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___________________________________________________________________________ 

Abstract 

 

Regulatory authorities require estimates of ambient background concentrations (ABCs) of 

potentially harmful elements (PHEs) in topsoil; such data are currently not available in many 

countries.  High resolution soil geochemical data exist for only part of England and Wales 

(E&W), whilst stream sediment data cover the entire landscape.  We present a novel 

methodology for estimating soil equivalent ABCs for PHEs from high-resolution (HR) stream 

sediment geochemical data grouped by common parent materials (PM), using arsenic (As) as 

an example.  We use geometric mean (GM) values for local PM groups to investigate different 

approaches for transforming sediment to soil equivalent concentrations.  We use holdout 

validation to assess: i) the optimum number of samples for calculating local GM values, and 

ii) the optimum scale at which to group data when using linear regression analysis to estimate 

GM soil ABCs from local sediment geochemical values.  Holdout validation showed that the 

smallest differences were generally observed when five observations were used to calculate 

the GM and that these should be grouped over the smallest possible area in order to 

encompass soils over PMs with elevated GM As concentrations.  We estimate and map GM 

ABCs for arsenic in mineral soil across all of E&W within delineations of PM polygons.  

Errors for the estimation of soil equivalent GM As ABCs based on sediment data for an 

independent validation set were of a similar magnitude to those from holdout validation 

applied to the original data suggesting the approach is robust.  Our estimates of soil equivalent 

ABCs suggest that As exceeds the regulatory threshold used in risk assessments for residential 

land use (20 mg kg-1) across 16 % of the landscape of E&W.  We discuss the applicability of 

the method for cognate landscapes, and potential refinements. 

Keywords: geometric mean, arsenic, parent material, regression, England, Wales 

__________________________________________________________________________ 
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1. Introduction 

 

The ambient background concentration (ABC) of a potentially harmful element (PHE) in 

topsoil is the sum of the natural (geogenic) and non-natural diffuse components (ISO, 2005, 

Zhao et al., 2007).  In central England, a significant proportion of the landscape has naturally 

elevated topsoil concentrations of the PHE arsenic (Rawlins et al., 2002) exceeding the Soil 

Guideline Value (SGV) of 20 mg kg-1 for residential land use (DEFRA & EA, 2002a).  

Regulatory authorities need to know where ABCs are likely to exceed this threshold. 

Approaches have been proposed to estimate topsoil ABCs for seven PHEs across parts 

of the globe using their statistical relationships with total Fe and Mn (Hamon et al., 2004), 

whilst Zhao et al. (2007) did so for several elements across England and Wales (E&W) based 

on their associations with particle-size fractions.  One disadvantage of such approaches is that 

they require further measurements to be made on samples for which estimates of ABCs are 

required, and so entail further cost.  If high-resolution (HR; sampling intensities greater than 1 

sample per 3 km2) topsoil data were available, it would be possible to provide estimates of 

ABCs by mapping using some form of local interpolation.  Alternatively, where the 

distribution of elevated ABCs are spatially very complex because they relate to the convoluted 

outcrops of PHE-enriched soil parent materials (PMs) such as in central England (Palumbo-

Roe et al., 2005), we could avoid large errors at these boundaries if we derive estimates of 

ABCs within delineations of the PM mapping units.  This is because soil parent material is the 

primary control on ABCs in UK topsoil for PHEs including As, Cr and Ni (Rawlins et al., 

2003). 

At present, this latter mapping approach cannot be used for all of E&W because HR 

soil geochemical data are only available for around 27 % (area A+B/A+B+C+D in Figure 1) 

of the landscape; these are soil data from the G-BASE project of the British Geological 

Survey (Johnson et al., 2005).  However, there are high-resolution stream sediment 
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geochemical data for the remainder of the country described by Webb et al. (1978) and 

Johnson et al. (2005).  Preliminary work based on data collected under the G-BASE project 

showed strong correlations between certain PHEs in soil and stream sediment associated with 

PM groups across parts of England.  Given that the types of PM in this region appear to be 

representative of much of E&W – comprising a range of geological periods and a significant 

proportion of Quaternary deposits – we might expect similar relationships to extend 

nationwide.  It may therefore be possible to use the sediment data to estimate topsoil 

equivalent ABCs for selected PHEs in those areas where soil data are not available.  A 

previous study by Cannon et al. (2004) using a technique of adjusting sediment to soil 

concentrations reported strong correlations for certain elements across part of Wisconsin, and 

suggested such an approach could be useful for estimating background values. In contrast, 

Garrett et al. (2005) were unable to find a routine way of estimating soil concentrations from 

stream sediment geochemical data in the Upper Coastal Plain of South Carolina, USA due to 

the complexity of the processes affecting stream sediments during their transformation from 

soils.  

