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Abstract 

 

The physiology of the Antarctic microarthropod, Cryptopygus antarcticus, has been 

well studied, particularly with regard to its ability to withstand low winter 

temperatures. However, the molecular mechanisms underlying this phenomenon are 

still poorly understood. 1180 sequences (Expressed Sequence Tags or ESTs) were 

generated and analyzed, from populations of C. antarcticus. This represents the first 

publicly available sequence data for this species. A sub-set (672 clones) were used to 

generate a small microarray to examine the differences in gene expression between 

summer acclimated cold tolerant and non-cold tolerant springtails. Although 60% of 

the clones showed no sequence similarity to annotated genes in the datasets, of those 

where putative function could be inferred via database homology, there was a clear 

pattern of up-regulation of structural proteins being associated with the cold tolerant 

group. These structural proteins mainly comprised cuticle proteins and provide 

support for the recent theory that summer SCP variation within Collembola species 

could be a consequence of moulting, with moulting populations having lowered SCPs.  
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Introduction  

 

Low temperature biology, in particular the mechanisms by which organisms survive 

extreme low temperatures, is of intense interest not only to ecologists, but also in a 

number of applied medical fields (Fuller, 1999). One of the most amenable and 

studied group of organisms is the arthropoda where such physiological processes are 

well documented (Salt, 1961; Lee and Denlinger, 1991; Sømme, 1995; Sinclair et al, 

2003a). These organisms have evolved two distinct strategies to survive sub-zero 

temperatures termed freeze tolerance and freeze avoidance (Cannon and Block, 1988; 

Block, 1990 see also Bale, 1993 for more ecologically-refined schemes of 

classificiation). A third mechanism,  protective dehydration, has more recently been 

described but is perhaps less common. (Worland, 1996; Holmstrup et al. 2002).  

Delineation into these groups is often performed using the measurement of the 

temperature at which the insect's body fluids freeze, normally termed the supercooling 

point  (SCP).  

 

Freeze avoidance is the main strategy used by Antarctic terrestrial microarthropods 

(Block 1990, 1991; Cannon and Block, 1988; Convey, 1996), which routinely have to 

survive over wintering temperatures below -20°C. For these organisms the SCP is 

equal to their lower lethal temperature. This is not the case for all arthropods as some 

have been shown to die before they freeze (chill susceptible) (Bale, 2002). Other 

factors such as the cooling rate can affect the measured SCP and the lower lethal 

temperature (Worland, 2005). Cold tolerance also varies seasonally, with higher mean 

values in the summer for active feeding animals than for  winter acclimated,  cold 

hardened individuals (Cannon and Block, 1988). Seasonal cold-hardening involves a 
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number of physiological and biochemical processes that slowly increase supercooling 

ability and enhance survival at low temperatures. Such mechanisms include the 

removal or deactivation of ice nucleating agents, accumulation of cryoprotectants and 

thermal hysteresis proteins (Knight & Duman, 1986; Sømme L, 1982; 1995; 

Zachariassen, 1992). This gives rise to a bimodal distribution of SCPs with a  high 

group (less cold tolerant) and a low group (more cold tolerant) (Cannon, 1983; 

Schenker, 1984; Rothery and Block, 1992; Worland & Convey, 2001, Block, 1982, 

1984; van der Woude 1987, Sinclair et al 2003b).  

 

This is particularly evident during the growing season in the summer when, perhaps 

surprisingly, a proportion of the population still exhibit low SCPs. This phenomenon 

has been extensively studied, but its exact nature remains unclear, i.e. whether it is an 

adaptation to environmental conditions or part of the animals natural lifecycle. It has 

been correlated in some studies with the presence or absence of gut contents (Sømme 

& Conradi-Larsen, 1977; Young & Block, 1980; Sømme, 1981; Block, 1982; 

Cannon, 1983; Cannon & Block, 1988; Rothery & Block, 1992). It has also been 

suggested that some insects retain a low SCP during the summer, providing insurance 

against unexpected freezing temperatures (Chown and Klok, 1998).  In inland 

continental areas where there is a year-round risk of sub-zero temperatures, springtails 

show permanent cold tolerance even at the "height" of summer (Sømme, 1985). 

Recently, the effect of moulting on SCP has been observed in Collembola (Worland, 

2005; Worland et al, 2006, Worland and Convey, 2008). Moulting might be expected 

to depress the SCP, because in Collembola the mid-gut and its entire contents are shed 

during moulting (Thibaud, 1968) resulting in the expulsion of potential ice nucleators 
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present in the animals gut. In this case cold tolerance can be viewed as a natural part 

of the animals life cycle rather than an adaptation per se.  

