from sewage sludge in significant amounts (as monitored by DETR), used in soil protection 

and critical loads assessments and included in McGrath and Loveland’s Geochemical Map of 

the UK (McGrath and Loveland, 1992). The fourth option includes manganese and boron to 

ensure optimum use of the soil samples in ICP-OES. Although arsenic ranked higher in 

priority than both B and Mn in Table 3, it would require analysis by ICP-hydride elements 

and is therefore included in Option 5. Arsenic is also monitored in sewage sludge by DETR 

and used in soil protection recommendations and analysed by ICP-hydride elements. The 

remaining two groups provide costs for further analyses of metals using ICP-OES. 

 

4.2 Analytical laboratories: metals and metalloids  

It is proposed that ICP-OES analyses would be carried out at ITE Merlewood and cold-vapour 

analyses at ITE Monkswood to utilise in-house expertise and equipment. 

 

4.3 Analytical costs 

Analytical costs have been calculated for the analyses of all 800 CS2000 soil samples from 

England and Wales from quotations provided by ITE Merlewood for ICP-OES and ICP-

hydride and ITE Monkswood for cold vapour AAS. For reference, analytical costs have been 

given for cyanide analyses by the EA at Llanelli. The analytical costs of each Option (Table 

4), the full range of groupings (Table 5) and for each analysis with a breakdown of costs into 

sample preparation, extraction and analyses, where available. Analyses costs for less than 800 

samples can be calculated on a proportional basis.  
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4.4 Analytical Priorities:Totals or exchangeables? 

The analysis of total metal or metalloid contents (mg kg-1) will remain the most reliable and 

meaningful environmental assessment until there are recognised standard methods for 

determining the available reactive content of metals or metalloids and the bioavailability of 

these “available” components is fully understood (Vries de and Bakker, 1998). In support of 

this, almost all current legislation and recommendations are based on total concentrations of 

metals and metalloids in soils since total concentrations are relatively easy to determine and 

incorporate into soil quality standards, compared to available concentrations. Working in the 

precautionary principle, totals at least identify soils with potential risks: the first stage of a 

risk assessment is to identify presence of a chemical and the next is to identify a compound’s 

behaviour (de Haan, 1996). Data from McGrath and Loveland (1992) indicate that relatively 

good relationships exist between totals and availables for several metals (Table 3) and these 

relationships, once more fully understood, may prove useful in predicting available metal 

contents in soils. 

 

4.5 Storage procedures for metals, metalloids  

All soil samples collected in 1999 have been put into long-term storage at ITE Merlewood. 

Every sample was treated according to the MASQ standard soil preparation protocol; air-

dried, sieved in a 2 mm stainless steel mesh and all samples put into air-tight plastic 

containers. These samples are now in safe storage at ITE Merlewood. In the short-term, there 

will be no detectable change in metal or metalloid contents. Long-term storage effects are 

unknown. These could be assessed by the analyses of a sub-set of soil samples from the 1978 

ITE Woodland Survey (pers. comm. R. Bunce).  

 

4.6 Analytical procedures and quality control: metals and metalloids  

4.6.1 ICP-OES  

ICP-OES and ICP-MS can be regarded as complementary methods for analyses and each has 

its own advantages and disadvantages. ICP-MS offers the potential for better sensitivity with 

lower detection limits. However, with ICP-MS there are matrix problems associated with the 

analysis of acid digests of solid samples, as there is a limit on the dissolved salt content.  

 

This means that the working detection limit m ay not be as good as the analysis by ICP-OES, 

because of the requirement to work with lower solid: liquid ratios. ICP-MS is available if the 
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analysis reveals concentrations in solution too low by ICP-OES and there is the option to 

analyse digests on the ICP-MS instrument.  

 

4.6.2 Cold-vapour AAS for mercury analysis 

Aqua-regia digestion for Hg is a standard method (MEWAM, as for other metals). Cold 

vapour AAS is one of the most sensitive methods for quantifying Hg. As regards, quality 

control, we will include certified reference material and samples from proficiency testing 

(ISE) to estimate accuracy and precision. 

 

4.7 Quality Assurance of Chemical Analysis at ITE 

The Environmental Chemistry Section at ITE Merlewood operates under the following QA 

policy: It is the aim of the analytical laboratories within ITE to provide analytical data fit for 

the purpose of studies in environmental research.  To provide quality assurance, operations in 

the laboratories involve:  

• sample management systems. 

• use of modern equipment. 

• use of validated methods. 

• application of rigorous quality control procedures. 

• employment of professionally qualified analysts. 

• a commitment to training to maintain skills. 

• careful organisation of laboratory accommodation for efficient use and to minimise 

contamination and 

• good liaison between analysts, the project leader and the customer.   

 

Quality assurance procedures ensure that there is a traceable link from certified reference 

material and validation through proficiency testing to the results of analysis. This is 

achieved through documented management of stock solutions, the use of rigorous internal 

quality control procedures, and where feasible, analysis of material with certified values, 

participation in inter- laboratory proficiency trials and recovery tests.  Our laboratories are 

committed to participation in recognised proficiency testing schemes such as 

AQUACHECK (WRc) or University of Wageningen International Soil and Plant 

Exchange programmes in order to test performance against the wider analytical 

community.  
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The procedure proposed will adopt the following approach: 

• Methods for the Determination of Metals in Soils, sediments, and sewage sludge and 

plants by hydrochloric-nitric acid digestion…… by Methods for the Examination of 

Waters and Associated Materials, 1986 HMSO. 

• At the time of analysis we will analyse Certified Reference Material and samples from an 

international soil exchange scheme (ISE) to verify methods. 

• Analysis will be traceable to Certified Reference Materials namely NBS Estuarine 

Sediment 1646 and BCR Lake Sediment No 280 through internal QC samples. 

• With each batch of 25 samples, we will also analyse 2 internal laboratory, reference 

samples, blanks solutions and a random duplicate. 
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5. Organic pollutants  

5.1 An optimum list for analyses 

Although a lot is known about the way organic chemicals affect biota, how they move around 

the environment and are broken down (or persist) in different environmental compartments, 

there are still significant gaps in knowledge. One of these gaps is a lack of national and 

regional information about the way in which organic chemicals are distributed in soils. This 

type of information is needed to provide a background for regulatory decisions on 

contaminant releases and to help with policy formulation and development on issues such as 

soil health. 

 

In the UK, there have been: 

(a) studies in and around individual sites on a number of compounds such as PAHs, PCBs 

and dioxins (Meharg et al 1997; Lovett et al 1998; Meharg et al 1998;); further studies are 

just being reported to the Agency and are underway as part of the NERC URGENT 

programme; 

(b) modelled predictions of national distributions of selected pesticides in soils that have not 

been validated on a national scale; 

(c) a few studies on selected compounds in soil (PCBs, PAHs, dioxins) that have either a 

long-term temporal dimension or a large-scale spatial element (Creaser et al 1989; 

Cousins et al 1997; Lead et al 1997). 

 

The long-term and large-scale studies are most relevant to MASQ-O but all have been limited 

in a variety of ways. For instance, in no previous case has it been possible to obtain national 

and regional information that can be related to physical geography, land use, soil type and 

biota – all potentially important variables that could determine contaminant distribution. 