In this paper we present a new methodology for the estimation of topsoil equivalent 

ABCs for three PHEs (As, Cr, Ni) using HR stream sediment data, and demonstrate its 

application to soil As.  We establish statistical relationships between geometric mean values of 

soil and stream sediment PHE concentrations grouped by PM, and use these to estimate 

mineral topsoil equivalent concentrations of As, which we map within delineations of the PM 

polygons. We use an independent dataset to demonstrate the robustness of our approach.  We 

present the first national scale map of topsoil As ABCs (based on geometric mean values for 

delineations of PM polygons) resulting from the application of our methodology.  We also 

show how these data can be used to estimate the proportion of samples exceeding a threshold 

used in regulation related to contaminated land assessments.  Finally, we discuss the 
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uncertainties associated with our methodology, its wider implications and potential 

refinements. 

 

2. Exploratory data analyses for estimating soil equivalent ABCs 

We require a method to transform the available HR stream sediment and deeper soil 

geochemical data for E&W (Figure 1) into topsoil equivalent ABCs.  The HR geochemical 

survey data used in this study, including analytical methods, sampling density and dates are 

summarised in Table 1 and Figure 1. Wolfson stream sediment samples were taken from small 

tributaries with catchments that rarely exceeded 5-10 km2 whilst the GBASE stream sediment 

samples were collected from small, first or second order, streams to give an average sampling 

density of one sample per 1.5 to 2 km2. Total element concentrations were determined so these 

are compatible with the SGV regulatory thresholds for England and Wales.   The data can be 

separated into four, spatially overlapping combinations of topsoil, subsoil and stream 

sediments from the GBASE survey, and Wolfson stream sediment survey (regions A to D; 

Figure 1).  Topsoil (0-15cm depth) geochemical data from the GBASE survey were available 

in region A.  Deeper soil (35-50cm depth) geochemical data from GBASE were available in 

regions A+B.  Stream sediment geochemical data from the GBASE survey were available in 

regions A+B+C covering large areas of north and central England.  Finally, stream sediment 

geochemical data are available for all of E&W (A+B+C+D) from the Wolfson Atlas. 

We undertook two sets of exploratory analyses.  First, we created scatterplots of GM 

concentrations in topsoil versus deeper soil for As, Cr and Ni grouped by soil PM for area A 

(Figure 2) and fitted linear regressions to them using least squares (see Table 2).  These 

highlight very strong linear relationships – the slopes are all close to one.  The slope of the 

linear regression between GM topsoil and deeper soil As (shown in Figure 2a) is 1.01, so we 

felt justified in treating PM grouped topsoil and subsoil As values as equivalent.  For Ni and 

Cr, we would need to apply a linear transformation to estimate GM concentrations based on 
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samples grouped by PM. Higher Cr and Ni concentrations in the <150 µm fraction of deeper 

soils compared with the <2mm fraction of topsoils is to be expected whilst the approximately 

equivalent As concentrations in the two soil sampling media requires further investigation. 

Second, we assessed the significance of PM in determining the spatial distribution of As, Cr 

and Ni in the large GBASE dataset for deeper soils and GBASE stream sediments for area 

A+B (Figure 1).  The results, summarised in Table 3, demonstrate the primary importance of 

PM in determining the concentrations of these elements in both soil and stream sediment, with 

the variance accounted for ranging from 20 to 43%.  There were strong correlations between 

geometric mean (GM) PHE concentrations in soil and stream sediment when the data were 

grouped by PM.  We therefore considered that it was justified to investigate whether we could 

estimate soil equivalent ABCs using stream sediment PHE concentrations in areas C+D 

(Figure 1) where no soil geochemical data were available. 

 Given that the samples are grouped by PM, we required a statistical measure of location 

to express the ABC.  We examined features of the statistical distributions of As, Cr and Ni for 

areas A+B (Figure 1) where we can compare soil and stream sediment geochemical data (see 

Table 3).  All of the variates had large positive skewness coefficients for each of the PHEs.  