 

In general, species typified by a bimodal SCP distribution show a population shift 

from high to low SCPs as winter approaches (Cannon and Block, 1988), but SCPs in 

some Antarctic species can vary or be altered diurnally (Sinclair, 2003b)  or even 

within hours (Worland and Convey, 2001) in response to changing environmental 

conditions. This "rapid cold hardening" is almost certainly a critical factor in the 

ability of Antarctic terrestrial arthropods to survive variable and unpredictable 

summer temperatures (Convey, 1997).  Although the molecular processes involved in 

rapid cold hardening and the relationship between seasonal and rapid cold hardening 

have yet to be characterised, they are thought to be distinct mechanisms (Worland and 

Convey, 2001). 

 

This study focusses on the overwinter survival strategy of the  freeze-avoiding 

springtail Cryptopygus antarcticus Willem (Collembola, Isotomidae). This is one of 

the most abundant and widespread terrestrial arthropod in the Maritime Antarctic and 

Sub-Antarctic regions (Block, 1982; Usher and Booth, 1986; Convey and Smith, 

1997) and has been one of most studied Antarctic microarthropods over the last thirty 

years (e.g. Ewing, 1922; Gressitt, 1967; Janetschek, 1967; Tilbrook, 1970, 1977; 

Cannon and Block, 1988; Worland and Convey, 2001). It shows a bimodal SCP 

distribution with distinct High (-8ºC to –10ºC) and Low (–18ºC to –30ºC) groups 

(Sømme and Block, 1982, Rothery and Block, 1992; Worland and Convey, 2001). 

Studies on C. antarcticus have contributed greatly towards our understanding of cold 

tolerance, but to date neither this species, nor any other polar arthropod, has been the 

 5

http://www.sciencedirect.com/#bib28
http://www.sciencedirect.com/#bib35
http://www.sciencedirect.com/#bib49
http://www.sciencedirect.com/#bib96


Springtail array 

subject of sequence-based analyses. In order to redress this deficit and gain an insight 

into the genome of C. Antarcticus, 1180 ESTs were generated and a sub-set of clones 

used to produce a small microarray. The aim was to use novel tools provided by 

microarray expression analysis to provide an insight into the underlying biochemical 

mechanisms behind the summer bimodal SCP populations and increase our 

understanding of the nature of environmental adaptation in these arthropods in one of 

the world’s most challenging environments. 

 

 

Materials and methods 

Sample collection and preparation:  

Antarctic springtails (Cryptopygus antarcticus) were collected from wet moss 

(Sanionia uncinata (Hedw.) during the austral summer of 2005 at the British 

Antarctic Survey's research station at Rothera Point, Adelaide Island (67'34'S, 

66'8'W). The SCPs of the animals were measured using a differential scanning 

calorimeter (DSC) (Mettler Toledo DSC 820). The boundary temperature dividing 

high and low group SCPs was defined as -15ºC (Worland and Convey, 2001). 

Animals which survived cooling to -15°C at 1°C/minute  were designated as Low 

Group (LG) animals (SCP below -15°C), and those which died were designated as the 

High Group (HG, SCP above -15°C). All groups of animals were rapidly frozen in 

liquid nitrogen and stored at -80°C until required. Live animals maintained with food 

in a +2°C growth cabinet were used as controls. 

 

cDNA libraries and expressed sequence tag (EST) sequencing:  
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ESTs were generated from a mixed population of animals. Total RNA was extracted 

by homogenizing samples in Tri Reagent (Sigma) according to manufacturers 

instructions. 5µg Poly A+ mRNA was prepared from total RNA using the Oligotex 

mRNA Kit-Midi kit (Qiagen) according to manufacturers instructions.  Directional 

plasmid cDNA libraries were  produced using the pBluescript®II XR cDNA Library 

Construction Kit (Stratagene). The inserts from each isolated clone in the cDNA 

library were amplified via PCR, performed in a reaction mixture of 20 μl containing: 

1X NH4 reaction buffer (Bioline), 0.125 µM of each M13 primer (M13 reverse: 5’-

AACAGCTATGACCATGAT-3’, M13 forward: 5’-GTAAAACGACGGCCAG-3’), 

0.084 mM of dNTPs (Bioline), 1.5 mM MgCl2 and 0.5 U of Taq Polymerase 

(Bioline). After an initial denaturation of 2 min. at 96°C, the thermal cycling 

consisted of 30 cycles of denaturation at 96°C for 20s, primer annealing at 49°C for 

20s and extension at 72°C for 3 min. In the final cycle, the extension was prolonged 

for 5 min. This reaction was also repeated using amine terminated M13 primers to 

produce cDNA products to be printed on the microarray. After PCR, all products were 

diluted with 30µl of sterile distilled water. Enzymatic cleanup of the amplified cDNA 

was performed using 5µl of non-amine terminated PCR product, 0.4U Shrimp 

Alkaline Phosphatase (GE Healthcare), 0.6U Exonuclease I (GE Healthcare) in a total 

volume of 6µl containing Shrimp Alkaline Phosphatase dilution buffer. The reactions 

were incubated at 37ºC for 30 min and then at 80°C for 10 min to inactivate the 

enzymes. This 6µl reaction was then used as a template in a sequencing reaction by 

adding 4 µl of ET-terminator pre-mix (GE Healthcare) and 0.5 µM M13long reverse 

sequencing primer (5’-AACAGCTATGACCATGATTACG-3’). Thermal cycling 

conditions were 26 cycles at 20s at 95°C and 2 min and 20 s at 60°C. Sequence 
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reactions were ethanol precipitated and run on a MegaBACE 1000 capillary 

sequencer (GE Healthcare) using standard sequence filters and a 100 min run time.  

