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Abstract: The process of terrane accretion is vital to the understanding of the 

formation of continental crust.  Accretionary orogens affect over half of the globe and 

have a distinctively different evolution to Wilson type orogens.  It is increasingly 

evident that accretionary orogenesis has played a significant role in the formation of 

the continents.  The Pacific-margin of Gondwana preserves a major orogenic belt, 

termed here the “Australides”, that was an active site of terrane accretion from 

Neoproterozoic to Late Mesozoic times, and comparable in scale to the Rockies from 

Mexico to Alaska, or the Variscan–Appalachian orogeny.  The New Zealand sector of 

this orogenic belt was one of the birthplaces of terrane theory and the Australide 

orogeny overall continues to be an important testing ground for terrane studies.  This 

volume summarizes the history and principles of terrane theory and presents sixteen 

new works that review and synthesize the current state of knowledge for the 

Gondwana margin, from Australia through New Zealand and Antarctica to South 

America, and examine the evolution of the whole Gondwana margin through time. 

 

Introduction 

 

Why this book?  Two main types of orogenic belt have been identified on the Earth: 

orogens of the Wilson-type (e.g., Wilson 1966; Murphy & Nance 2003), involving 

collision between continents, and orogens of the accretionary, Cordilleran type (e.g., 

Sengör & Natalin 1996; Tagami & Hasebe 1999; Scarrow et al. 2002), where a more 

steady state addition of smaller crustal fragments occurs.  In simplest terms, 

collisional orogens are assumed to be the end-point of cycles of ocean formation and 

destruction during continental break-up and re-amalgamation (the so-called “Wilson 

Cycle”); accretionary orogens are the product of more continuous processes of 
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addition of oceanic, island arc, and ocean-captured continental material to oceanic 

margins during long-term subduction, often without oceanic closure.  Accretionary 

orogens are often characterized by being much wider across-strike than collisional 

orogens (Sengör & Okurogullari 1991).  Overall, it would seem that collisional and 

accretionary orogens form end members of a spectrum (Murphy & Keppie 2003; 

Murphy & Nance 2003).  The Wilson-type end member is the “aulacogen” (e.g., 

Zolnai 1986; Pedrosa-Soares et al. 2001), where there is little or no displacement of 

continental margins and the ocean basin, which is often narrow, often closes up with 

jig-saw precision.  The simplest accretionary end-member consists of a complex or 

prism (e.g., Leggett 1987; Doubleday et al. 1994; Kamp 2000), created through 

scraping-off of the upper parts of oceanic lithosphere as it is subducted. This may 

form at a continental margin or adjacent to an intra-oceanic arc, and ultimately may 

be displaced large distances, either across ocean basins or along continental margins, 

during, or subsequent to, formation.  Real situations are a complex mix of Wilson- 

and accretionary types (e.g., Betts et al. 2002), where full-scale oceans that form with 

or without subsequent closure may have accretionary complexes on their margins, and 

experience subsidiary terrane and arc-collisional orogens that themselves incorporate 

accretionary complexes.  Even “pure” accretionary orogens, such as the Uralide–

Altaid orogen that forms much of Asia (Sengör & Natalin 1996), where there is no 

evidence of continent–continent collision, consist of many minor terrane and arc 

collisional orogens that occurred on the margins of a long-lived ocean.  The 

understanding of the relative significance of Wilson-type and accretionary orogens 

has changed with time.  Historically, much early work focussed on Wilson-type 

orogenesis, particularly in the context of the circum-Atlantic orogens affecting 

northwest Europe and eastern North America from Proterozoic through to Late 
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Palaeozoic times (e.g., Phillips et al. 1976; Williams & Hatcher 1982; Keppie 1985a; 

Ryan & Dewey 1997; Matte 2001; Young et al. 2001; Bandres et al. 2002; Gower & 

Krogh 2002), which may have inflated its significance in global terms.  Williams & 

Hatcher (1982) were the first to show that a Wilson-type model may not be 

appropriate for the case examples associated with the evolution of the Iapetus Ocean 

and this is supported by more recent lithostratigraphic, faunal and palaeomagnetic 

data (O'Brien et al. 1983; Cocks & Torsvik 2002; Hartz & Torsvik 2002).  Doubts 

about its applicability to the Pacific Cordillera of western North America came even 

earlier (Danner 1970).  Although major, Wilson-type continental collision can form 

long lived continents such as Gondwana (e.g., Unrug 1992; Boger et al. 2001), global 

syntheses (e.g., Sengör & Natalin 1996) have emphasized the importance of 

accretionary orogens, arguing that these were responsible for growth and stabilization 

of millions of km2 of the continental lithosphere from Archaean times onwards 

(Sengör et al. 1993; Foster & Gray 2000; Polat & Kerrich 2001; Xiao et al. 2004).  

Accretionary orogens are directly and indirectly host to globally important mineral 

deposits (e.g., Richards & Kerrich 1993; Sherlock et al. 1999; Kerrich et al. 2000; 

Goldfarb et al. 2001).  For example, volcanic arc and back-arc terranes form an 

important part of accretionary orogens and it is increasingly recognized that active, 

submerged arcs and back-arcs are sites of significant metallogenesis (e.g., Fouquet et 

al. 1991; Ishibashi & Urabe 1995; Iizasa et al. 1999; Fiske et al. 2001).  Submarine 

arc-hosted mineral deposits are not easily accessible in their sites of formation 

because sea-floor mining is technically challenging (e.g., Scott 2001); however, 

terrane accretionary orogenesis has an additional importance in incorporating arc and 

sea-floor mineral deposits in continental lithosphere, making them accessible to 

simpler extraction techniques.  Finally, in this volume, Vaughan & Livermore 
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(2005) present evidence that accretionary orogenesis is not uniformly distributed in 

time, with implications for our understanding of Earth evolution. Vaughan & 

Livermore (2005) show that two major pulses of terrane accretion occurred in the 

Mesozoic, not just affecting the "Australides" on the Gondwana margin but with 

global extent, possibly associated with major episodes of flood magmatism. 