After transforming the data by taking natural logarithms the skewness coefficients were 

generally in the range [-1,1] suggesting that the majority of the original data were 

approximately log-normally distributed.  Traditional measures of statistical location (mean) 

and scale (standard deviation) are biased when applied to skewed distributions.  To overcome 

this we used the geometric mean (GM) and geometric standard deviation (GSD) to establish 

statistical relationships between variates using the original, untransformed data.  Our estimates 

of ABCs are GM values for PM groups, which are similar to the medians in each distribution.  

The latter was the parameter proposed for estimating ABCs by ISO (2005). However, GM 

provides a better estimate of ABC than median when calculating ABCs from small numbers of 

samples, especially for PMs with relatively high arsenic concentrations.  
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In the next section we describe how we evaluated different features of an approach for 

the conversion of stream sediment to soil equivalent ABCs using statistical relationships based 

on data grouped by PM.  Specifically, we use holdout validation to test: i) different scales for 

grouping soil and stream sediment geochemical data by PM and, ii) the optimum number of 

neighbouring samples required to calculate GM concentrations .  We then demonstrate how 

linear regression relationships between sediment and soil for common PM groups can be used 

to estimate ABCs in topsoil in areas C+D in Figure 1.  Prior to this we transformed the 

Wolfson stream sediment in southern England (area D; Figure 1) to their G-BASE equivalents 

using linear quantile transformation.   

 

3. Statistical and mapping methods 

 

Below we describe the detailed methodology for transformation of the available stream 

sediment As data into soil equivalent ABCs with reference to a sequence of steps shown in a 

flowchart (Figure 3). 

 

3.1. Linear quantile transformation (steps 1 and 2) 

To transform the Wolfson data to the G-BASE sediment data we used linear quantile 

transformation (Daneshfar and Cameron, 1998, Darnley et al., 1995, Heyde, 1986).  Here we 

briefly summarise the theory of quantile transformation.  If F(x) is some distribution function 

on the real line, and G(x) is another, and we have a random variable Y with distribution 

function G, we want to create a random function X with distribution function F, so that the 

difference |X − Y| is as small as possible. This can be achieved if we define the variable ξ 

which is uniformly distributed on [0, 1] by ξ = G(Y ), and then set X = F−1(ξ).  In our case the 

random variable X are concentrations of a PHE in Wolfson sediment samples, and variable Y 

are concentrations for the same PHE in the G-BASE samples for the same geographic area 
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(A+B+C in Figure 1).  We can then fit a linear regression using least squares for a series of 

quantiles (e.g. p = 0.1, 0.2, . . . , 0.9) between the target distribution (Yp) and the source (Xp).  

We can apply the regression to estimate the concentrations of Y (G-BASE) from X (Wolfson).  

We assume that the sampling method is unbiased in both cases, and that that X and Y are 

related by a positive, linear scaling.  

 

3.2. Parent material polygon delineations as geochemical mapping units (Step 3) 

In this study, we defined PM classes based on the concatenation of separate codes for the 

underlying bedrock and any superficial deposits present (see Figure 4).  The codes are 

generally derived from digital versions of the 1:50,000 maps of bedrock geology and 

superficial deposits for E&W, part of DigMap GB (British Geological Survey, 2006).  Initially 

a total of ca. 1.9 million individually delineated polygons were created in ArcMapTM GIS 

(ESRI) by separating unioned bedrock and superficial geology polygons using a 1-km grid 

aligned to the British National Grid (see Figure 4).  There was frequently more than one 

polygon of a PM within a 1-km grid square.  In such cases, the average centroid for a PM in a 

1-km grid was calculated from the centroids of the individual polygons of that PM within the 

1-km grid square (see bottom right 1km grid square in Figure 4).  There are approximately 

650,000 average 1km-PM centroids across E&W and these are used to estimate the GM 

concentrations for the delineations of the 1km-PM polygons used as geochemical mapping 

units in this study.  The use of the average centroids, rather than individual 1km-PM polygon 

centroids reduced geochemical mapping computation time by approximately 65%. We used a 

spatial join procedure (ArcMapTM software (ESRI)) to link the geochemical sampling sites to 

their PM code.  The GM ABC for each PM in a 1-km grid square is calculated from the n 

geochemical samples located on the same PM that are nearest to the average 1km-PM 

centroid. The optimum number (n) of samples for estimation of GM was determined using 

holdout validation, as explained below.   
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3.3. Holdout validation to determine optimum number of samples for estimating sediment and 

soil GM (step 4) 