CS2000 provides a framework within which, for the first time, a properly controlled study of 

national and regional patterns of soil contamination can be done for a selected range of 

contaminants. This is how the MASQ study differs from previous work, and because of this, it 

offers the possibility of establishing a national baseline. This may not have been attempted 

anywhere else in the world. 

 

A wide range of organic chemicals is of potential interest. The Environment Agency have 

listed a number of groups of organic compounds it would like to see analysed within the 

MASQ element of CS2000.  
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These groups are: 

 18 PAHs 

6+ organochlorine pesticides (plus isomers and stable metabolites) 

c 16 triazole fungicides 

2+ triazine herbicides 

 the chlorobenzenes 

 the chlorotoluenes 

c 4 chlorophenols 

pentachlorophenol 

c 6 organometals 

7 other organics 

13 PCB congeners 

17 dioxins and furans. 

 

Analysing for all these determinands (c 90) in all the CS2000 soil samples would be 

prohibitively expensive; analysing for the dioxins and furans alone at commercial rates could 

cost up to £500,000; this is 5 times the total budget for MASQ-O.  

 

5.2 Scope of analytical capacity at ITE Monks Wood 

Of the compounds listed by the Agency, the PAHs, PCBs, organochlorine pesticides and 

certain of the chlorophenols and other organics are routinely measured at the Monks Wood 

analytical facility. 

 

There are some differences of detail between the lists of PAHs and PCBs requested by the 

Agency and the lists routinely quantified at Monks Wood. Of the PAHs, Monks Wood does 

not analyse for benzo[e]pyrene and benzo[j]flouranthene, which have been named by the 

Agency but not given their CAS numbers. There may be only limited value in identifying 

non-standard PAHs, although the analytical method used at Monks Wood is probably 

detecting a range of PAHs that are not quantified at present. These may include the 2 non-

standard PAHs. The reverse situation applies to the PCBs where Monks Wood routinely 

analyses for about 8 PCB congeners in addition to those on the Agency list. These are 

congeners of some environmental importance as they may help identify sources, and would 

aid interpretation (eg of where high levels of dioxins might be found). Results for the heavier 
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4 of these congeners could be reported. Data for the other 4 would also be quantified but not 

necessarily reported. Reporting of these will depend on critical appraisal of the final data set.  

 

The standard organochlorine data set also varies from the Agency list in its detail. Routinely, 

analysis is done for alpha- and gamma-HCH, HCB, and DDE in soils. If DDT is present (as it 

still is in some environmental samples), this too is normally quantified. HEOD (the 

environmentally stable member of the “drins” group) is unstable with the current clean-up 

method, but could be reported using an alternate well-established procedure. 

 

 In addition, organometals could be analysed depending on the level of detail required in the 

analysis (ie total organic element vs quantification for individual compounds). Methods for 

certain other compounds (eg pentachlorophenol, mirex, toxaphene etc) would need to be 

established de novo, although some have been analysed for certain matrices in the past. 

Dioxins and furans would be best contracted-out to a specialist laboratory, although costs 

would be substantial (up to £800 per sample). A university department has agreed in principle 

to co-operating on such specialist analysis if necessary; their costs per sample might be lower 

than the figure in parantheses above. 

 

At present, Monks Wood has analytical capabilities for chlorophenols (about 16 are regularly 

quantified by an HPLC method) and chlorobenzenes (about 6 compounds comprise the 

standard set by GCMS). However, these methods have not been worked up for soils. The 

chlorobenzene method could be developed relatively easily, although the chemicals may be 

too volatile to make the effort worthwhile. The chlorophenol methods are dedicated for 

research projects and would need considerable development. 

 

There have been two equipment enhancements at Monks Wood that are potentially of 

considerable importance to MASQ-O. One is purchase of a microwave digestion unit, and the 

other is the acquisition of a CEH LCMS facility. Respectively, these two pieces of equipment  

(a) should considerably speed-up sample preparation, allowing more samples to be processed, 

and (b) could increase the range of determinands being looked for. 

 

5.3 Choice of analyte suite 

There are a number of constraints on the choice of analyte suite. Amongst these are costs, 

analytical methodology and the amount of soil available for analysis. Most important, 
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however, are the constraints applied by the objectives of and deliverables from the work, and 

the way soil samples have been collected from the field sites. 

 

The main deliverable required is a mapping of the contamination of soil by a range of organic 

compounds that reflects the degree to which human activity has affected / is affecting soil 

health. Information on this can be obtained by choosing determinands that reflect the main 

types of human activity. From the list of contaminants produced by the Agency, the most 

appropriate substances to meet the needs of the project would seem to be: 

 

1) PAHs, because they are (a) produced as a result of a very wide range of industrial, 

commercial domestic and accidental combustion processes and (b) affect key biological 

functions; 

2) PCBs, because they (a) remain widespread having entered the open environment from 

a wide variety of mainly industrial sources and (b) may not be declining evenly across the 

country (especially in certain terrestrial biota); 

3) Selected pesticides, because they (a) reflect agricultural and commercial pressures, at 

least in those parts of the country dominated by agriculture or textile processing, (b) 

persist for some time with attendant environmental risks; 

4) Chlorotoluenes, chlorobenzenes and chlorophenols because (a) as a group they reflect 

commercial activities across quite a wide range of industrial and commercial sectors, and 

(b) they are being found surprisingly widely distributed in the environment.  

 

The main practical constraint imposed by the sampling regime that had to be used to collect 

the samples is that the more volatile substances could have been lost. This could have 

happened either (a) during the transfer from the field to ITE Merlewood, or (b) during sample 

processing at Merlewood (although this would be little different to any processing of samples 

that would need to be done at Monks Wood for soil samples). To limit losses of volatile 

materials special collection conditions would have to be applied involving sampling and 

mixing with drying agents and  solvents in the field. Such procedures have not been developed 

for soils in this country and would have been too expensive at this stage in the development of 

thinking on soil health issues. The current approach used at Monks Wood s to collect soils in 

the field in sealed containers and return these to the laboratory where they are stabilised by 

mixing with a solvent before addition of drying agents and solvents for extraction. This 
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approach was impractical in CS2000, but could be considered for MASQ-O if resources were 

set aside for selective re-sampling of MASQ soil plots. 

 

These sampling constraints make it likely that to provide the soil health deliverables most 

effectively the following substances should definitely be quantified: 

- the heavier PAHs; 

- the more highly chlorinated PCB congeners; and, 

- selected persistent organochlorine compounds (OCs). 

 

An additional advantage of choosing these determinands is that there has been a limited 

amount of previous work on these substances in the country, although nothing as 

comprehensive as being attempted in the MASQ-O module of CS2000 (see Introduction). 

This previous work will act as a point of reference for the studies in MASQ. Moreover, 

mapping these determinands may reveal relative hotspots that warrant further study, perhaps 

for the more difficult and expensive determinands. 
 