 

The accretionary orogenic belt that formed on the palaeo-Pacific and Pacific margin 

of Gondwana in Neoproterozoic–Mesozoic times (Fig. 1) (Ireland et al. 1998) is one 

of the largest known orogenic belts in Earth history.  The orogen (the Neoproterozoic 

to Palaeozoic part of this orogeny has been called the Terra Australis orogen by 

Cawood & Leitch (2002)) now occupies the eastern third of Australia, New Zealand, 

West Antarctica, the Transantarctic Mountains and large parts of southern South 

America (Fig. 1) (e.g., Bradshaw 1994; Cawood & Leitch 2002).  Several factors have 

hampered reconstruction of this Neoproterozoic to Mesozoic orogenic belt – a time-

extended Terra Australis orogen, finishing in the mid-Cretaceous, which we will 

informally refer to here as the "Australides"; Fig. 1.  These include dismemberment 

and dispersal of its components during Mesozoic break-up of the supercontinent 

Gondwana, burial of large parts of it beneath ice (in Antarctica) and later sedimentary 

basins (in all other parts of the belt), local submergence of continental margins 

(notably the continental margins of New Zealand), and partial obliteration and 

overprinting by continued subduction-related magmatism and deformation (as in 

many parts if the Andes and Antarctic Peninsula).  The size of the reconstructed 

orogenic belt – over 7000 km long by over 1500 km wide – is larger than the 

Mesozoic–Cenozoic orogenic belt that extends from Alaska to Mexico along the 
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Pacific margin of the North American continent and is comparable in scale to the 

Variscan orogenic belt of Europe and eastern North America (Matte 2001). 

 

The better-understood western North American orogenic belt or "Cordillera" (Fig. 1) 

was the first to be interpreted as a collage of ‘suspect’ terranes (as summarized by 

Coney et al. 1980) – terranes being fault-bounded blocks of the Earth’s crust 

characterized by a geological history distinct from that of adjacent terranes.  This 

model has been widely and successfully applied to many ancient orogenic belts.  One 

important aspect of the model is that some of the terranes in a collage may have 

travelled great distances from their places of origin to their final location adjacent to 

other terranes or the continental margin.  This may have occurred either across oceans 

or along a continental margin by transcurrent faulting (e.g., Keppie & Dallmeyer 

1987; Mankinen et al. 1996; Cowan et al. 1997; Takemura et al. 2002).  The terrane 

model was applied early in its inception to parts of the Pacific margin of Gondwana 

(Coombs et al. 1976; Bradshaw et al. 1981; Weaver et al. 1984; Murray et al. 1987). 

It is now almost universally accepted that terrane-style tectonics are of major 

importance in the development of orogenic belts.   

 

Understanding of the “Australide” orogen (Fig. 1) and the role of terrane processes in 

its development has progressed rapidly during the last decade.  There are several 

reasons for this: 

 

1. There has been increasing realization that problems of tectonic correlation 

within the orogen are best solved by comparisons between the now-dispersed 

parts of the belt.  Increasing knowledge of formerly less-well known parts of 
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the orogen and greater international co-operation in sharing such knowledge 

(notably through UNESCO-funded International Geological Correlation 

Programmes, such as IGCP 436 “Pacific Gondwana Margin”) have been 

important.  The formerly adjacent parts of the orogen may have been either 

sediment sources or terrane sources (e.g., Adams et al. 1998; Cawood et al. 

2002). 

2. The advent of routine, accurate and precise U/Pb dating of zircons has led to 

more refined correlation of events and provided information on the 

provenance of the huge piles of quartz-bearing sediments that characterize 

much of the orogen (e.g., Ireland et al. 1998; Fergusson & Fanning 2002; 

Hervé et al. 2003; Schwartz & Gromet 2004; Wandres et al. 2004).  Advances 

in the routine application of 40Ar/39Ar dating have also been beneficial to 

provenance studies as well as the dating of deformation events (Adams & 

Kelley 1998; Vaughan et al. 2002).   

3. Improved geochemical analytical methods for analysing trace and rare earth 

elements in volcanic rocks (especially ICP-MS), and greater understanding of 

their compositional variations has lead to growing confidence in assigning 

tectonic settings to the volcanic arcs that are key elements in the orogenic belt 

for palaeotectonic reconstructions (e.g., Glen et al. 1998; Spandler et al. 2004; 

Wang et al. 2004). 

4. Increased use of remote sensing techniques and improved regional 

compilations of data, especially magnetic potential field, has been highly 

effective in mapping and characterizing terrane boundaries, especially when 

submerged or covered by surficial deposits or ice (e.g., Ferraccioli & Bozzo 

1999; Sutherland 1999; Direen & Crawford 2003).  
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5. Palaeontological discoveries and better biostratigraphical correlation have 

been important in the recognition that terrane activity continued into the 

Mesozoic and have provided qualitative estimates of terrane transport 

directions and distances (Benedetto 1998; Fang et al. 1998; Kelly et al. 2001; 

Cawood et al. 2002).   

 

This book is the first to provide an overview of understanding of the terrane model as 

it applies to the Australide accretionary orogeny on the Pacific margin of Gondwana.  

It reviews the work of research groups from North and South America, Europe and 

Oceania who are engaged in active research on the nature of the Gondwana margin 

and the accretionary orogeny (Regions covered by chapters of this book are indicated 

on Figure 2.).  This volume offers a snapshot of current thinking and current research 

directions, and a guide for any researcher currently active or about to embark on 

studies in this dynamic area of investigation.  We judge that now is the correct time to 

summarize recent progress, and highlight the scientific questions that are currently 

engaging those active in the field and that will drive future research. 