We wished to assess the optimum number of local sediment or soil samples with the same PM 

code for calculating GM values for each 1km-PM polygon.  This is likely to vary due to a 

range of factors including the spatial distribution of sampling locations, the size and shape of 

PM polygons, and drainage pattern.  We used a script written in the GIS package ArcViewTM 

(ESRI) which identified for each average 1km-PM polygon centroid, the nearest ‘n’ (1, 2, 3, 4 

, 5, 7, 9, 11, 15, 20 and 30) soil or sediment sampling sites located on the same PM.  This 

script returned from the n nearest sediment or soil samples for each PM class: i) the GM As 

concentration, ii) the inverse distance weighted value of their natural log transformed As 

concentrations (on the same scale as the GM), and iii) the distance to the furthest of the n 

sediment or soil samples.  We used a holdout validation procedure in which a random subset 

of 10% of the sediment or soil sites were removed, using the remaining 90% to estimate GM 

(GMest) values at the sites of the former from the  n (1, 2, 3, 4, 5, 7, 9, 11, 15, 20 and 30) 

nearest neighbouring sediment sites on the same PM.  In the case of GM values, we calculated 

the Mean Squared Deviation (MSD) between the estimated (GM) As at the site and the 

measured As at each of the sites in the random 10% subset: 

 

( )
2

1
est measuredGM

n
1 MSD ∑

=

−=
n

i
     (Equation 1) 

 

We also calculated MSD’s between the natural log transformed measured soil As and its 

estimate based on the inverse distance weighted value based on the same log transformed  

stream sediment data. 
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We undertook this analysis using soil data for two similar Jurassic ironstone units 

(Northampton Sand Formation (INONS) and the Marlstone Rock (MRB)) and also for the 

Upper Lias (ULI) which is the only other geological unit in the area with substantial lateral 

variation in arsenic concentration.  For the stream sediment data we undertook the same 

holdout validation for three randomly selected 10% subsets of one PM group characterised by 

substantial lateral variations in arsenic concentrations (the Lower Silurian mudstone dominant 

sedimentary rocks of Central Wales (SLLA-MDMIX)).  We used these results to determine an 

appropriate number of samples to calculate GM PHE values for both soil (areas A+B; Figure 

1) and stream sediments (areas C+D). 

 

3.4. Grouping of samples by PM class at different scales (step 5) 

We wished to use regression to estimate GM soil As concentrations (predictand) for unique 

PM polygons using their local GM sediment concentrations (predictor).  We needed to define 

the minimum number of soil and sediment samples required for the calculation of a GM value 

because if this is based on too few samples, the GM will be imprecise.  We chose to limit the 

regression analysis to include only those PM groups with more than four samples.  

Exploratory analysis showed that when the data were grouped by 10 km squares across central 

England there were relatively few (<4) samples over several of the thin, iron-rich PM outcrops 

which have elevated PHE concentrations.  In the 10-km grid square illustrated in Figure 5, for 

example, there are only two sediment samples located on the Marlstone Rock Formation.  

Excluding these PM groups from the regression analysis could introduce bias.  By grouping at 

different spatial scales (e.g. 1 km2, 25 km2
, 100 km2 and greater) we can investigate the 

influence of grouping scale on the regression models.  We grouped sediment and soil samples 

by their PM class using three approaches.  First, using all the average 1-km PM polygon 

centroids, we identified the nearest five sediment samples located on the same PM and 

calculated GM As.  No value was reported where less than 5 samples are available for a PM.  
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This approach returned 29 416 comparisons of the local sediment (GMsed) and soil (GMsoil) 

GM As concentrations with common PM classes.  Second, by averaging over 25 km2 grid 

squares the GM values for PM codes derived from the first approach and comparing these to 

common PM soil GM As values (n=4025). Third, using a nested-scale approach in which 

groups of n>4 samples with the same PM code were identified in order of increasing scale  

within: i) 5 km grid squares (25 km2), ii) 10 km grid squares (100 km2), iii) geological map 

sheet (approx 550 km2), and iv) 100 km grid square (1000 km2). If insufficient samples were 

present at the smaller scale, the next greater scale was used. This resulted in 1188 paired PM 

soil and stream sediment GM mean As concentrations.  By adopting this latter approach, we 

ensure that iron-rich PM groups with elevated PHE concentrations are included in the 

regression analysis. Regression equations were validated by calculating the Mean Squared 