 

5.4 Outline of Analytical Methods  

Analytical methods for these determinands are solvent based extraction of contaminants from 

the soil matrix (hexane for PCBs and OCs; dichloromethane for PAHs) followed by either 

GCECD or GCMS. It is important to use analytical methods that are sensitive so as to avoid 

problems in interpretation arising from the presence of too many non-detected analytical 

returns. GCECD is a very sensitive method for PCB and OC analysis, and experience over the 

past few years at Monks Wood has shown the GCMS is a powerful approach to 

environmental PAH analysis across a wide range of environmental matrices and 

concentrations. It has distinct QA advantages over more routine approaches to PAH analysis. 

These may prove important in MASQ. Further details of analytical methods are given in 

Annex 1. Note that limits of detection refer to limits in the material injected on the machine 

not to limits in the sample, and are based (conservatively) on about four times the noise. 

Limits in samples bear no direct relationship to machine measures of sensitivity but need to 

be calculated on a project by project basis. Calculations will be made at the outset of the 

MASQ studies to set sample preparation and analytical parameters at levels that minimise 

non-detected returns. 
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In all cases, analytical QA/QC procedures are similar to those that would be run under 

NAMAS or other accreditation schemes.  The core of the procedures is the frequent use of 

analytical standards, internal standards, sample blanks, and standardised reference materials. 

Because standardised reference materials (especially international ones) are only rarely 

comparable to real environmental matrices it is sometimes difficult to make full use of such 

international QA schemes as exist. This is compensated for to some degree by exchanging 

samples between laboratories with similar interests or preparing in house reference material. It 

may be wise to prepare such a sample (or group of samples) at the outset of the MASQ 

organics study. 

 

Experience of past programmes of study suggests the use of standard methodologies is only 

helpful in cases where standard, consistent, matrices are being used (eg a particular kind of 

food). It is an integral part of MASQ-O that very variable matrices are being examined. The 

best approach in these circumstances is to devote time at the outset of the project to the 

development of an appropriate methodology, and then to employ QA procedures that ensure 

consistent results are obtained within the project. Certified reference materials would be used 

for comparative rather than fully quantitative purposes. One difficulty is that certified 

materials may not exist for samples of the wider environment; reference materials are often 

composed of relatively contaminated material. 

 

ITE, Monks Wood runs a standard approach to QA/QC issues that includes the rejection of 

samples that fall outside statistically determined confidence intervals for those types of 

analysis for which adequate certified or in-house reference materials exist. It may be possible 

to establish such a system for certain of the MASQ-O determinands 

   

5.5 Outline of Cost per sample 

Costs per sample at Monks Wood using the standard in-house methods are currently:  

 

£74 for a suite including 20+ PCB congeners and certain organochlorine pesticides (eg 

DDT derivatives, HCH isomers) done by GCECD, with confirmatory analysis on 

GCMS in difficult cases.  These costs may need to be increased for some of these 

soils, as exhaustive soxhlet extraction may be required for some samples. Current 

costs can be broken down into staff time, equipment and consumables, and QA/QC 

costs that are respectively £55, £10, £9. 
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£123 for 19/20 PAHs using the standard methodology on GCMS. These costs may 

need to be increased for some of these soils, as exhaustive soxhlet extraction may be 

required for some samples. Current costs can be broken down into staff time, 

equipment and consumables, and QA/QC costs that are respectively £85, £16, £20.  

 

Thus, the cost per sample for a complete suite of persistent PCBs, PAHs and organochlorine 

compounds would be some £190 - £200 per sample, including costs of QC/QA, which 

constitutes about 14% of the effort in sample preparation and analysis.  

 

If the Agency and the Department agree, some methodological work could be done that, if 

successful, could reduce costs per sample substantially and increase the information that could 

be derived from MASQ-O.  

 

Within ITE, Monks Wood has been allocated £50K per annum for each of 2 years to complete 

organic analysis for MASQ (total available funds £100K).  These costs are made up by funds 

from EA, DETR and CEH core science budget and include sample preparation, contaminant 

extraction, clean-up, quantitative analysis (with QA/QC). At c £200 per sample there is scope 

for the analysis of 500 samples without interpretation.  However, interpretation of data will be 

important within MASQ because it is establishing a national baseline. It seems wise to reserve 

about one third of the total effort for interpretation and report preparation (c £30K).  In these 

circumstances, the maximum number of samples that could be analysed is about 350.  It 

would seem unwise to consider the analysis of fewer samples, especially as some 

developmental work may become necessary if difficult soil matrices are encountered. 

 

5.6 Squares to analyse 

About 250 CS2000 squares (of the total of c 1210) have been sampled for soils and this 

means all squares could be analysed for PAHs, PCB and organochlorine pesticides. This 

would leave capacity for targeting additional collections (eg near towns or industrial sites) or 

for doing additional QA/QC procedures (e.g. to be conducted on within and between square 

heterogeneity), or for doing additional analysis on other determinands in selected squares. 

 

However, within each of the CS2000 squares sampled for soils, 5 soil samples have been 

obtained from the range of soil and vegetation types present in the square. It will be necessary 

to test the heterogeneity of contaminant concentrations within each square to see if this is less 
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than or greater than the between square heterogeneity. Equally it will be necessary to check 

the within soil type and vegetation type heterogeneity, using squares with uniform soil and 

vegetation types. This type of preliminary work will be necessary before embarking on the 

main phase of analysis. 

 

Before proceeding even to the first stage of analysis, it is worth considering the environmental 

variables that can affect contaminant distribution in the environment in case this influences 

the choice of squares to sample for the preliminary work outlined in the paragraph above. 

There are four key factors, as far as the present study is concerned: the physicochemical (and 

environmental) properties of the contaminant, the soil type, the type of overlying vegetation 

and land management regime. Each is considered in turn: 

 

Physicochemical and environmental properties: Resistance to biological breakdown makes 

some chemicals persist in soils for many years. For example, the rate of loss for DDT 

derivatives may be less than 1% per annum so that material applied to soils in the 1950s may 

persist well past the middle of the next century. On the other hand, some materials are lost 

from soil quickly due to their volatility or their susceptibility to biological decomposition 

(often achieved by the soil microbial community). Water solubility and the tendency to bind 

irreversibly to soil are two other, somewhat opposing, influences. All these factors combine in 

different proportions in different soils to affect what proportion of the inputs to soils will be 

available for analysis within a project like MASQ. These factors may be important 

considerations when interpreting the results from MASQ organics analysis. They should not 

however unduly affect the choice of squares to sample as the aim of MASQ is to 

quantitatively map the current state of play following a period in history when chemical use 

was less sustainable than it will need to be in the future. 

 

Soil and vegetation type: These two factors will have a considerable bearing on the amounts 

of material entering the soil and, possibly, on the amount of what has entered it being 

extracted for analysis. Soil type is important for a number of reasons. For example, when 

chemicals enter soil a process known as “aging” begins whereby residues become 

increasingly more difficult to extract as time passes. This is thought to be the result of the 

chemical becoming physically incorporated into soil particles or attached to the humic 

fraction of soil in ways that make it difficult to extract. The biological and environmental 

significance of this process of aging is not understood. For example, it is not certain that such 
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aged material is unavailable to biota. Certainly, it becomes more difficult to extract material 

by chemical means. Further, since aging processes differ between soil types, extractability 

may vary similarly thus making comparisons between soils rather more complex than would 

be ideal for a country-wide mapping programme. 