 

Sequence data analysis:  

Sequence fasta files were processed using the script Trace2dbest (Parkinson et al, 

2004), which incorporated the phred (Ewing and Green, 1998a; 1998b) and 

crossmatch (P. Green, unpublished) programmes. A minimum cut-off value of 100bp 

was applied after quality control processing for sequence database searching and for 

generating the submission file for dbEST (Boguski et al, 1993) (Accession numbers, 

dbEST: 55137170-55138349, Genbank: FF278135-FF279314). Tgicl (Pertea et al, 

2003) was used for clustering the fasta files, incorporating quality scores. The clusters 

were database searched using Blastx (Altschul et al, 1997) against the 

Uniprot/Swissprot and Uniprot/Trembl databases (The Uniprot Consortium, 2007), 

with matches annotated for all scores with an expect score less than 1e-10. Sequences 

with a database match were then further annotated using GO and GOSLIM (The Gene 

Ontology Consortium, 2000) to the full depth of their significant Blast matches.  

 

Microarray construction and hybridization:  

A microarray was produced from seven 96 well clone plates with the highest insert 

ratios from the 1124 EST bacterial clones to give a total of 672 clones printed in 

duplicate. The Stratagene SpotReport Alien cDNA Array Validation System was 

included on the microarray. The microarray was probed with three populations of 

Cryptopygus: control animals (mixed population), high group animals and low group 

animals. Prior to microarray printing, the probes were prepared as described in Lyne 

et al, 2003 and printed using a Genetix Q-array robot. Microarrays were incubated  in 
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a saturated sodium chloride humid chamber at room temperature overnight and post-

processed according to the manufacturers instructions. PCR amplified ds cDNA 

probes for all groups were prepared using the protocol described in Petalidis et al 

(2003) with the addition of 1µl Stratagene Alien mRNA spikes 1-6 into the initial 

total RNA. The Cy5 and Cy3 samples were pooled together and 6μg poly dA and  6μg 

yeast tRNA (Sigma) were added as blocking agents. The samples were ethanol 

precipitated. Labelled targets were resuspended in 20µl of hybridisation buffer (40% 

formamide, 5x SSC, 5x Denhardt’s solution, 1mM sodium pyrophosphate, 50mM 

Tris pH 7.4, 0.1% SDS), denatured at 95°C for 5 mins and allowed to cool at room 

temperature for 5 mins prior to hybridization. The labelled targets for each of the two 

experimental animal groups were hybridized to the microarray with labelled control 

group target as a reference. Hybridizations were performed in a humidified incubator 

at 49ºC overnight. The microarrays were then washed in 2x SSC, 0.1% SDS for 15 

min, followed by 2x SSC for 5 min. and finally in 0.1x SSC for 5 min, all at RT. After 

washing, slides were dried by centrifugation and scanned on a Molecular Devices 

GenePix 4100 microarray scanner. The design entailed five biological replicates and 

three technical replicates, one of which was a dye swop, per treatment. 

 

Microarray data analysis:  

The images were analysed using the GenePix  6.0 software (Molecular Devices). 

After gridding and segmentation, visual inspection was used to flag and exclude 

anomalous spots. The R (R Development Core Team, 2005) Limma package (Smyth, 

2004, 2005; Richie et al, 2007; Smyth and Speed, 2003; Smyth et al, 2003) was used 

for background subtraction, normalisation and to determine the differentially 

expressed clones at an FDR adjusted p-value of 0.01. GO enrichment was determined 
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by a proprtion test, at a p-value of 0.01, between the number of clones representing a 

GO term on the chip compared to the number of differentially expressed clones 

representing the same GO term in a given list. The array design is housed at 

ArrayExpress, accession number: A-MEXP-1128, and the experiments: E-MEXP-

1569. 