 

Nomenclature 

 

According to Coney et al. (1980), terranes ‘are characterized by internal homogeneity 

and continuity of stratigraphy, tectonic style and history’.  They stated that 

‘boundaries between terranes are fundamental discontinuities in stratigraphy that 

cannot be explained easily by conventional facies changes or unconformity’.  The 

fundamental features of terranes are therefore that (a) their boundaries are major 

faults, and (b) they have different geological histories to adjacent terranes.  These 



 9

features are summarized in our preferred definition of terranes as ‘a fault-bounded 

package of rocks of regional extent characterized by a geologic history that differs 

from that of neighbouring terranes’ (Howell et al. 1985; Friend et al. 1988).  

Recognition of terranes is not based on any inferences about distance travelled or 

relative movement between adjacent terranes (Parfenov et al. 2000).  Terranes are 

‘suspect’ if there is doubt about their palaeographical setting with respect to adjacent 

terranes or continental margins (Coney et al. 1980; Coombs 1997).  Terranes may be 

described as ‘exotic’, ‘far-travelled’ or allochthonous’ (all meaning about the same 

thing) if there is sufficient evidence that they originated far from their present 

locations, often assumed to be hundreds or thousands of kilometres away; however, 

these distances need not be particularly large in areas of complex geology (Coombs 

1997).  Problems of definition have been discussed in the literature (e.g., Sengör & 

Dewey 1991), mainly from perspectives of recursion, i.e., is a seamount in an 

accretionary complex a separate terrane or just part of the complex, and problems of 

lateral and/or vertical extent, i.e., how small, or large, can a terrane be (Sengör 1990). 

 

Development of the terrane concept 

 

Recognition that fragments of continental margins had moved long distances came, in 

the late 1940’s and early 1950’s, from the discovery that transcurrent faults had 

hundreds of kilometres of offset (Kennedy 1946; Hill & Dibblee 1953; Wellman 

1955).  Coombs (1997), in a brief review of the terrane concept, pointed out that the 

term “terrane” was in use as early as the 1920’s and 1930’s, but that modern usage 

stemmed from the work of Irwin (1964; 1972) in the western Cordillera of the United 

States.  Following further conceptual development in the 1970’s in western North 
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America and New Zealand (Berg et al. 1972; Monger et al. 1972; Blake et al. 1974; 

Coney 1978; Howell 1980), the concept of terranes, or terrane collages, as possibly 

far-travelled, fault-bounded blocks with geological histories different from that of 

adjacent blocks, was crystallized by Coney et al. (1980).  The model was quickly 

tested in other orogens (e.g., Bradshaw et al. 1981; Williams & Hatcher 1982; Ziegler 

1982; Pigram & Davies 1987), and large numbers of ‘suspect’ terranes were identified 

in most.  In the case of the lower Palaeozoic Caledonian–Appalachian orogen in 

Scandinavia, the British Isles and eastern USA and Canada, terranes were sandwiched 

between continents on opposing sides of the closing Iapetus Ocean (Williams & 

Hatcher 1982; Hutton 1987; Pickering et al. 1988; Rankin et al. 1988; Hibbard 2000; 

Roberts 2003).  This orogen, therefore, had a phase of accretionary tectonics prior to 

continent–continent collision.  As outlined above, studies of the margin of the Pacific 

basin were instrumental in the creation of the terrane concept and have provided the 

impetus for its continued development.  In the past ten years, the fundamental 

importance of terrane processes in generating and stabilizing continental lithosphere 

has become apparent from studies of the Altaid belts of Asia (Sengör et al. 1993; 

Sengör & Natalin 1996) and the orogens that comprise eastern Australia (Foster & 

Gray 2000) - a system comprehensively reviewed by Glen (2005) in this volume.  

Application of these ideas to older rocks indicates that terrane amalgamation and 

accretionary orogenesis may be the most important processes in formation of the 

continental lithosphere through time (Polat & Kerrich 2001). 

 

Terrane processes 
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The key processes of terrane formation are accretion and dispersal.  Accretion (or 

"docking" (Twiss & Moores 1992)) is the process by which material incorporated in, 

or transported by, oceanic plates is added to subducting margins, usually separated 

from the adjacent, over-riding oceanic or continental plate by a narrow zone called a 

suture (Howell 1989).  Sutures may be marked by belts of ophiolitic (e.g., Johnson et 

al. 2003) or high pressure rocks, such as blueschists (e.g., Kapp et al. 2003), but 

survival of these rocks is not essential to the definition and sutures may also be 

represented by strike-slip faults, thrusts or zones of mélange (e.g., Abdelsalam et al. 

2003; Pavlis et al. 2004).  Suture zones are not exclusive to accretionary orogens 

(e.g., Vaughan & Johnston 1992).  Dispersal is the process by which fragments are 

detached or redistributed from the overriding plate at active margins during 

subduction or ridge crest–trench collision (e.g., Nelson et al. 1994; Keppie et al. 

2003) by rifting (e.g., Umhoefer & Dorsey 1997), strike-slip faulting (e.g., Cawood et 

al. 2002) or thrusting (e.g., Fritz 1996).  Both accretion and dispersal result in new 

terranes, either by adding previously separate geological entities such as oceanic 

plateaus or sea-mounts to oceanic margins, or by removing pieces of existing margins 

and transporting them elsewhere.  The third main process is amalgamation (e.g., 

Bluck 1990), by which existing terranes are combined into larger, composite terrane 

collages or superterranes, ultimately forming stable parts of the continental 

lithosphere.  Examination of Cenozoic to Recent active accretionary orogens in 

southeast Asia suggests that the interaction between accretion, dispersal and 

amalgamation can be extremely complex with geologically very rapid changes that 

may not be recognized in older orogens without high resolution dating (Hall 2002).  