 

Soil type may also affect the analytical procedures in other ways. For instance, soil types 

differ markedly in composition of naturally occurring organic materials and there are a 

number of ways in which these can interfere with chemical analysis. The importance of this 

will have to be determined at the outset of the organics part of the MASQ exercise.   

 

Vegetation type is important because variations in vegetation type will influence the way 

chemicals will reach the soil after being scavenged from the atmosphere by plants. Put 

simply, a solid object has a tendency to deflect air currents around it, whilst a finely divided 

object can act as more of a collector of material in the atmosphere. This is part of the reason 

why conifer woodland acts as a collector of organic pollutants. Chemicals adsorbed onto plant 

surfaces can reach the soil either after the plant becomes senescent or through stem flow or 

leaf- fall. The importance of this factor should also be checked at the outset of the organics 

part of MASQ. 

 

The combined influence of soil and vegetation type on the organic content of soils could be 

established as part of the initial phase of work on the MASQ organics module. This could be 

done either by making some special collections of material, or by examining variation 

between different plots collected from within a set of 1 km squares. 

 

Land management: This could be important to the scientific strategy of the MASQ organics 

module, because soils that are disturbed by ploughing and undisturbed soils will have quite 

different concentrations of chemicals. This will need to be taken into account when choosing 

which samples to analyse for. 

 

5.7 Scientific strategy 

As a jointly funded project between DETR, EA and CEH it is important that the scientific 

strategy of the MASQ organics module is clear and that the scientific deliverables are such 

that scientific understanding on the residence of organic chemicals in the environment can be 

seen to have advanced. 
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The large scale sampling programme of CS2000 makes it possible to test the hypothesis that 

organic chemical distribution in the country’s environment is taking place in accordance with 

the theory of “global distillation”. Under this hypothesis, over time periods of decades or 

longer, clines in contamination will develop such that lighter more volatile substances will 

progressively migrate towards the poles whilst heavier less volatile materials will become 

proportionately enriched in temperate latitudes. Testing this hypothesis would help advance 

understanding about the behaviour and fate of chemicals in the national and global 

environment and should be the prime scientific objective of the work. If global distillation is 

occurring then, within comparable environments at similar altitudes, lighter congeners of 

PCBs should be found in higher proportions in northerly squares than in southerly ones. 

Provided local PCB sources are not too dominant and marine influences are not too great then 

it should be possible to detect clines within the UK, as the models predicting such 

distributions have working scales made up from 150 km boxes. ITE has evidence of temporal 

trends in biota that are consistent with the global distillation hypothesis but as yet there is only 

limited spatial data relating to soils. It seems certain that the distillation process is very 

dynamic, with volatilisation processes occurring on a daily basis depending on temperature 

(amongst other factors). 

 

5.8 Sampling strategy 

One great advantage of CS2000 is the large amount of information that exists about each of 

the CS2000 sample squares and, additionally, about each of the soil sampling plots (X-plots) 

within each of the 250 1 km squares sampled for soils. All told there are about 1000 X-plots 

that could be sampled.  This means it should be possible to select from amongst these enough 

plots to draw up country-wide maps whilst at the same time controlling for the range of 

factors that could influence the concentrations of contaminants in soil. However, preliminary 

study of the distribution of vegetation and soil types suggests that even within the range of 

sites available it may prove difficult to obtain sufficient samples across the country to prepare 

maps meeting the strictest scientific criteria. Additional sampling may be necessary to fill in 

gaps. 

 

5.9 Proposed work plan 

There are a number of options available. Two are presented, with the first option being the 

preferred one: 
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Option 1 

- Meet with EA to: 

Discuss scoping study; 

Set out analytical limitations on study and decide on validation steps required 

before commencing analysis of MASQ samples; 

Agree contingency plans (ie do further sample collections) if validation exercise 

produces data that is unsatisfactory; 

Agree on any refinements of methodology (eg development of unified sample 

preparation and clean-up procedures for PAH and PCBs; inclusion of HEOD in 

OC list); 

Agree, within sampling constraints set out above, the list of MASQ-O samples to 

be analysed (including consideration of the need to pool samples) 

Consider need for supplementary analysis near sites of particular interest. 

 

- Validate and refine methods 

Refine methods for range of soil types and determinands within MASQ-O 

Validate these against existing methods and certified reference samples 

Meet with EA to discuss validation and refinement exercise 

Agree final analytical programme with EA 

 

- Proceed with analysis of 250 (or more) MASQ-O samples 

Complete OC / PCB analysis 

Complete PAH analysis  

Report raw data to EA 

Interpret results 

Meet EA to discuss outcomes and implications 

Map data 

Meet EA to discuss outcomes and implications 

Draft final report 

Feedback from EA 

Prepare final project report 

Comments on draft from EA 

Submit final report on MASQ-O. 
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Option 2 

- Meet with EA to: 

Discuss scoping study; 

Set out analytical limitations on study; 

Agree to use of standard, existing Monks Wood methods 

Agree, within sampling constraints set out above, the list of MASQ-O samples to 

be analysed (including consideration of the need to pool samples) 

Consider need for supplementary analysis (eg near sites of particular interest). 

 

- Proceed with analysis of 250 (or more) MASQ-O samples 

Complete OC / PCB analysis on MASQ-O samples selected by ITE 

Complete PAH analysis on MASQ-O samples selected by ITE 

Report raw data to EA 

Interpret results 

Map data 

Prepare final project report. 

 

No matter what option is considered best to follow there are a number of issues that must be 

agreed before work commences if all involved are to maximise the likelihood that the project 

will have a successful conclusion. The issues are the acceptability of: 

 

1) the suite of analytes…….ITE proposes PAHs and PCBs with selected OCs 

2) the analytical methods…..ITE proposes the use of existing in house methods and QA /QC 

procedures or development of a project specific amendment 

3) the field sampling protocol……..ITE may wish to consider re-sampling to strengthen 

scientific rigour 

4) the MASQ plots to be sampled for organic analysis…….ITE is currently working up 

appropriate scenarios to present at a project meeting. 
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Appendix One 

The Agency’s wish list of substances 

 

Metals/semi metals/metalloids    

Cadmium Copper Nickel Vanadium 

Lead Mercury Arsenic Beryllium 

Zinc Antimony Boron Chromium 

Manganese Selenium Sulphur Cyanide 

 

Polycyclic Aromatic Hydrocarbons (PAHs)  
CAS No. PAH  CAS N o. PAH  

120-12-7 Anthracene 129-00-0 pyrene 

86-73-7 Fluorene 218-01-9 chrysene 

91-20-3 Naphthalene 56-55-3 benz[a]anthracene 

85-01-8 Phenanthrene 205-99-2 benzo[b]fluoranthene 

191-24-2 benzo[ghi]perylene 207-08-9 benzo[k]fluoranthene 

208-96-8 Acenaphthylene 50-32-8 benzo[a]pyrene 

83-32-9 Acenaphthene 53-70-3 dibenz[ah]anthracene 

206-44-0 Fluoranthene 193-39-5 indeno[1,2,3-
cd]pyrene 

?? Benzo[e]pyrene ?? Benzo[j]fluoranthene 

 

Organic pesticides 

Drins, including:  OCs, including:  Azoles  Triazines 

Aldrin   Chlordane 

Dieldrin   DDT (and breakdown products?) 