Deviation (MSD) between the measured As at each soil sample site and the estimated GM soil 

As (GM soilest) calculated from the nearest five sediment values on the same PM (Equation 2): 

 

 ( )
2

1
est measuredsoil GM

n
1 MSD ∑

=

−=
n

i
           (Equation 2) 

 

3.5.  Regression and estimation of confidence intervals (steps 6 and 7) 

We investigated both linear and polynomial regression relationships; the latter has the form:  

 

εββα +++= xxy 2
21       (Equation 3) 

 

in which the sediment GM As concentration for each PM is the explanatory variable ( x ), with 

which we wish to predict the equivalent GM PHE for soil ( y ) for the same PM code, with ε  

representing any unexplained variation. Second order polynomial regression models were 

used after it was found that these were more suited to the transformation of sediment to 



National-scale estimation of soil ABCs: page 12 of 33 

equivalent soil concentrations than first order polynomial regression, particularly at high 

concentrations above the SGV.  Least trimmed squares approaches had the same limitations as 

the first order polynomial models and so we used the method of least squares.  

We assessed the impact of grouping sample locations based on different scales and the 

numbers of samples in each group for their impact on: i) the regression relationships between 

soil and stream-sediment PHE concentrations, and ii) holdout validation statistics for 

estimation based on these regression relationships.  The holdout validation statistics used were 

the Mean Squared Deviation (Equation 4 ) between PM grouped GM soilest  and GMsoil, the 

root-mean-squared deviation (RMSD; Equation 5), and bias (Equation 6): 

 

( )
2

1
estGMsoil GMsoil

n
1 ∑

=

−=
n

i
MSD         (Equation 4) 

 

( )∑
=

−=
n

i
estn

RMSD
1

2GMsoilGMsoil1      (Equation 5) 

 

( ) NBias
n

est /GMsoilGMsoil 2∑ −=      (Equation 6). 

 

In establishing a regression relationship between GM As concentrations for PM groups 

(explanatory variable, )( ix ) and the proportion of samples exceeding the regulatory threshold 

( iy ; the predictand) of 20 mg kg -1, we also considered non-linear relationships of the form:  

 

i
x

i
iy ερβα    ++=        (Equation 7) 

 

where α , β  and ρ  are estimated parameters from a curve fitting procedure. 
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We calculated the 95% confidence limits around the estimated GM As concentration 

for each polygon centroid using the mean ( x ) and standard deviation (s) of their log-

transformed values.  The confidence limits were calculated on the log transformed scale: 

 

N
stx

N
stx ff +−     and          (Equation 8) 

 

where ft  refers to the value for the Students t distribution at the 2.5% significance level for N-

1 degrees of freedom (2.776) and s is the standard deviation of the nearest 5 soil or sediment 

(log-transformed) values.  We estimated the confidence interval for soil and sediment polygon 

centroids separately.  The confidence limits were then back-transformed to the measurement 

units of the original scale.  

Finally, we used the GM As concentration ( x Y) and the geometric standard deviation 

(s2
Y) for PM grouped data to estimate the proportion of samples exceeding the regulatory 

threshold (z) using the formula for the standard normal distribution: 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝
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−
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Yxz

Y

YY exzf
π      (Equation 9). 

 

The regression model between GM As and the estimated proportion of samples exceeding the 

SGV (%>SGV), derived from PM grouped soil data, was used to estimate the %>SGV for 

individual 1km-PM polygons for which GMs were calculated from the nearest 5 soil samples 

located on the same PM (or the soil equivalent GM As estimated from sediment data as 

described above). 
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3.6. Independent validation for estimation of topsoil As ABCs using sediment data (step 8) 

To independently validate the conversion of sediment to soil equivalent As ABCs we used 

analyses by X-ray Fluorescence Spectrometry from a set of 11,335 topsoil samples collected 

by the British Geological Survey between 1972 and 1997.  The samples were collected in 

areas with mineralisation potential, predominantly in Devon and Cornwall, Pembrokeshire, 

the Lake District and Northumberland (Figure 1).  This is reflected by the elevated values of 

parameters from the statistical distribution of the variate (mg kg-1), mean (78), median (25), 

GM (32), maximum (8647) and strong positive skewness (11.7).  These samples are located 

within 414 1km-PM polygons, with a minimum of 4 samples in a 1km-PM polygon. For data 

grouped into ranges of GM As we then calculated the MSD between (i) GM As for the 

samples within each 1km-PM polygon and (ii) GM soil As for the 1km-PM polygon estimated 

from stream sediment data using the linear regression based on 1188 paired PM soil and 

stream sediment GM mean As concentrations, as explained above.  We also calculated the 

bias for the data as a whole. 