Other important terrane processes happen after accretion, dispersal or amalgamation.  

These are the formation of sedimentary or volcanic overlap sequences and 
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emplacement of igneous complexes that "stitch" terrane sutures and place time limits 

on terrane motion (e.g., Gardner et al. 1988; Raeside & Barr 1990; Herzig & Sharp 

1992). 

 

Types of terrane 

 

The common terrane rock types tend to be similar from orogen to orogen and we have 

grouped these into several main associations.  The most common types in 

Phanerozoic orogens around the world are marginal to the ocean basins and can 

encompass any type of continental or oceanic lithosphere, either with or without a 

mantle root.  Most common, non-genetic (i.e. what a geologist would see at outcrop in 

the field) where possible, terrane rock type associations, based on the Australides (this 

book and references therein) western American Cordillera, Caledonian–Appalachian, 

central and eastern Asia orogens (Coney et al. 1980; Williams & Hatcher 1982; 

Hutton 1987; Parfenov et al. 2000; Badarch et al. 2002; Xiao et al. 2004), are: 

 

1. Turbidite terranes.  These are volumetrically very significant, forming large 

parts of the accretionary orogens in New Zealand (e.g., Leverenz & Ballance 

2001; Mortimer 2004), Australia (e.g., Foster & Gray 2000), eastern Asia 

(e.g., Sengör & Okurogullari 1991), the western North American Cordillera 

(e.g., Rubin & Saleeby 1991; McClelland et al. 1992) and in Palaeozoic 

orogens of northwest Europe and eastern North America (e.g., Keppie 1985b; 

Leggett 1987; Lehmann et al. 1995; Ryan & Smith 1998).  They comprise 

thick piles of deep marine sediments, probably representing submarine fans, 

and are often imbricated by thrusting (e.g., Kusky & Bradley 1999).  They are 
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commonly siliciclastic, particularly in the Southern Hemisphere (e.g., Adams 

et al. 1998; Ireland et al. 1998), but substantial calcareous complexes also 

exist (e.g., Robertson & Ustaomer 2004; Wilson et al. 2004).  Parfenov et al. 

(2000) subdivided these terranes into three types: two accretionary complex 

types with greater or lesser proportions of basaltic rocks, and a non-

accretionary type where the evolutionary history of the turbidite succession is 

less certain (e.g., possibly dispersed from a passive continental margin but 

with no subsequent incorporation in a subduction complex).  Turbidite 

terranes are commonly metamorphosed (e.g., Hervé & Fanning 2001), from 

anchimetamorphic up to blueschist and amphibolite grade, and associated 

brittle-ductile and ductile deformation is common (e.g., Wang & Lu 1997; 

Willner et al. 2004). 

 

2. Tectonic and sedimentary mélange terranes.  These are commonly associated 

with turbidite terranes, particularly those generated in a subduction 

environment (e.g., Ernst 1993; Kusky & Bradley 1999), and often occur along 

terrane sutures (e.g., Aitchison et al. 2002) or at major boundaries within 

accretionary complex terranes (e.g., Silberling et al. 1988).  They commonly 

consist of altered basalt and serpentinite, chert, limestone, greywacke, shale, 

and metamorphic rock fragments (including blueschist) in a fine-grained 

sheared and cleaved mudstone matrix (e.g., Aalto 1981; Cloos 1983; Carayon 

et al. 1984; Maekawa et al. 2004). 

 

3. Magmatic terranes.  These can be predominantly mafic or predominantly 

felsic, reflecting the geological environment in which they formed.  Mafic 
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magmatic terranes are dominated by volcanic and plutonic rocks, usually 

pillow basalts associated with volcanogenic and pelagic sediments (e.g., 

Takemura et al. 2002), subaerial flood basalts (e.g., Richards et al. 1991), 

sheeted dyke complexes (e.g., Lapierre et al. 2003), and mid-lower crustal 

lithologies dominated by mafic and ultramafic plutonic complexes (e.g., 

DeBari & Sleep 1991; Shervais et al. 2004). In some cases, related ultramafic 

rocks in mafic magmatic terranes may be of mantle origin (Fitzherbert et al. 

2004).  Most mafic magmatic terranes are interpreted to have been generated 

by either sea-floor spreading, oceanic intraplate magmatism, or in volcanic arc 

environments, although terranes derived from dispersal of continental flood 

basalt magmatic rocks are also known (e.g., Song et al. 2004).  The products 

of sea-floor spreading include ophiolites and other fragments of oceanic 

basement that were commonly produced in back-arc settings (e.g., Bluck et al. 

1980; Cawood & Suhr 1992; Bédard 1999; Yumul 2003; Piercey et al. 2004).  

Terranes derived from sea-floor volcanic eruptions include oceanic plateaus 

formed by oceanic flood eruptions (e.g., Wrangellia terrane, Richards et al. 

1991; Hikurangi Plateau, Mortimer & Parkinson 1996), as well as seamounts 

and ocean islands (e.g., Jacobi & Wasowski 1985; Barker et al. 1988; 

Doubleday et al. 1994).  Mafic magmatic terranes are commonly intra-oceanic 

and formed on oceanic rather than continental crust (e.g., Weaver et al. 1984; 

DeBari & Sleep 1991; Rubin & Saleeby 1991; Miller & Christensen 1994).  

Dominantly felsic magmatic terranes mostly consist of broadly calc-alkaline, 

plutonic rocks that represent the interiors of volcanic arcs, although some may 

represent dispersed fragments of older felsic continental crust, possibly craton-

derived, reincorporated in later orogens (e.g., Boger et al. 2001).  In addition 
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to rocks of the calc-alkaline suite, a common association in felsic magmatic 

terranes is the tonalite–trondhjemite–granodiorite suite (e.g., Smithies 2000).  