Endrin   HCH, (total or gamma etc.?) 

 



Aromatic halocarbons  Chlorinated phenols   Organometallics 

Chlorobenzenes  Chlorophenols (not penta) Organolead compounds 

Chlorotoluenes  Pentachlorophenol  Organotin compounds 

 

Other organics: Chlordecane, Hexabromobiphenyl, Mirex, Toxaphene, Acetone, Phenol, 

Oil/Fuel hydrocarbons 

 

Polychlorinated Biphenyls (PCBs) 

IUPAC NO. Structure TEF 

non-ortho: 

77 3,3',4,4'-tetrachlorobiphenyl 0.0005 

126 3,3',4,4',5-pentachlorobiphenyl 0.1 

169 3,3',4,4',5,5'-hexachlorobiphenyl 0.01 

mono-ortho: 

105 2,3,3',4,4'-pentachlorobiphenyl 0.0001 

114 2,3,4,4',5-pentachlorobiphenyl 0.0005 

118 2,3',4,4',5-pentachlorobiphenyl 0.0001 

123 2',3,4,4',5-pentachlorobiphenyl 0.0001 

156 2',3,3',4,4',5-hexachlorobiphenyl 0.0005 

157 2,3,3',4,4',5-hexachlorobiphenyl 0.0005 

167 2,3',4,4',5,5'-hexachlorobiphenyl 0.00001 

189 2',3,3',4,4',5,5'-heptachlorobiphenyl 0.00001 

di-ortho 

170 2,2',3,3',4,4',5-heptachlorobiphenyl 0.0001 

180 2,2',3,4,4',5,5'-heptachlorobiphenyl 0.00001 

 
Dioxins  

Congener I-TEF Congener I-TEF 
2,3,7,8-TCDD 1 1,2,3,7,8-PeCDF 0.05 
1,2,3,7,8-PeCDD 0.5 1,2,3,4,7,8-HxCDF 0.1 
1,2,3,4,7,8-HxCDD 0.1 1,2,3,7,8,9-HxCDF 0.1 
1,2,3,7,8,9-HxCDD 0.1 1,2,3,6,7,8-HxCDF 0.1 
1,2,3,6,7,8-HxCDD 0.1 2,3,4,6,7,8-HxCDF 0.1 
1,2,3,4,6,7,8-HpCDD 0.01 1,2,3,4,6,7,8-HpCDF 0.01 
OCDD 0.001 1,2,3,4,7,8,9-HpCDF 0.01 
2,3,7,8-TCDF 0.1 OCDF 0.001 
2,3,4,7,8-PeCDF 0.5   

(Where: T=tetrachloro; Pe=pentachloro; Hx=hexachloro; Hp=heptachloro; and O=octachloro) 
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Appendix Two 

 
Brief assessments of the toxicological and environmental risks of 

select metals, metalloids and cyanide 
 
 
Data presented in this appendix have been summarised from two main sources: US 

Department of Health and Human Service, Agency for Toxic Substances and Disease 

Registry = Toxicological Profiles and ATSDR ToxFAQs factsheets.  

 

Antimony: Antimony is found naturally in the environment and ores are mined for use in 

metal alloys for a range of metal products e.g. pewter, batteries, pipes and bearings and 

paint products. It is released into the environment through particle release from 

incinerators, smelters and fossil fuel burning. When in soil, it binds with particles 

containing iron, manganese or aluminium. Exposure to high levels can lead to organ 

damage and fertility problems. USEPA = 0.006 ppm in drinking water 

 

Arsenic: In nature, it is found in low levels mainly as inorganic arsenic compounds. Less 

toxic, organic compounds are found in animals and plants. Inorganic compounds are used 

as wood preservatives, insecticides and herbicides. Arsenic enters the environment when 

materials and waste are burned. Most arsenic compounds are soluble and can transfer to 

groundwater from soil. They bioaccumulate in aquatic organisms but are generally not 

toxic in fish. Inorganic arsenic is a human toxin and high levels in food or water can be 

fatal. Lower levels can cause tissue damage and breathing difficulties. USEPA = 0.05 

ppm 

 

Beryllium: Can be found in some rocks, soil and volcanic dust and compounds are 

commercially mined. The metal is used in electrical parts, machine parts, ceramics, 

aircraft parts, nuclear weapons and mirrors. It gets into the environment from natural 

sources and through burning of fossil fuels and industrial waste disposal. Once in soils, 

most beryllium remains there. Fish do not bioaccumulate beryllium. Low levels of 

beryllium can cause hypersensitivity or allergy while high levels can cause lung damage.  

 

Boron: boron is found in nature and boron compounds (mainly borates) are mined for the 

production of glass, fire retardants, leathers, cosmetics, photographic materials, soaps and 
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cleaners, high energy fuels and wood preservatives and insecticides. It is released into the 

environment from natural sources (volcanic eruptions, oceans, geothermal steam) and is 

released from industries that use it. No information exists on the residence of boron in 

soil, water or air and does not bioaccumulate in animals. Boron does accumulate in 

plants. Little information is available on boron toxicity. 

 

Cadmium: In nature, cadmium most commonly occurs as stable compounds with Cl, S or 

O. It is mainly used in metal plating, paint pigments, batteries and plastics and is 

produced as a by-product of zinc, lead or copper ore smelting. Release into the 

environment is caused through the use of phosphate fertilisers and sewage sludge, 

burning of fossil fuels, emissions from smelters and waste disposal. High levels of 

cadmium can cause irritation of the lungs and digestive system. Exposure to low levels 

over a long period of time may cause kidney and lung damage, lung cancer or high blood 

pressure. USEPA = 0.005 mg l-1 in drinking water 

 

Chromium: has three main forms, Cr(0), (III) & (VI) of which only Cr(III) is stable and 

naturally occurring. Although all forms are toxic at high levels, Cr(VI) is the most toxic 

and certain compounds containing this form are recognised carcinogens. Cr(III) is 

believed to help insulin maintain normal glucose levels. It is used in making steel and 

other alloys, bricks in furnaces, dyes and pigments, chrome plating, leather tanning and 

wood preservatives. It enters the environment through disposal of Cr containing products 

or chemicals or burning of fossil fuels. Cr settles from air in less than 10 days and 

adheres strongly to soil particles, with only a small amount moving from soil to 

groundwater. It is not taken up or stored in fish tissue. USEPA = 100 ug l-1 in drinking 

water 

 

Copper: It occurs naturally in plants and animals and is an essential element for all living 

organisms. Many copper compounds occur naturally and are mined extensively 

throughout the world. Copper is primarily in the manufacturing of wire, pipe, sheet metal 

and other metal products. Other manufactured products and uses include pesticides, 

preservatives and water treatment.  It is a significant metal constituent of sewage sludge. 