 

Q PCR:  

To validate the microarray results, 3 clones were chosen for Q-PCR analysis: 

CR_C02P0_01G10: Control: CF: CGCTCTTCATTTAATGGGGTT, CRev:  

AAACGACATTCGAGTACTTCAT; CHK1: CHKF: 

AGGGAGCCTGAGAAACGGCT CHKRev: CTGGCACCAGACTTGCCCT; 

Cuticle7F: CAAGATGAACTTGGTCAAGCAT, cuticle7Rev: 

CTGATAAGAGCATCAGCATGA. The RSq and efficiency values for each of these 

primer sets was: 0.970/115.5%; 0.991/150.8% and 0.990/102.2% respectively. All 

genes were amplified using specific primers, Brilliant SYBR® Green QPCR Master 

Mix (Stratagene) and an MX3000P Q-PCR machine (Stratagene). PCR conditions 

were as follows: 95°C 10 minutes, 40 cycles of 95°C 30 seconds, 60°C 1 minute and 

72°C for 45 seconds with a final dissociation curve step as per manufacturers 

recommendations. The plate set-up for each Q-PCR experiment consisted of the 3 

animal treatments (control, High and Low Groups) amplified for all 3 primer pairs in 

triplicate. The whole  experiment was repeated in duplicate. Primers were validated 

and the results analysed as described in Clark et al (2008) using the method of Pfaffl 

(2001) which incorporates the efficiency of the primers as a factor in the equation.  

 

Results 
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EST analysis 

Sequence data was generated for 1180 ESTs. Clustering produced 777 putative 

transcripts, of which almost 60% had no annotation when searched against the 

TrEMBL and SwissProt databases (Table 1). The two largest clusters produced 

matches against insect mitochondrial genomes (Table 2), with the smaller clusters 

producing matches against genes involved in energy production (ATP synthase, 

ADP/ATP translocase, Cytochrome C oxidase) and skeletal functioning (Troponin). 

GOSLIM analysis of the EST clones indicates that the RNA was populated by 

metabolically active genes, with the IDs for cellular process, transport, response to 

stimulus, regulation of biological process and metabolic process predominating the 

listings (Table 3). 

 

Microarray analysis 

672 clones were chosen for the array, of which 214 clones (40%) had BLAST 

matches against the Swiss-Prot/TrEMBL databases (Table 1). The results of the 

clustering mirrored those for the ESTs with the largest cluster (of  71 clones) 

producing matches against the giant springtail mitochondrial sequence and the second 

largest cluster (7 clones) matching an ADP/ATP translocase. 

 

Clones within 29 clusters were significantly upregulated (Table 4) in the Low Group 

when compared to the control sample. Of these, 18 clusters showed no significant 

sequence similarity against the databases. It was possible to assign at least some 

functionality to 11 of the clusters, with cuticle and exoskeleton-related proteins 

predominating  (3 out of 11 clusters) and indeed this was the only overarching 
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description to be duplicated within this gene table. Q-PCR on one cuticle clone 

verified that this was upregulated in the Low Group compared to the control animals 

(by 1.3 fold). It should be noted that there were multiple clusters for cuticle proteins, 

representing a multigene family, only one of these was surveyed by Q-PCR. When the 

High Group samples were compared to the controls, clones within 6 clusters were 

significantly up-regulated (Table 5). All had associated Blast data, with 2 out of the 6 

(33%) being identified as putatively involved in the respiration and energy 

metabolism pathways (NADH dehydrogenase and Cytochrome c oxidase). Several of 

the up-regulated clusters occurred in common between both the Low and the High 

Group (CHK1: checkpoint homologue, NADH dehydrogenase, secretory protein and 

senescence associated protein), but it should be remembered that these groups were 

each compared to controls. Q-PCR results verified that CHK-1 was upregulated by 

2.5 fold in the High Group compared to control animals. When the Low and High 

Group were directly compared, 30 clusters were significantly up-regulated, of which 

13 had putative function assigned via Blast sequence similarity searching (Table 6). 

Structural protein genes predominated with 38% either associated with the cuticle or 

muscle and a further 23% involved in membrane trafficking. 

When the results are considered in terms of which overarching functions are 

proportionally more up regulated in one sample compared to another, then production 

of cuticle protein (Low Group) and protein kinase activity (High Group) (Table 7) are 

highlighted. When the results of the GO annotation of the Low Group compared to 

the High Group were analysed, then cuticle proteins predominate along with 

hydrolase activity, which is coupled to catalysing transmembrane movement of 

substances. 
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Discussion 

 

These experiments detail the first expression sequence data produced for the Antarctic 

Collembola C. antarcticus. Over half of the EST clones had no significant matches 

when searched against the two different databases (TrEMBL and SwissProt) and 

therefore it was not possible to even putatively assign function to 60% of the data 

(Table 1). This situation is not unusual when producing sequence data from a non-

model organism. Although Drosophila melanogaster was fully sequenced in 2000 

(Adams et al, 2000), in the current build of ensembl, still only 33.8% of the protein 

coding gene complement have been characterised, this figure decreases dramatically 

when considering the more recently targeted insects Anopheles gambiae and Aedes 

aegypti (10.5% and 4.9% of protein coding genes respectively) (www.ensembl.org). 

The vast majority of data in the public databases is of vertebrate origin and with the 

emphasis on data-mining for medical purposes, these taxa are where most of the 

functional annotations lie. Therefore putative functionality of genes in non-model 

organisms initially has to be drawn from vertebrates by analogy and direct sequence 

similarity. This clearly is only possible if the genes are highly conserved (many are 

not, c.f. Family 2 of G-protein couple receptors between vertebrates and invertebrates 

(Cardoso et al, 2006) and even then with high sequence similarity, functionality may 

not be conserved (c.f. calcitonin between mammals and fish (Clark et al, 2002)). 