The Phanerozoic equivalents of these rocks are called adakites and their origin 

is controversial (e.g., Defant et al. 2002; Kay & Kay 2002).  They are thought 

to be generated by high heat flow in several subduction-related settings where 

partial melting took place in the garnet stability zone, > ~40 km depth, with 

end member models implicating either young subducting slab or partial 

melting of mafic lower arc crust (e.g., Defant et al. 2002; Kay & Kay 2002).  

Terranes with rocks of this suite are typified by the ‘Median batholith’ and 

central magmatic arcs of South Island, New Zealand (Muir et al. 1998; 

Mortimer et al. 1999).  Similar plutonic rocks are interpreted, from seismic 

evidence, to characterize some modern oceanic arcs (e.g., Suyehiro et al. 

1996).  Some felsic magmatic terranes, or at least some sequences within 

them, are dominated by felsic volcanic rocks at exposure level (e.g., Clift & 

Ryan 1994; MacDonald et al. 1996; Bryan et al. 2001), which are interpreted 

to be the erupted equivalents of arc and back-arc pluton, although dispersed 

terranes derived from continental rhyolite large igneous province magmatism 

are known (e.g., Heatherington & Mueller 2003). 

 

4. Non-turbidite clastic, carbonate or evaporite sedimentary terranes.  These 

terranes fall into two categories: well-bedded, shallow marine, fluvial, or 

terrestrial sequences, probably representing platform, rift margin, or shallow 

basin deposition, and a category consisting of massive limestones.  Well-

bedded terrane sequences often represent dispersed fragments of continental 

margin rocks, including clastic and volcaniclastic sediments (e.g., Campbell et 
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al. 2001; Noda et al. 2004), carbonates (e.g., Gaetani et al. 2004) and 

evaporites (e.g., Thomas et al. 2001), but can also be deposits from arc-related 

basins (e.g., fore-arc Nichols & Cantrill 2002) or aulacogens (failed rifts) (e.g., 

Zolnai 1986).  Massive limestones are often masses scraped off seamount 

summits in accretionary complexes (e.g., Kimura et al. 1994; Stevens et al. 

1997; Cawood et al. 2002). 

 

5. Terrane collages.  These consist of composite terranes formed by 

amalgamation of some or all of the above terrane types (e.g., the Argentine 

Precordillera (Thomas et al. 2002) and Avalonia (Nance et al. 2004)), with the 

added complication of internal sutures as well as internal overlap and stitch 

assemblages. 

 

Size of terranes 

 

This is a difficult subject.  As with many natural objects, it is easier to know what 

something is than it is to define it.  Parfenov et al. (2000) placed a lower size limit on 

terranes by defining them as units that can be mapped at the 1:5,000,000 scale, 

although they admitted that size limits are largely arbitrary.  Sengör (1990) argued 

that nappes and blocks in mélange units should not be considered terranes, but more 

recent work would suggest that there is no effective lower size limit (mélange zones, 

for example, can be argued to consist of an arbitrarily large number of faults (e.g., 

Chang et al. 2001) – any exotic block in a mélange zone is, therefore, fault bounded 

and could be considered a terrane, although this is an extreme case).  Composite 

terranes can be very large (e.g., modern New Zealand could be considered a 
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composite terrane), and although composite terranes should be smaller than 

continents, there is no arbitrary upper limit to terrane size. 

 

Current research themes 

 

The study of tectonic plates in terms of terranes is called “terrane analysis” (e.g., 

Howell & Howell 1995).  Once a terrane has been recognized, by identification of its 

bounding faults, the next component of terrane analysis is characterization (e.g., 

Samson et al. 1990; Lapierre et al. 1992), which uses standard geological techniques 

such as mapping, geophysics (e.g., Brown 1991; Ferraccioli et al. 2002; Armadillo et 

al. 2004), sample collection and follow-up laboratory work etc.  It is then necessary to 

determine the relationship between the terrane and the adjacent continental margin 

and other neighbouring terranes (e.g., Samson et al. 1991); this is often in 

combination with efforts to characterize a terrane.  In most cases, especially in 

Palaeozoic orogens, it is easy to designate a terrane as ‘suspect’, but difficult to prove 

that it is exotic to the continental margin and its immediately adjacent marginal seas.  

Several techniques exist for testing the origin of a terrane (Howell & Howell 1995).  

Where a terrane is suspect, techniques to determine qualitative or semi-quantitative 

estimates of absolute movement include palaeontology (e.g., Smith et al. 2001; 

Belasky et al. 2002; Cawood et al. 2002; Kottachchi et al. 2002), palaeomagnetism 

(e.g., Johnston 2001; Keppie & Dostal 2001) and palaeoenvironmental studies (e.g., 

Condie & Chomiak 1996; Monger 1997; Trop et al. 2002).  Some techniques do not 

give movement information directly, but can determine what relationship a terrane has 

to adjacent terranes and/or determine its ultimate origin.  These include petrology 

(e.g., Barr 1990; Restrepopace 1992), isotope geochemistry (e.g., Samson et al. 1990; 
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Leat et al. 2005), geochronology (e.g., Herrmann et al. 1994; Weber & Kohler 1999), 

provenance studies of sandstones (e.g., Ireland et al. 1998; Friedl et al. 2000; Adams 

et al. 2002; Adams et al. 2005) and conglomerates (Wandres & Bradshaw 2005, this 

volume), and sediment geochemistry (e.g., Willan 2003).  Of the provenance 

techniques U–Pb and Hf isotope dating and fingerprinting of zircon are particularly 

important because, in addition to age, they provide information about evolution of the 

crustal sources (Bodet & Schärer 2000; Friedl et al. 2000; Knudsen et al. 2001; 