 

4. Results and their interpretation 

 

4.1. Linear quantile transformation 

We calculated percentiles (p=10, 20,…, 90, 95 and 99) for both the Wolfson and G-BASE 

stream sediment As data for area A+B+C (Table 4) and fitted a linear regression through them 

using least squares (Figure 6).  The regression accounted for 99.2 % of the variance, with an 

intercept (α) of -3.1 and slope (β) of 1.42 based on the eleven paired percentiles. Weighted 

linear regression models, as used by Daneshfar and Cameron (1998), produce almost identical 

results over the same percentile range.  For comparison we also plotted the GM As 

concentrations for PM groups with greater than eight samples for each of the datasets.  A 

linear regression of these points (not shown) was very similar to that for the percentiles. 
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All the paired quantiles and the majority of the PM GMs plot above the 1:1 line 

indicating that in general As concentrations are higher in the finer (<150μm) G-BASE 

sediments than the slightly coarser (<177μm) Wolfson samples.  This conforms with 

geochemical theory in which some trace elements are enriched in finer-grained samples 

(Plant, 1971), due to their associations with iron and manganese oxy-hydroxides.  The 

regression equation described above for areas A+B+C was then applied to the Wolfson 

sediment data in area D to create a continuous map of As in stream sediment for areas C+D.  

These data were then converted to soil equivalent concentrations using the methods that 

follow. 

 

4.2. Holdout validation: optimum number of samples for estimating GM 

The MSD is relatively constant when the number of neighbouring soil samples used to 

calculate GM exceeds 4 for those PMs which exhibit relatively little lateral variation in As 

whereas the variation in MSD with ‘n’ is strongest for those PMs which exhibit marked lateral 

variation in GM As (e.g. Northampton Sand Formation (INONS) and the Marlstone Rock 

Formation (MRB) ironstone units). In order to increase the reliability of the MSD tests, soil 

data for the two similar Jurassic ironstone units (INONS and MRB) were grouped together to 

produce a subgroup of 320 soil samples. The only other PM in the area with substantial lateral 

variation in arsenic is the Upper Lias (ULI, n = 315 soil samples). Average results of three 

holdout validation calculations for these two groups of soils are presented in Figure 7a. In 

general, the differences (MSD) between estimated and actual GM As values decrease as the 

number of neighbouring samples used to calculated the GM increases from one to five.  The 

optimum number of samples (smallest MSD) for estimating GM soil arsenic for 1km-PM 

polygons is between 5 and 9. 

The results for three sets of holdout validation for sediments from the SLLA-MDMIX 

(Silurian Llandovery mudstone-dominant sedimentary rocks of Central Wales with no 
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superficial cover) PM are presented in Figure 7b.  In subset 1, there is a gradual decrease of 

MSD as the n samples used to determine the GM increases from 1 to 7 and then an increase in 

MSD from 7 to 25.  For subsets 2 and 3, there is little change in MSD when the number of 

samples is 5 or more whilst the MSD is higher when n = 1 or 2.  Selecting the optimum 

number of samples is a balance between the number which gives the smallest MSD whilst 

ensuring that significant local variations in arsenic concentrations are diminished by using too 

many samples.  The optimum number of samples for estimating arsenic for the centroids of 

1km-parent material polygons is between 4 and 7 for sediments, so we decided to calculate 

GMs from the 5 nearest samples for both sediments and soils.  

 

4.3. Linear regression, holdout validation and mapping soil As 

The second order polynomial model (Equation 3) fitted to the three groups of GMsoil and 

GMsoilest data are shown in Figure 8a-c and the regression coefficients in Table 5.  The 

holdout validation statistics are shown in Table 6.  The regression based on grouping at a 

range of scales (Figure 8c) returns higher estimates of GM soil As in the upper range (>3 log 

normal transformed As ~ 20 mg kg-1) because there are more As enriched PM types with n>4 

samples included, reflected in the regression equation plotting closer to the 1:1 line than those 

in Figures 8a and 8b.  The standard error of the estimate for the nested-scale for grouping PM 

groups was also smaller than for grouping using the two other scales (Table 5). 