Most copper compounds bind readily and strongly to soil particles. The major sources in 

the environment are from mining, smelters and copper industries waste and sewage 

sludge disposal to land or sea. Large levels of copper can lead to liver and kidney damage 
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while long-term exposure can cause headaches, dizziness, nausea, diarrhoea, irritation to 

eyes, lungs and mouth. 

 

Cyanide: is generally found in combination with other chemicals in the environment. The 

most common substances found in the environment are hydrogen cyanide (HCN), sodium 

cyanide (NaCN) and potassium cyanide (KCN). Certain bacteria, fungi, algae and plants 

produce cyanide in biosynthetic pathways. Cyanide, and its compounds, is most 

frequently used in the production of organic compounds photographic development, 

fumigation, some mining processes, electroplating and metal treatment. The major 

sources in the environment are from waste treatment plants, iron and steel works and 

organic chemical plants while cyanide can also enter the groundwater from land-fills. 

High levels of exposure for short periods can cause harm to the central nervous system, 

respiratory system and cardiovascular system and, at worse, coma and/ or death. Low 

levels of cyanide can cause breathing difficulties, convulsions and/or loss of 

consciousness. However, as Vitamin B12, cyanide is an essential compound in the human 

diet. USEPA = 0.2 mg l-1 in drinking water 

 

Lead: Lead and its compounds can be found extensively in the environment. It is released 

into the environment through vehicle and industrial emissions (especially iron and steel 

works), industrial and municipal waste incinerators, lead batteries, sewage sludge 

applications to land and smelting. It is mined from ores and is used in the production of 

many chemicals and metal products, petrol additives, paint and batteries.  Lead 

bioaccumulates in plants and animals. Excess lead in humans can lead to defects in 

unborn children and, reduce IQ, slow growth and cause hearing problems in young 

children, and cause organ damage in adults. USEPA = 0.015 mg l-1 in drinking water 

 

Manganese: Occurs naturally in the environment in combination with oxygen, sulphur 

and chlorine as various ores in rock. It is also required daily in small amounts by humans 

to maintain health. These ores are mine to produce manganese metal that is mixed with 

iron to make steel. Manganese compounds are also used in the production of batteries, 

ceramics, pesticides, fertilisers and some dietary compounds. Sources in the environment 

include smelters, steel works, fossil fuel burning plants and vehicle exhaust fumes. 

Exposure to high levels of certain manganese compounds can cause mental and physical 

disturbances (e.g. “manganism”). In extreme cases, permanent injury is caused to the 
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brain. At lower levels of exposure, manganese can cause respiratory problems or 

impotence in men. 

 

Mercury: this is a naturally occurring metal which has several forms It combines with 

several elements to form inorganic “salts” (e.g. Cl, S, O) and carbon to form organic 

mercury compound. The most common of these is methyl-mercury, produced from 

biological processing of mercury compounds in soil and water and bio-accumulates in 

animal tissue. Mercury and its compounds are used in the production of chlorine gas and 

caustic soda, in thermometers, dental filling, batteries, skin- lightening creams and 

antiseptic creams. Inorganic mercury enters the environment from mining ore deposits, 

burning coal, waste incineration, manufacturing plants and mercury-containing 

fungicides. Exposure to high levels of mercury, in most forms, can permanently damage 

vital organs, especially in young children. USEPA = 2ppb (WHO = no safe limits). 

 

Nickel: This is a very abundant element found in all soils. Nickel and its compounds are 

used in alloys, colouring, plating, batteries and catalysts and is released into the 

environment by particle release and deposition. It adheres readily with iron and 

manganese in soils and does not appear to bioaccumulate. Humans can become sensitive 

to nickel and high levels can cause inflammation in the lungs. USEPA = 0.04 mg l-1 in 

drinking water 

 

Selenium: This element is common in soils and rocks, mainly in sulphide mineral or in 

combination with silver, copper, lead or nickel. Selenium compounds are used in 

dandruff shampoos and gun blueing. It enters the environment through particle release 

and deposition and bioaccumulates in aquatic organisms. Selenium is rapidly transferred 

from soils to ground-water due to its highly soluble nature. Selenium is an essential 

element in humans with deficiencies resulting in heart and pain problems. High levels of 

selenium have a wide range of effects from dizziness and fatigue to bronchitis. USEPA = 

50ppb 

 

Vanadium: Vanadium and its compounds can be found in rocks, some iron ores and crude 

petroleum deposits. It is used, with other metals, to produce specialist alloys and as 

vanadium oxide in specialist steel, car parts, springs and ball bearings. It mainly enters 
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the environment through natural sources and the burning of fossil fuels. Once in soil, 

water or air, it is resident for a long time as it does not readily dissolve in water.? 

 

Zinc: this is one of the most common elements in the earth’s crust and is found in air, soil 

and water and present in all foods. It has many commercial uses from alloys, rust proof 

coatings, dry cell batteries to paints, dyes and wood preservatives. It is released into the 

environment through mining, steel production, coal burning and incineration of waste. 

Most zinc in soil remains bounds to soil particles but some also leaches into groundwater. 

Zinc accumulates in animals but not plants. It is an essential dietary element for growth 

and the immune system while excess zinc can have detrimental effects on the immune 

system and growth. USEPA = 5 ppm. 
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Appendix Three 

 
A mini-review of heavy metals and the soil microbial community 

 
Nisha Parekh, ITE Merlewood, March 1999 

 
Within the context of the CS2000 survey, multivariate statistical analysis will be used to 

detect relationships between changes in the substrate utilisation responses of microbial 

communities extracted from the soil samples, soil fauna and soil properties such as pH, 

organic matter content, levels of organic pollutants and heavy metal content.  Heavy 

metals pose particular risks to the environment due to their persistence and potential 

toxicity.  Whilst many metals are required by microbial cells as essential micronutrients 

for growth (see Table 1), certain chemical forms of most of the heavy metals are toxic to 

microorganisms (see Table 2).  

 

Table 1: Classification of Heavy metals according to their requirement for the growth of 

microorganisms (from Pirt 1985).  

Frequently essential 
for growth 

Rarely essential for growth Potentially rarely essential 
for growth 

Mn, Fe, Co, Cu, Zn B, Al, Si, V, Cr, Ni, As, 
Se, Mo, Sn 

Be, F, Sc, Ti, Ga, Ge, Br, 
Zr, W 

 
These elements are required in trace quantities (0.001 to 0.015g/100g dry biomass) for 

microbial growth and nutrition.  Some metals are needed for the synthesis of particular 

molecules (e.g. cobalt forms part of vitamin B12), some are required as cofactors of 

enzymes (e.g. iron for haem containing cofactors of redox function enzymes such as 

cytochromes). 

 

The chemical forms in which metals occur, soil texture and soil pH have been widely 

found to influence the concentrations at which toxicity occurs to micro-organisms 

(Babich and Stotsky, 1993).  Higher pH, and increased contents of clay and organic 

matter considerably reduces metal toxicity.  Soil pH has the largest influence due to its 

strong effects on solubility and specia tion of metals both in the soil as a whole and 

particularly in soil solution.  Plant root exudates, binding of metals to bacterial or fungal 

cell walls and the actions of micro-organisms, e.g. localised acidification by iron-

oxidising bacteria, can also effect metal availability in soils (Giller et al., 1998). 
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Table 2: Classification of heavy metals according to their potential toxicity (from 

Duxbury, 1985). 