Griffin et al. 2004).  A second approach to characterizing terranes and identifying 

their origins comes from comparison with modern analogues.  For example, the 

Japan–Izu Bonin arc collision (e.g., Kawate & Arima 1998; Soh et al. 1998) is a 

modern active example of accretion of a primitive magmatic arc to a composite 

microcontinental arc terrane.  Taiwan preserves an active arc–continent collision zone 

between the Eurasian plate and the Philippine Sea plate (e.g., Fuh et al. 1997; Chang 

et al. 2001).  The situation in Southeast Asia is complex and shows evidence for very 

rapid changes in plate boundaries on geological timescales, commonly coeval 

compressional and extensional regimes and abundant strike-slip (Hall 2002).  Pigram 

& Davies identified as many as 48 Cenozoic terranes in Papua New Guinea/Irian Jaya 

and the region shows a long history of terrane processes (Metcalfe 1994).  The arc–

continent collision between Australia and Indonesia/Papua New Guinea (e.g., Abbott 

et al. 1994), which is complicated by Pacific Plate interactions (e.g., Hall 2002), 

shows features of terrane dispersal even as terrane accretion is underway (e.g., 

Milsom et al. 1999), and includes an active collision zone between a submarine 

plateau (Ontong-Java) and the Melanesian arc (e.g., Hall 2002).  Many of the features 

that developed during the Cenozoic development of the region of Southeast Asia and 

the southwest Pacific are at odds with interpretations of older accretionary orogens 
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(R. Hall personal communication 2004) and the reasons for this mismatch are so far 

unexplained.  The Lesser Antilles, by showing a system where sediments derived 

from a primitive arc mix with sediments that are cratonically derived, provide a 

modern analogue that illustrates the potential complexities of provenance analysis 

based on sediments (e.g., Marsaglia & Ingersoll 1992; Faugeres et al. 1993; Leitch et 

al. 2003).  Aerogeophysical techniques provide powerful tools for identifying terrane 

extents and boundaries in areas of ice (e.g., Ferraccioli et al. 2002) or thick sediment 

cover (e.g., Chernicoff & Zappettini 2003).  Another approach in characterizing and 

sourcing terranes is to determine the composition and gross structure of the terrane 

deep-lithosphere.  This can be done by examining the compositions of deeply sourced 

magmas such as primitive mafic dykes and the compositions of any xenoliths they 

may have carried from depth (e.g., Yu et al. 2003; Leat et al. 2005, this volume), or 

by quantifying the structure of the lithosphere using energy from distant seismic 

sources such as earthquakes (e.g., Reading et al. 2003; Reading 2005, this volume) or 

magnetotellurics (e.g., Ledo et al. 2004).   

 

Terrane studies on the margin of Gondwana  

 

New Zealand 

 

New Zealand was one of the places where the terrane concept was developed (Blake 

et al. 1974; Coombs et al. 1976; Howell 1980; Coombs 1997) and one of the first 

parts of the Gondwana margin where the terrane concept of Coney et al. (1980) was 

applied (Bradshaw et al. 1981).  The terrane model has proved highly successful in 

understanding the pre-Late Cretaceous evolution of the region.  It has been well tested 
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(Bradshaw 1989; Adams & Kelley 1998; Cawood et al. 1999; Sivell & McCulloch 

2000; Mortimer & Cooper 2004), and there have been no competing models for the 

last twenty years.  Early Palaeozoic terranes form a Western Province of Gondwana 

affinity, which is separated from late Palaeozoic to Mesozoic accreted terranes of an 

Eastern Province by a Median Tectonic Zone or batholith (Mortimer et al. 1999) that 

consists of late Palaeozoic to Mesozoic igneous rocks.  The first-accreted Eastern 

Province terranes include ultramafic rocks (such as the type dunites of Dun Mountain: 

Coombs et al. 1976).  Wandres & Bradshaw (2005, this volume) review New 

Zealand’s terranes and present new data on their origins using provenance of clasts in 

conglomerate deposits, arguing that the Antarctic Sector of the Gondwana margin is a 

major source of detritus.  Similarly, Adams et al. (2005, this volume), use Sr and Nd 

isotopes of metasedimentary sequences in the "Australides" from Australia to 

southern South America to characterize Gondwana margin accretionary complexes 

and the nature of their sources.  A simple conclusion of this work is that at any one 

time material of different origins was being deposited and accreted in different parts 

of the orogen, and that the accretion history of West Antarctica and southern South 

America is distinct from that of New Zealand. 

 

Australia 

 

The Tasman orogenic system ‘Tasmanides’ of Australia occupies the eastern third of 

the Australian continent.  It consists of several orogenic belts whose age of 

deformation and accretion decreases from west to east (Murray et al. 1987; Coney et 

al. 1990; Flöttmann et al. 1993; Glen et al. 1998; Ireland et al. 1998; Fergusson 2003; 

McElhinny et al. 2003).  The Early Palaeozoic Delamerian orogeny formed as 
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Neoproterozoic and Cambrian sedimentary and volcanic arc terranes were accreted 

along the formerly passive margin of the western Australian Precambrian continental 

core.  This orogen an along-strike correlative of the Ross orogeny in Antarctica 

(Stump et al. 1986; Flöttmann et al. 1993).  To the east, the Early Palaeozoic Lachlan 

and Thomson fold belts represent accretion of Cambrian to Silurian volcanic arcs and 

dominantly siliciclastic sediments to the margin (e.g., McElhinny et al. 2003).  The 

eastern New England orogeny represents accretion of terranes during late Palaeozoic 

to early Mesozoic times.  In this volume, Glen (2005) comprehensively reviews 

current models for the development of the Tasman orogenic system and identifies 

three supercycles of sedimentation and deformation.  His proposed model is one of 

essentially continuous accretionary orogeny at the Pacific margin of eastern Australia 

since Neoproterozoic times.  The deep structure of terranes is also important.  