 

However, there was sufficient annotation of this dataset to be able to draw some 

conclusions about the nature of summer-acclimated cold tolerance in these organisms 

(Tables 4-7). A number of genes/clones were up-regulated in both groups when 
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compared to controls, such as NADH, cytochrome c and CHK1: a checkpoint 

homologue involved in the cell cycle, indicating that both sets of animals were 

metabolically active. However the relative contribution of these clones to each of the 

upregulated datasets varies between the High and the Low Group. The High Group 

comprises almost exclusively of these types of genes (Table 5). This result combined 

with that of the proportionally increased GO annotation (Table 7), which highlighted 

serine/threonine kinases, which are largely involved in cell signalling processes 

indicated a higher level of metabolic activity in this sample of animals. This is in 

agreement with the general understanding, that the High Group contains 

representatives of actively growing and reproducing summer animals, in a period 

which is characterised by increased food consumption and energy demand. 

 

The Low Group, and indeed the Low to High comparison, was dominated by cuticle 

proteins (Table 4 and 6) and this was again reflected in the proportional GO 

annotation results (Table 7). This was accompanied by genes involved in membrane 

transport, a function, which links to secretion and production of new cuticle. 

Interestingly one of the major genes identified in the Low Group was a 10kDa 

secretory protein from the Mono Lake bird tick, the function of which is unknown, 

but was isolated from a salivary gland proteome project (Mans et al, 2008). The 

second clone of the list from the Low Group showed sequence similarity to the cupin 

superfamily. These proteins are a diverse family involved in isomerase and epimerase 

activities involved in the modification of cell walls in bacteria, to non-enzymic 

storage proteins in plant seeds and transcription factors linked to congenital baldness 

in mammals. This is possibly the widest range of biochemical functions of any 

superfamily described to date (Dunwell et al, 2001) and so whilst one of the highest 
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upregulated clones in the Low Group shows homology to a cupin domain, the protein 

could do anything, no predictive functions are possible. Clearly an interesting 

candidate for future studies. 

Taking a broad overview of the results, they correlate with the recent research in 

Collembola (Worland, 2005; Worland et al, 2006, Worland and Convey, 2008) 

suggesting that moulting could be a process during which SCP is incidentally lowered 

in summer acclimated animals. The pre-moulting stage in Collembola is characterised 

by a fasting period in which a new intestinal epithelium is formed. The epicuticle and 

exocuticle are secreted and just before moulting the old intestinal epithelium is 

rejected (Humbert, 1979). This process could involve complete evacuation of the gut 

contents and therefore might be expected to decrease the SCP, by reducing the 

number of potential ice nucleators in the body of the animal. Collembola moult 

throughout their lifecycle, with the number of instars ranging from four to more than 

50 (Christiansen, 1990), with up to 40% of a population being in the moulting cycle at 

any time (Leinaas, 1983). However, Worland and Convey (2008) recently showed 

that the percentage of springtails  involved in ecdysis  increases with decreasing 

temperatures, such that at 0°C 80% of the population are potentially involved in 

ecdysis. Therefore these moulting and non-feeding periods represent a significant 

percentage of both the juvenile and adult life of a collembolan, with potentially strong 

modifying effects on their supercooling ability, at least in summer months. 

Given this interpretation of the results, it is important to note that physiologically 

important effects may arise from shifts in gene expression that are not picked up at the 

significance level of 0.01 adopted in this study. To detect significantly smaller 

changes in gene expression, a larger study is necessary. It should also be noted that 
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changes in mRNA transcription levels do not necessarily equate to changes in protein 

levels. However, they provide an indicator of cellular processes affected by the 

conditions under study. It should also be noted that whilst meaningful functions and 

ecological relevance can be ascribed to the genes identified above, a high percentage 

of clones (approximately 50%) displayed no identifiable homology to known 

sequences. Some of these may well represent critical genes in the biochemical 

processes of High and Low Group animals, but more extensive studies, including 

cloning full-length sequences, will be required for putative domain identification and 

functional assignment. Of this set of genes, certainly the cluster with sequence 

similarity to a cupin domain is of future targeted interest. 