The smallest MSD (Equation 2) values at the lower As concentrations (0 - 20 mg kg-1) 

were those for regressions based on the 1-km polygons and 5-km averaging of 1-km polygons 

(Figures 8a-b), with slightly higher values for the regression derived from the nested-scale 

approach.  However, the MSD values are significantly smaller above 20 mg kg-1 As for the 

regression in which the nested approach was used based on PM groups across four different 

scales (Table 6).  Given the importance of accurately estimating GM As values in soil with 

elevated ABCs of trace elements, we selected the nested-scale approach and its regression 
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equation (Fig 8c) for the conversion of PM grouped sediment to soil equivalent As 

concentrations.  The MSD and RMSD (Equation 5) values for classes with increasing 

distances for GM versus an IDW interpolation of As concentrations of the nearest five 

sediment samples (Table 7) show that: i) the former has smaller errors, ii) that the variation in 

these errors is smaller, and iii) estimation errors increase with maximum distance to the 

furthest sample.  Therefore we chose to base the estimation of soil equivalent As on the GM of 

the nearest five sediment samples for common 1-km PM polygons rather than the IDW 

estimate. 

The final map of mineral topsoil As ABCs was produced by combining the GM As 

concentrations for polygons in areas A+B (Figure 1) using the deeper soil G-BASE data and 

the topsoil equivalent estimates for GM As resulting from application of steps 1-6 (Figure 3) 

to the stream sediment data for areas C+D (Figure 1).  The map of topsoil estimated ABCs 

(Figure 9) shows that As background concentrations are likely to exceed the regulatory 

threshold over 16% of E&W.  When we include those areas that are equal to the regulatory 

threshold the proportion increases significantly to 25%.  The fine resolution of the soil 

equivalent concentrations shown is due to the in excess of 1.9 million individual 1km-PM 

polygons across E&W. The boundaries between the categories of soil concentrations are 

sharp, reflecting the delineations of the PM polygons.  This is a noticeable difference to those 

maps based on interpolation of data at discrete sampling locations.  The largest areas with the 

highest concentrations (>30 mg kg-1) occur in the English Lake District, western Wales and 

south-west England.  No estimates can be made for ABCs in the greater London area because 

no stream sediment or soil data are available to date. 

The estimated 95% confidence intervals for each of the concentration classes shown on 

Figure 9 are presented in Table 8; confidence intervals are presented for ABCs estimated from 

both soil and sediment values.  The confidence intervals become wider as the GM As ABC 

increases.  Also, the confidence intervals for PM polygons based on sediment values are 
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greater than those for each of the soil concentration ranges.  Hence, the greatest uncertainties 

for ABCs shown in Figure 9 are for those areas of Wales, north-west England and south-west 

England where the large estimated ABC As values (>30 mg kg-1) are based on stream 

sediment data. 

 

4.4. Independent validation 

The MSD and bias values calculated from the independent validation dataset are shown in 

Table 6.  The validation data were sited over mineralised areas of E&W where without prior 

information it would be difficult to estimate soil As ABCs. This is reflected in the MSD 

values, which are somewhat larger (0.25-2.08) than those for the holdout validation based on 

the nested-scale regression (0.1-1.79).  The bias of the estimates is also somewhat larger; 0.19 

for the independent validation compared to 0.03 after application of the nested-scale 

regression.  However, these independent validation data demonstrate the methodology is 

sufficiently robust to be used for the estimation of ABCs across the landscape of E&W for 

those elements which have similar geological and geochemical controls to As. The 

methodology has not been assessed for elements that dominantly occur in resistate minerals, 

such as Zr, Sn, or W, especially in areas of strong relief.   

 

4.5. Probability of exceeding the As regulatory threshold 

The least squares fit of the non-linear regression relationship between GM As and the 

proportion of samples in each PM group exceeding 20 mg kg-1, fitted using the CURVEFIT 

directive in Genstat (Payne, 2002) is plotted in Figure 10.  The coefficients from Equation 7 

were: α  (99.7), β (-171.9) and ρ (0.944) with the regression capturing 92.3% of the variance, 

with a standard error of 6.26.  So using the GM As concentration for any soil equivalent PM 

polygon and the normal distribution (Equation 7) we can apply this regression equation to 
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estimate the proportion of samples which are likely to exceed the regulatory threshold of 20 

mg kg-1. 