Reading (2005, this volume) presents a new technique for imaging the deep roots of 

southwestern and southeastern Australian terranes and terranes boundaries using 

earthquake seismic data. 

 

South America 

 

The first ideas that the South American margin might consist of accreted terranes was 

presented in relation to a Permian carbonate fragment in southern Chile known as the 

Madre de Dios terrane (Mpodozis & Forsythe 1983).  Subsequent work on most of the 

meta-sedimentary rocks of the southernmost Pacific Andean margin has shown that 

they do not represent Palaeozoic Gondwana basement as once supposed, but are best 

interpreted as Mesozoic accreted material (Hervé 1988; Fang et al. 1998; Hervé & 

Fanning 2003).  East of the Andes, the Argentine Precordillera is widely regarded as a 
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large-scale exotic terrane derived from Laurentia and accreted during the Early 

Palaeozoic (e.g., Ramos et al. 1986; Moore 1994; Astini et al. 1995; Thomas & Astini 

2003).  Much research has been focused on refining models for the history of this 

Precordillera or Cuyania terrane.  Nevertheless, others have disputed its Laurentian 

derivation, preferring an autochthonous origin within Gondwana (Aceñolaza et al. 

2002).  It is notable that geochronology and detrital zircon analysis have been central 

to the development of both sides of this controversy (Casquet et al. 2001; Thomas et 

al. 2004; Finney et al. in press).  In any event, it is becoming increasingly obvious 

that western South America retains a fragmentary record of high-grade Proterozoic 

metamorphic rocks coeval with the Grenville belt of North America (e.g., Thomas et 

al. 2004).  Cordani et al. (2005, this volume) present new evidence for Proterozoic, 

Grenvillian fragments in the Columbian Andes, and Casquet et al. (in press) have 

identified Grenville-age massif anorthosites in western Argentina, comparable to 

those of the Grenville province.  This ‘southern Grenville belt’ may well represent a 

common orogeny linking Laurentia and ‘Western Gondwana’ within Rodinia. 

Another aspect of importance in terrane accretion is the tectonic history of the 

collision zone.  Miller & Söllner (2005, this volume) present evidence that the 

Famatina Complex represents autochthonous arc–continent collision on the 

Gondwana margin in Late Proterozoic to Ordovician times, which could be related to 

accretion of the Precordillera terrane.  Zimmermann (2005, this volume) uses new 

provenance data from Late Proterozoic to Cambrian sediments of the Puncoviscana 

basin to show that the rocks represent a peripheral foreland basin succession to the 

Pampean orogeny.  As a counterpoint to terrane interpretations of southern South 

America, Lucassen & Franz (2005, this volume) present an alternative history for the 
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early Palaeozoic of the Central Andes proposing a non-terrane, tectonic situation 

similar to the present day.  

Attempts to view the rest of South America in terrane terms were advanced by 

Bernasconi (1987) for the Precambrian and Ramos (1988) for the Phanerozoic.  The 

current stage is one where the identification and characterization of terranes in poorly 

exposed or poorly studied areas, which potentially include Patagonia, has not been 

convincingly demonstrated.  Geophysical evidence is crucial in such in such 

circumstances (e.g., Chernicoff & Zappettini 2003).  Rapalini (2005, this volume) 

reviews southern South American terranes from east to west, and provides new 

insights into key events during Gondwana assembly in the Neoproterozoic to Late 

Palaeozoic from the perspective of palaeomagnetic data.  Rapela et al. (2005, this 

volume) identify a previously unknown Early Jurassic magmatic arc and show that 

magmatism in the Triassic–Jurassic interval reveal a rotational tectonic regime which 

should be a major constraint on the plate configuration of Patagonia and the 

relationship between southern South America and the Antarctic Peninsula in pre-

break-up Gondwana reconstructions. 

 

Antarctica 

 

The ice cover of most of both East and West Antarctica has hampered regional 

correlations.  Nevertheless, it is becoming increasingly clear that most of East 

Antarctica consists of a collage of Archaean blocks and Proterozoic belts that were 

finally stabilized in their current configuration during the Pan-African orogeny (c. 

700–500 Ma) when the Mozambique Ocean separating East and West Gondwana 

closed to form the Gondwana continent (Fitzsimons 2000a, b; Boger et al. 2002; 
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Jacobs et al. 2003).  Closure of this ocean around the end of Precambrian times 

formed the continuous Pacific margin of the Gondwana continent along which the 

Palaeozoic to Mesozoic orogenic belts developed (Fig. 1).  During the Mesozoic 

break-up of Gondwana, West Antarctica behaved as several crustal blocks separated 

by rift and strike-slip deformation zones (Dalziel & Elliot 1982).  Stone & Thomson 

(2005, this volume) present fossil evidence that supports rotation of the Falklands 

microplate during Gondwana break-up and has implications for the extent of the 

Gondwanide ice sheet.  Siddoway et al. (2005, this volume) show new evidence for 

strike-slip movements affecting West Antarctica during the Cretaceous just prior to 

the rifting-off from Gondwana of New Zealand (Laird & Bradshaw 2004).  West 

Antarctica appears to mostly consist of crust accreted to the Antarctic margin during 

Cambrian to Cretaceous times.  Terranes were first identified in the Ross orogeny of 

the Transantarctic Mountains where Cambrian sedimentary and volcanic arc terranes 

were accreted to the margin in Cambrian times (Weaver et al. 1984; Stump 1995).  

The extent to which these terranes are exotic to the Gondwana margin is a matter of 

current debate and Tessensohn & Henjes-Kunst (2005, this volume) present a 

review of the most recent results and models. 