 

Production of cDNA was problematic for this organism. Although the reason for this 

is unknown, the high level of cuticle pigmentation interfering with the enzymic 

construction process is suspected. Therefore it was decided to construct a small 

prototype microarray to determine if meaningful differences in gene expression could 

be identified between environmental samples of interest in this group. This 

preliminary study provides some very interesting results and justifies further input 

into this project in the future. The results of this microarray for C. antarcticus, 

provide evidence for a readily identifiable differential gene expression between 

summer acclimated High and Low Group animals. The results provide support for the 

theory that SCP variation within C. antarcticus could be a consequence of 

endogenous physiological processes occurring during moulting, at least in the summer 

(Worland and Convey, 2008). This analysis has provided the basis for further 

investigations, such as the production of comprehensive cDNA libraries and a high-
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density microarray. This will enable us to conduct more detailed studies and hopefully 

provide further insights into the extreme environmental adaptation of this species. 
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Table Legends 

 

Table 1: EST data statistics for the original EST dataset and specifically for those 

clones used for the microarray. “Discovery” is defined as the number of singletons in 

each library defined by library size. “Diversity” is defined as the number of different 

“genes” (clusters) each library contributed, divided by the library size (Clark et al, 

2003). Reads are those submissable after quality clipping and greater than 100bp. The 

threshold for Blastx significance is 1e-10. 

 

Table 2: Characterisation of the 7 largest clusters from the EST dataset. 

 

Table 3: GOSLIM annotation for the EST dataset, detailing Biological function and 

Biological process. 

 

Table 4: Microarray analysis: Genes up regulated in the Low Group animals 

compared to control animals. Only clusters which matched database entries have been 

included. Where there was clearly a match to a putative protein or a domain, a 

specific Blast ID has not been assigned. 

 

Table 5: Microarray analysis: Genes up regulated in the High Group animals 

compared to control animals. 

 

Table 6: Microarray analysis: Genes up regulated in the Low Group animals 

compared to High Group animals. 
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Table 7: GO enrichment results (Biological function) for both the Low, High and 

Low compared to High Group animals. A = Proportion of clones for this GO 

annotation in the dataset. B = Proportion of clones for this GO annotation in the gene 

lists for up-regulated genes. A-B = proportional enrichment of clones associated with 

these GO terms in the expression data. NB. There were no significant results for the 

High Group animals compared to the Low Group animals. 
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 EST dataset Chip 
#Clones  672 
# Reads 1180 531 
# singletons 647 308 
# clusters  130 62 
# putative transcripts 777 370 
Avg cluster size 4.1 3.6 
Largest cluster  92 71 
# clusters with 2 ESTs 85 40 
# clusters with 3 ESTs 19 15 
# clusters with 4-5 ESTs 12 5 
# clusters with 6-10 ESTs 9 1 
# clusters with >10 ESTs 5 1 
Discovery 0.55 0.58 
Diversity 0.66 0.7 
# (%) with significant SwissProt hits 397 (34%) 181 (34%) 
# (%) with significant trembl hits 462 (39%) 214 (40%) 
# (%) with no hits 713 (60%) 315 (59%) 
 
 
Table 1 



Contig ID Size e-value database Database ID Organism Common name Description 

CL1Contig5  92 3e-8 nr/nt 
DQ021427 Onychothemis testacea Dragonfly species 12S rRNA, tRNA-Val, 16S rRNA genes; 

mitochondrial 
CL1Contig3 56 1e-36 nr/nt AF272824.1 Tetrodontophora bielanensis Giant springtail mitochondrion, complete genome 
CL2Contig1 13 4e-58 TrEMBL Q6BDT1 Orthetrum triangulare melania Dragonfly species ATP synthase A chain  
CL1Contig4 12 8e-72 TrEMBL Q9B2J1 Chrysomya putoria African latrine blowfly Cytochrome c oxidase polypeptide III 
CL4Contig1 11 1e-137 TrEMBL Q6VQ13 Apis mellifera Honeybee ADP/ATP translocase  
CL1Contig1 10 3Ee20 SWISSPROT P19351 Drosophila melanogaster Fruit fly Troponin T, skeletal muscle 
CL3Contig1 10 1e-119 SWISSPROT P00400 Drosophila yakuba Fruit fly Cytochrome c oxidase subunit I 

 
 
Table 2 



GO ID Category Description  
Biological Function 
GO:0003774 F motor activity 11 
GO:0016874 F ligase activity 22 
GO:0005515 F protein binding 307 
GO:0016787 F hydrolase activity 147 
GO:0045182 F translation regulator activity 19 
GO:0004871 F signal transducer activity 10 
GO:0015267 F channel or pore class transporter activity 8 
GO:0003824 F catalytic activity 63 
GO:0005488 F binding 299 
GO:0016740 F transferase activity 85 
GO:0005215 F transporter activity 39 
GO:0008565 F protein transporter activity 6 
GO:0015075 F ion transporter activity 79 
GO:0030528 F transcription regulator activity 37 
GO:0004386 F helicase activity 11 
GO:0016209 F antioxidant activity 2 
GO:0016829 F lyase activity 15 
GO:0016491 F oxidoreductase activity 98 
GO:0004872 F receptor activity 27 
GO:0016853 F isomerase activity 15 
GO:0030234 F enzyme regulator activity 16 
GO:0005198 F structural molecule activity 103 
Biological Process 
GO:0009058 P biosynthetic process 4 
GO:0050896 P response to stimulus 149 
GO:0030154 P cell differentiation 97 
GO:0008152 P metabolic process 138 
GO:0007275 P multicellular organismal development 126 
GO:0009987 P cellular process 278 
GO:0009405 P pathogenesis 1 
GO:0046903 P secretion 34 
GO:0006810 P transport 151 
GO:0050789 P regulation of biological process 140 
GO:0009056 P catabolic process 9 
 