Noncritical Potentially toxic and 
relatively accessible 

Potentially toxic but 
insoluble and rare 

Fe Hg, Zn, Cu, Cd, Cr, Ni, Pb, 
Mo, Ag, Sb, Bi, Pt,  Au, 
Mn, Sn, Pd, Tl 

Hf, Ta, Os, Zr, Re, Rh, W, 
Ga, Ir, Nb, La, Ru 

  
Disturbances caused by heavy metals to microbial biomass and activity and the 

consequent effects on decreased litter decomposition and less efficient nutrient cycling 

have been extensively reviewed (Tyler, 1981; Bååth, 1989; Duxbury, 1985 and Giller et 

al., 1998). Soils receiving sewage sludge in a long-term field experiment were found to 

have 50% smaller biomass than that in adjacent low metal soils (Brookes and McGrath, 

1984). High amounts of lead have also been shown to inhibit microbial respiration and 

dehydrogenase activity in polluted soils (Doelman and Haanstra, 1979). Hattori (1992) 

looked at the effects of five metals (Cd, Cr, Cu, Ni and Pb) on organic decomposition in 

gley and andosol soils and showed that Cd and Cu had the greatest inhibitory effect 

although all metals inhibited the evolution of CO2.  Inhibition of microbial activity has 

been shown to lead to a retardation of tree growth due to deficiencies in plant 

micronutrients (Tyler et al., 1989). Tyler et al., (1989) reported that the normal 

decomposition of conifer litter and recycling of plant nutrients was inhibited in a forest 

surrounding a brass foundry which had emitted large amounts of Cu, Zn and other metals 

as aerosols for many years.  

 

Several studies have also demonstrated heavy-metal induced changes in specific parts of 

the soil microbial community. Toxicity affecting Rhizobium leguminosarum bv. trifolii of 

metals, from long term sewage sludge applications in a UK field experiment, had a 

marked inhibitory effect on symbiotic nitrogen fixation in the roots and vesicular-

arbuscular mycorrhizal infectons of white clover (Koomen et al., 1990; Chaudri et al., 

1992b).  In vitro experiments in the same study showed a decreasing order of toxicity as 

being Cd >Zn >Cu >Ni.  More recent field experiments concluded that numbers of 

Rhizobia in sewage sludge contaminated soils were low due to the inhibitory effect of Zn 

because this metal is present in high concentrations in sludges and sludged soils (Chaudri 

et al., 1993). However, other workers concluded that Cd  was more inhibitory to Rhizobia 

(Obbard and Jones, 1993).  The high organic matter content of soils examined in the latter 

study may have served to reduce the bioavailability of metals.   Studies of metal toxicity 

effects on nitrogen fixing bacteria in the USA have failed to show the same degree of 
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inhibition as those conducted in the UK (Angle and Chaney, 1991). McGrath et al., 

(1995) summarised the data from long-term field experiments in the UK, Sweden, 

Germany and the USA with sewage sludge applications to land; some of the main 

findings are shown in Table 3. 

 

Table 3 Summary of results from a study of the effects of long-term sewage sludge 

application on soil microorganisms (McGrath et al., 1995)   

Heavy metals  
soil concentrations (mg kg-1) 

Function or parameter 
inhibited or reduced  

Zn Cd Cu Ni Cr Pb 
Nitrogen fixation by 
free-living 
heterotrophic bacteria 

 
127 

 
3.4 

 
37 

 
21 

 
52 

 
71 

Nitrogen fixation by 
free-living  
cyanobacteria 

 
114 

 
2.9 

 
33 

 
17 

 
80 

 
40 

Numbers of Rhizobium 
leguminosarum bv. 
trifolli 

 
130-
200 

 
0.8-
1.0 

 
27-48 

 
11-15 

  

 Free metal ion concentrations (µg l-1) 
Long term toxicity to 
microorganisms  

1.5-
10 

0.3-
0.4 

0.6-
2.7 

5000-
10,000 

  

 
In conclusion, although Cu and Cd have been shown by most workers to be most toxic to 

soil bacteria, especially Rhizobia, Zn may constitute the greatest problem because of its 

presence in high concentration in sewage sludge.  Although Zn does not appear to inhibit 

the growth of crop plants on sludged soils, the fact that numbers of Rhizobia are 

significantly reduced within the UK and EC limits for Zn (300mg kg-1) is a cause for 

concern (Chaudri et al., 1993; MAFF Report PB 1561, 1993). 

 

Many of the changes in microbial activity, biomass or number in previous studies have 

been noted at relatively high metal concentrations.  Subtle effects of heavy metals on the 

diversity and function of microorganisms in soils may decrease the resilience of the soil 

ecosystem or lead to less efficient soil nutrient cycling. Several studies using 

physiological profiling (e.g. using the BIOLOG system), thymidine incorporation and 

phospholipid fatty acid (PLFA) analysis suggest that subtle changes are brought about in 

the composition of soil microbial communities at sub critical levels (Reber, 1992; Kelly 

and Tate, 1998; Díaz-Raviña et al., 1994; Pennanen et al., 1996).  Such changes are likely 

to precede more chronic changes such as the decrease in soil biomass due to chronic 

metal stress.  Physiological profiling is a culture-based method that gives an indication of 

changes in the functional response of the soil microflora.  A decrease in the number of 
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substrates that can be utilised by and/or a decrease in the respiration activity of a 

microbial community may lead to a reduction in its efficient exploitation of all ecological 

niches.  Thus a decrease in functional diversity and activity of a soil microbial 

community may explain the decrease in the size of the biomass in soils from polluted 

sites (Reber, 1992; Giller et al., 1998). 
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Appendix Four 

Outline of Analysis of PCB and Organochlorine Pesticide Residues in CS2000 MASQ 

Soils by GC-ECD  

Scope  

This procedure covers the preparation of sediment samples for analysis of PCBs by GC-ECD.  

 

Sample Preparation 

Samples would be sieved and dried at ITE Merlewood and transported to ITE Monks Wood. 

A dried sample would be weighed into a soxhlet thimble for extraction by either hexane. 

Residual moisture would be removed by sodium sulphate. Extraction would be by exhaustive 

soxhlet extraction for 8 hours. 

 

Sample Clean-up 

After extraction and reduction in a Kerdena-Danish system, clean up is achieved by addition 

of sulphuric acid and alumina column chromatography. 

 

Analysis by GC-ECD 
Quantitative analysis is performed with a Varian Model 3400 fitted with a Varian 8200CX 

autosampler, and electron capture detector. 

 

Chromatographic conditions: Injector temperature: 200°C; Split flow: 50 ml/min; Detector 

temperature: 300°C. Detector make-up gas: Nitrogen at 25 ml/min; Column: HT8 50m x 0.22 

mm i.d. column connected fitted with a 3m x 0.22mm methyl deactivated retention gap. 

Manufacturer: Scientific Glass Engineering (UK) Ltd; Carrier gas: Hydrogen. (Distillers MG  

Grade 5.0); Carrier gas velocity: 45 cm s-1 

Column oven program is shown in Table 1; the initial temperature is 60°C (for 2 minutes). 