 

West Antarctica appears to consist of Early Palaeozoic to Mesozoic provinces, at 

least some of which are "suspect" (e.g., Pankhurst et al. 1998; Vaughan & Storey 

2000; Millar et al. 2002).  Rocks of Proterozoic age (1176 ± 76 Ma, Millar & 

Pankhurst 1987) crop out in just one location in West Antarctica, at Haag Nunataks. 

There is continuing uncertainty whether this is an isolated far-travelled terrane 

derived from a continental margin, a fragment of the Gondwana core or whether it 

represents more extensive Proterozoic basement to West Antarctica, as indicated by 
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isotope studies of granites and xenoliths (Millar et al. 2001; Handler et al. 2003). 

Leat et al. (2005) shed some light on this by using lithosphere-derived mafic magmas 

to determine differences in lithospheric mantle composition beneath Antarctica. 

 

Other parts of the Gondwana margin 

 

Studies of the interaction between Gondwana and Laurentia have been an important 

driver of orogenic theory.  When Wilson (1966) asked if the Atlantic had closed and 

then reopened, the closure he referred to was between Gondwana and Laurentia.  

Williams & Hatcher (1982; 1983) demonstrated that this closure had incorporated 

many exotic terranes in one of the first demonstrations of the utility of the terrane 

collage model of Coney et al. (1980).  Hibbard et al. (2005, this volume) present a 

re-examination of the Gondwana–Laurentia terrane-collision orogeny in the Carolina 

Zone of the Appalachian belt and present a new model for middle Palaeozoic 

interactions of the Appalachian peri-Gondwanan realm with Laurentia. 

 

Some suggestions for the future 

 

Geological mapping, augmented by geochronology, geochemistry, palaeontology, and 

aerogeophysical methods, continues to be the foundation stone of terrane analysis.  

New techniques such as 1-D seismic analysis, Hf-isotope investigation of zircon, and 

xenolith studies promise to provide further new insights into terrane deep structure 

and provenance.  Geophysical studies, integrated with geological field data, are 

allowing us to better predict what lies beneath the ice of Antarctica.  Despite the many 

recent advances, there are still some significant gaps in our knowledge.  1-D seismic 
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studies would benefit from increased Antarctic coverage of permanent seismic data 

recorders, which is low relative to other continents.  Hf-isotope studies are currently 

hampered by incomplete sets of representative Hf data from potential source rocks for 

Gondwana terranes.  In a sense we need to know the "Hf of the world" to give us 

more confidence in our interpretation of Gondwana provenance data and, to this end, 

we recommend that all zircon mounts that have been dated by the U-Pb SHRIMP 

method are analysed in-situ for Hf.  In regional terms, linking the Australia–New 

Zealand sector of the Australides with the South American sector is made more 

difficult by a gap in geological and high-resolution aerogeophysical data in the Pine 

Island Bay area of Ellsworth Land.  This area is currently a target of glaciological 

research, but it needs to be made a key target for geology and aerogeophysics.  It is 

clear that the long period of Phanerozoic subduction beneath this margin had a large 

impact on mantle evolution of the southern hemisphere.  However, there is a need for 

more robust regional models – building on excellent local data sets – for the origin 

and relationship of the diverse mantle reservoirs that have sourced magmatism in the 

Australides.  A deeper understanding of terrane processes is likely to result from 

closer comparisons between the Australides and the Cenozoic accretionary orogens of 

Southeast Asia, and the southwest Pacific, by re-assessing data and interpretations of 

older orogens in the context of the well-constrained processes and events described 

from Cenozoic margins.  In simple terms, we should look for analogues of Mesozoic, 

and older, processes in younger, better-constrained Cenozoic orogens. 

 

Conclusions 
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Accretionary orogenesis is a key process of stabilization and formation of the 

continental lithosphere.  Terrane theory and terrane analysis represent the framework 

for understanding the processes of crustal accretion.  The “Australides” are one of the 

largest and longest-lived orogens on Earth and have been a key testing ground for the 

origination and development of terrane theory.  Terrane studies continue to be a 

vibrant and active area of research in the “Australides”, with new techniques and 

insights emerging on a regular basis.  Many research groups from North and South 

America, Europe and Oceania are active in the region, whose work has provided deep 

insights into the Proterozoic and Phanerozoic evolution of the orogen and the 

fundamentals of accretionary orogenesis.  The “Australides” are a key area for terrane 

research and here we have attempted to capture the current state of ideas and provide 

an introduction and benchmark for future research. 

 

The papers in this volume stemmed from work presented at the "Terrane Processes at the Pacific 

Margin of Gondwana" meeting held in Cambridge, UK in September 2003 and at the 10th Chilean 

Geological Congress held in Concepción in October 2003, as well as invited contributions.  This 

volume is a contribution to the British Antarctic Survey SPARC project of the programme Antarctica 

in the Dynamic Global Plate System and a posthumous contribution to International Geological 

Correlation Project 436 "Pacific Gondwana margin".  We thank Robert Hall and Brendan Murphy for 

thoughtful reviews that substantially improved the manuscript. 
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Figure captions 
 
Figure 1:  Time-extended “Terra Australis” orogen (cf. Cawood & Leitch 2002) or 

“Australides” including Permo–Triassic orogenesis of the Gondwanian and 
Hunter-Bowen events (e.g., Collins 1991; O'Sullivan et al. 1996; Curtis 2001) and 
Triassic–Jurassic and mid-Cretaceous deformation events (Vaughan 1995; 
Vaughan & Livermore 2005) depicted on 200 Ma Pangaea reconstruction of 
Vaughan & Livermore (2005). 

 
Figure 2:  Geographical areas of terrane studies covered by contributions to this 

volume. 
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