 
 
 
Table 3 



Signature Clone GenBank 
ID 

P Value Blast ID Description Organism Blast Score/ 
P Value 

CR_C02P0_01E12 
 
FF278373 6.30E-005 

 
P82166 

 
Cuticle protein 19.8 

Locusta migratoria 
Migratory locust 

 
83/4e-16 

CR_C03P0_03F06 FF278760 4.88E-004 N/A Uncharacterised protein containing a Cupin domain  Various: N/A 150/1.9e-14 

CR_C03P0_03D08 
 
FF278742 1.66E-003 Q6BDT1 

 
ATP synthase A chain 

Orthetrum triangulare melania 
Dragonfly species 

 
227/4e-58 

CR_C03P0_03B02 
 
FF278722 2.97E-003 Q0PXZ8 

 
Putative 60s acidic ribosomal protein 

Diaphorina citri 
Asian Citrus psyllid 

 
110/5e-23 

CR_C03P0_03H07 
 
FF278779 3.36E-003 Q7M497 

 
Exoskeletal protein HACP188 

Homarus americanus 
American lobster 

 
106/1e-21 

CR_C01P0_04A07 
 
FF278281 3.72E-003 Q28EK6 

 
CHK1 checkpoint homologue 

Xenopus tropicalis 
Pipid frog 

 
203/4e-14 

CR_C03P0_03C06 
 
FF278735 4.38E-003 Q1HRJ5 

 
Mitochondrial NADH dehydrogenase (Ubiquinone) 

Aedes aegypti 
Yellow fever mosquito 

 
211/2.8e-15 

CR_C01P0_04A03 
 
FF278278 5.70E-003 Q09JM0 

 
10kDa putative secretory protein 

Argas monolakensis 
Mono Lake bird tick 

 
198/9.8e-24 

CR_C02P0_02H05 
 
FF278460 5.70E-003 Q16R87 

 
Pupal cuticle protein 

Aedes aegypti 
Yellow fever mosquito 

 
106/9e-22 

CR_C03P0_03F02 
 
FF278758 8.82E-003 Q2Q1I4 

 
Cytochrome b 

Sclerophasma paresisense 
Gladiator species 

 
226/4e-58 

CR_C01P0_02A10 FF278159 9.87E-003 N/A Putative senescence associated protein Various: N/A 95/1e-18 
 
Table 4 



Signature Clone GenBank 
ID 

P Value Blast ID Description Organism Blast Score/ 
P Value 

CR_C01P0_04A07 
 
FF278281 9.24E-006 

 
Q28EK6 

 
CHK1 checkpoint homologue 

Xenopus tropicalis 
Pipid frog 

 
80/4e-14 

CR_C03P0_03C06 
 
FF278735 1.14E-004 Q1HRJ5 

 
Mitochondrial NADH dehydrogenase (Ubiquinone) 

Aedes aegypti 
Yellow fever mosquito 

 
84/2e-15 

CR_C01P0_04A03 
 
FF278278 7.68E-004 Q09JM0 

 
10kDa putative secretory protein 

Argas monolakensis 
Mono Lake bird tick 

 
124/4e-27 

CR_C03P0_03A09 
 
FF278719 5.65E-003 

Q8IS91  
Serine protease 

Glossina fuscipes fuscipes 
Riverine tsetse fly 

 
72/1e-12 

CR_C01P0_02A10 FF278159 7.28E-003 N/A Putative senescence associated protein Various: N/A 95/1e-18 

CR_C04P0_01D06 
 
FF278851 7.97E-003 

 
Q85QR3 

 
Cytochrome c oxidase subunit I 

Gomphiocephalus hodgsoni 
Antarctic springtail species 

 
449/1e-125 

 
 