 

Table 1: Oven program details 

Level Rate (°C /min) Final Temp (°C) Final Time (min) 

1 45.0 170 2.5 

2 2.5 200 5.0 

3 2.0 280 0.0 

4 40.0 320 2.0 
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Calibration:  The GC is calibrated using the internal standard method. Dichlobenil is the 

internal standard. The internal standard is added to both standards and samples to give a 

concentration of 0.04µg/mL. Two separate calibration runs are used: 

  organochlorine pesticides and PCB congeners in hexane 

  arochlor 1254 in hexane at a concentration of 4.0µg/ml. 

Multilevel calibrations for organochlorine pesticides are carried out after every 4 batches of 

samples analysed. 

 

Compound identification 

The identity of a chromatographic peak is found by comparison of its relative retention time 

with the relative retention times of peaks in the organochlorine standard. This operation is 

performed automatically by the EZCHROM chromatography data system. A visual check is 

made of the assigned peak identities, by overlaying sample, blank and standard 

chromatograms using the Overlay v5.0 in-house software. 

 

Quality assurance 

A sample blank is run with every batch of samples. A 5g sample of Monks Wood sieved and 

oven dried soil is spiked with OCs and PCB congeners. This is analysed with a sample of un-

spiked soil to calculate recoveries throughout the lab procedures. 

 

Limits of Detection 
The instrument limit of detection is calculated as follows (see Table 2 for actual values): 

 

LoD = (NoiseAverage + (SDNoise x 3.5 )) x CWS / PHWS 

 

NoiseAverage  The average baseline noise from six sample blanks. 

CWS   Concentration of the working standard. 

PHWS   Peak height of the working standard. 

SDNoise   Standard deviation of the noise from six sample blanks. 
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Table 2: Instrument LoDs 

Compound LoD 

 ng/ml 

HCB      0.09 

a-HCH    0.09 

g-HCH    0.11 

DDE      0.36 

TDE      0.50 

DDT      0.67 

PCB 8 1.03 

PCB 18 1.30 

PCB 28 0.57 

PCB 31 0.64 

PCB 52 2.10 

PCB 77 1.11 

PCB 101 0.70 

PCB 105 0.50 

PCB 114 0.38 

PCB 118 0.35 

PCB 123 0.56 

PCB 126 0.60 

PCB 128 0.51 

PCB 138 0.47 

PCB 149 0.74 

PCB 153 0.47 

PCB 156 0.42 

PCB 157 0.52 

PCB 167 0.33 

PCB 169 0.30 

PCB 170 0.44 

PCB 180 0.40 

PCB 209 0.65 
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Appendix Five 

Outline of Method for Analysis of Soil Samples for the Determination of PAH Residues 

by GC-MS for the CS2000 Study 

 

Scope 

This procedure covers the preparation of soil samples for analysis of polycyclic aromatic 

hydrocarbons (PAHs) by GC-MS.  

 

Sample preparation, extraction and clean-up 

These procedures are similar to those described for OCs and PCBs, save that the extractant is 

dichloromethane. 

 

Analysis By GC-MS 

The GC-MS system used for this analysis is a Hewlett Packard 5890 series II Plus gas 

chromatograph fitted with a Hewlett Packard 7673B auto-sampler, interfaced to a 5972A 

series Mass Selective Detector (MSD); Column: 25m x 0.22mm fused silica column coated 

with 0.25um BPX5 joined by a fused silica press- fit connector (Supelco) to a 5m x 0.22mm 

methyl deactivated retention gap.  

 

Chromatographic conditions: Column inlet: Cold on-column injection. The inlet is held at an 

initial temperature of 35°C for 1min, then ramped at 100°C/minute to 300°C and then held at 

300°C for 20 minutes. Column oven: The initial temperature is 35°C, which held for 1 minute 

and then ramped at 8°C/minute to 320°C. Carrier gas: The carrier gas is helium held at a 

constant flow of 2ml/minute by electronic pressure control. 

 

MSD: The MSD is operated in select ion mode with an interface temperature of 280°C, and 

an EI+ source with an electron energy of 70eV. The instrument was tuned for maximum 

sensitivity using PFTBA. The ions monitored are given in Table 4. Where possible, 3 ions 

were monitored for each compound. The most abundant ion (target) was used for 

quantification. 
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Compound identification 

The identity of a chromatographic peak is found by comparison of its relative retention time 

and ion ratios, with the relative retention times and ion ratios of peaks in the calibration 

standard. This operation is performed automatically by the GC-MS data system but is also 

checked manually, by overlaying the sample and calibration standard chromatograms.  The 

most abundant ion (target ion) is used for quantification, the other ions for confirmation. 

 

Quality Control 

Every batch of samples includes a sample blank, certified reference material (Coal gas site 

soil, Laboratory of the government Chemist) and a spiked soil sample (similar to that 

described for OCs and PCBs). 

 

Limits of detection 

The instrumental limit of detection (Table 5) is calculated by y = yB + 3 sB, where y is the 

instrument response for the lower limit of determination (LLD), yB is the blank signal and sB 

is the standard deviation of the blank value. yB  and sB are obtained from the regression line 

of a multilevel calibration and are the calculated y intercept and the standard error of the 

estimate S y/x respectively. The value obtained for y is then converted to a concentration 

using the regression equation. The signal for the smallest qualifier ion is used. 

 

Table 4: SIM ions  

Compound Target ion Qualifier ion 1 Qualifier ion 2 
Perylene-d12 264.2 260.2 265.2 
Naphthalene 128.2 127.2  
Acenaphthylene 152.2 153.2  
Acenaphthene 153.2 152.2 154.2 
Fluorene 166.2 165.2 167.2 
Phenanthrene 178.2 176.2 179.2 
Anthracene 178.2 176.2 179.2 
Pyrene 202.2 200.2 203.2 
Fluoranthene 202.2 200.2 203.2 
Chrysene 228.2 226.2 229.2 
Benzo[a]anthracene 228.2 226.2 229.2 
Benzo[b]fluoranthene 252.2 250.2 253.2 
Benzo[k]fluoranthene 252.2 250.2 253.2 
Benzo[a]pyrene 252.2 250.2 253.2 
Ideno[1,2,3-cd]pyrene 276.2 277.2  
Dibenzo[a.h]anthracene 278.2 276.2 277.2 
Benzo[g,h,i]perylene 276.2 277.2  
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Table 5: Instrument LoDs 

Compound Limit of 
detection 

 (ug/ml) 
Naphthalene 0.079 

Acenaphthylene 0.090 

Acenaphthene 0.073 

Fluorene 0.082 

Phenanthrene 0.067 

Anthracene 0.107 

Fluoranthene 0.114 

Pyrene 0.106 

Benzo[a]anthracene 0.152 

Chrysene 0.097 

Benzo[b]fluoroanthene 0.161 

Benzo[k]fluoranthene 0.096 

Benzo[a]pyrene 0.156 

Ideno[1,2,3-cd]pyrene 0.175 

Dibenz[a,h]anthracene 0.347 

Benzo[g,h,i]perylene 0.081 

 
 