Table 5 



Signature Clone GenBank 
ID 

P Value Blast ID Description Organism Blast Score/ 
P Value 

CR_C03P0_03D08 

 
FF278742 

5.25E-007 Q6BDT1 

 
ATP synthase A chain 

Orthetrum triangulare melania 

Dragonfly species 

 
227/4e-58 

CR_C02P0_01E12 
 
FF278373 6.38E-006 

 
P82166 

 
Cuticle protein 19.8 

Locusta migratoria 
Migratory locust 

 
83/4e-15 

CR_C02P0_02H01 
 
FF278456 1.88E-005 Q16R87 

 
Pupal cuticle protein 

Aedes aegypti 
Yellow fever mosquito 

 
106/9e-22 

CR_C03P0_03B06 
 
FF278726 3.96E-004 

 
A7UKR5 

 
Sorbitol dehydrogenase 

Pyrrhocoris apterus 
Sap sucking bug 

 
644/3.7e-61 

CR_C03P0_03F05 
 
FF278759 4.58E-004 

 
Q0PWT7 

 
Putative elongation factor 1-alpha 

Diaphorina citri 
Asian Citrus psyllid 

 
181/8e-45 

CR_C03P0_03E06 
 
FF278752 5.13E-004 

 
Q95V16 

 
Cuticular protein 

Myzus persicae 
Peach-potato aphid 

 
69/7e-11 

CR_C01P0_02C04 
 
FF278169 8.68E-004 

 
QPPH7 

 
Putative tropomysin 

Homalodisca coagulata 
Glassy winged sharp-shooter 

 
95/1e-18 

CR_C01P0_04G05 
 
FF278325 4.05E-003 

 
Q1HR73 

 
GTP-binding ADP-ribosylation factor Arf1 

Aedes aegypti 
Yellow fever mosquito 

 
87/3e-16 

CR_C01P0_02G05 
 
FF278201 6.46E-003 

 
Q16TR9 

 
Sodium/potassium-dependent ATPase beta-2 sununit 

Aedes aegypti 
Yellow fever mosquito 

 
87/3e-16 

CR_C03P0_02F06 
 
FF278693 8.73E-003 

 
Q9B2J1 

 
Cytochrome c oxidase polypeptide III 

Chrysomya putoria 
African latrine blow fly 

 
306/6e-82 

CR_C04P0_01B04 
 
FF278841 9.53E-003 

 
Q175J8 

 
Inhibitor of apoptosis 1, diap1 

Aedes aegypti 
Yellow fever mosquito 

 
74/2e-12 

CR_C02P0_02E02 
 
FF278429 9.53E-003 

 
A4D010 

 
Beta actin 

Loligo pealeii 
Longfin squid 

 
243/2e-63 

CR_C03P0_02D10 
 
FF278679 9.53E-003 

 
O96696 

 
Cation-transporting ATPase 

Heliothis virescens 
Noctuid moth 

 
228/7e-59 

 
Table 6 



GO ID p value description A B 
Low Group 
GO:0008011 0.00982 structural constituent of pupal cuticle (sensu Insecta) 1.94 22.22
GO:0042302 0.00825 structural constituent of cuticle 5.33 33.33
High Group 
GO:0004674 0.00257 protein serine/threonine kinase activity 5.82 42.85
GO:0004672 0.00045 protein kinase activity 4.36 42.85
Low verses High 
GO:0042302 0.00063 Structural constituent of cuticle 5.33 28.27
GO:0016820 0.00809 Hydrolase activity 3.39 19.04
 
Table 7 
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	 Abstract 
	Materials and methods 
	Sample collection and preparation:  
	Antarctic springtails (Cryptopygus antarcticus) were collected from wet moss (Sanionia uncinata (Hedw.) during the austral summer of 2005 at the British Antarctic Survey's research station at Rothera Point, Adelaide Island (67'34'S, 66'8'W). The SCPs of the animals were measured using a differential scanning calorimeter (DSC) (Mettler Toledo DSC 820). The boundary temperature dividing high and low group SCPs was defined as -15ºC (Worland and Convey, 2001). Animals which survived cooling to  15°C at 1°C/minute  were designated as Low Group (LG) animals (SCP below -15°C), and those which died were designated as the High Group (HG, SCP above -15°C). All groups of animals were rapidly frozen in liquid nitrogen and stored at -80°C until required. Live animals maintained with food in a +2°C growth cabinet were used as controls. 
	Sequence data analysis:  
	 
	 
	Q PCR:  
	To validate the microarray results, 3 clones were chosen for Q-PCR analysis: CR_C02P0_01G10: Control: CF: CGCTCTTCATTTAATGGGGTT, CRev:  AAACGACATTCGAGTACTTCAT; CHK1: CHKF: AGGGAGCCTGAGAAACGGCT CHKRev: CTGGCACCAGACTTGCCCT; Cuticle7F: CAAGATGAACTTGGTCAAGCAT, cuticle7Rev: CTGATAAGAGCATCAGCATGA. The RSq and efficiency values for each of these primer sets was: 0.970/115.5%; 0.991/150.8% and 0.990/102.2% respectively. All genes were amplified using specific primers, Brilliant SYBR® Green QPCR Master Mix (Stratagene) and an MX3000P Q-PCR machine (Stratagene). PCR conditions were as follows: 95°C 10 minutes, 40 cycles of 95°C 30 seconds, 60°C 1 minute and 72°C for 45 seconds with a final dissociation curve step as per manufacturers recommendations. The plate set-up for each Q-PCR experiment consisted of the 3 animal treatments (control, High and Low Groups) amplified for all 3 primer pairs in triplicate. The whole  experiment was repeated in duplicate. Primers were validated and the results analysed as described in Clark et al (2008) using the method of Pfaffl (2001) which incorporates the efficiency of the primers as a factor in the equation.  
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