 

5. Discussion 

We have presented and applied a methodology which employs stream sediment values to 

estimate ABCs of As in mineral topsoil across E&W, based on common PM groups.  Our 

analysis suggests that 16% of the landscape of E&W has As ABCs exceeding the threshold 

(i.e. 20 mg kg-1) of the first tier of the risk assessment adopted by regulatory authorities for 

residential land use.  Although topsoil As ABCs above this threshold does not in itself imply a 

significant health risk, it does show that more frequent and complex contaminated-ground risk 

assessments will likely be needed for much of the landscape of E&W.  These spatially 

referenced data can be used to assess the probability that the SGV will be exceeded at a 

particular site, and whether elevated concentrations of arsenic observed in site investigations 

may be attributable to geogenic sources or whether it is possible that the observed 

concentrations may have been influenced by anthropogenic factors.  From our preliminary 

analysis (Figure 3), we believe this approach could be extended to include Cr and Ni.  The 

latter may be of particular significance because it exhibits geogenically elevated 

concentrations (McGrath and Loveland, 1992), exceeding the SGV of 50 mg kg-1 (DEFRA & 

EA, 2002b) across parts of E&W. 

Whether this methodology could be applied more widely depends on a number of 

factors, but principally on the correlations between PHEs in soil and stream sediments across 

large areas.  It will be most applicable where soils are relatively young, such as the recently 

glaciated areas of northern Europe, and cognate landscapes.  Clearly there is a need for 

existing, HR stream sediment geochemical data; this is often available from mineral 

exploration studies.  For example, the National Uranium Resource Evaluation Programme in 

the USA has around 400,000 stream sediment samples (Bolivar, 1980), compared with 
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geochemistry for only 1323 soil samples available nationally (Boerngen and Shacklette, 

1981). 

We recognise there may be theoretical objections to our approach.  First, stream 

sediments represent the weathered material transported from an entire catchment which may 

comprise a number of geological sources with differing geochemical compositions.  When 

eroded and transported along the stream network, the geochemical composition of mixed 

provenance sediment may be quite different from the chemistry of the underlying geological 

substrate at any particular point in the stream, and also the soils derived from its PM.  Second, 

in-stream geochemical processes tend to increase the concentrations of PHEs due to their 

strong adsorption to, or co-precipitation with, iron and manganese oxides which commonly 

coat stream sediments (Nichol et al., 1967), leading to potentially significant bias.  This may 

be greatest in upland areas of E&W, where secondary precipitation may be enhanced in acidic 

streams draining organic rich, peat soils.  The potential for overestimation of ABCs in soil 

based on stream sediment in these environments requires further investigation especially with 

respect to the concentration of chemical elements and mineral species in the fluvial 

environment (Garrett et al., 2005). 

It may also be possible to enhance our methodology.  For example, the use of weighted 

linear regression may improve the transformation of sediment to soil equivalent 

concentrations, and this could be tested using holdout validation.  Second, we could explore 

the scale-dependent correlation of sediment and soil concentrations using a geostatistical 

approach.  This might indicate that different scales of generalization may be more appropriate 

than the parent material unit.  As the variables are not collocated, it would be necessary to use 

the pseudo cross-variogram (Myers, 1991).  To these we could fit coregionalization models to 

compute correlations between the mean values of the variables within blocks of different size 

(the inter-block correlation; (Pringle and Lark, 2007)).  This could be used to assess whether 

there are advantages in using grouping at scales different to those we have used here. 
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Figure Captions 

 

Figure 1 Spatial extent of soil and stream sediment sample PHE data from the G-BASE and 

Wolfson surveys, and locations of an independent validation set of topsoil As measurements 

used in this study across England and Wales. 

 

 

Figure 2 Plots of geometric mean (GM) topsoil (<2 mm) versus GM deeper soil (<150 μm) for 

collocated samples grouped by PM group across area A+B (Figure 1) and linear regressions (-

--) for: a) As, b) Cr, and c) Ni. 

 

Figure 3 Summary of approach to the estimation of soil equivalent PHE concentrations based 

on stream-sediment PHE concentrations for areas C and D shown in Figure 1.  Calculations 

based on existing data in italics; transformations of data based on statistical relationships in 

bold. 

 

Figure 4 Example of bedrock geology and superficial deposits separated into unique parent 

material (PM) combinations and their codes, and separate polygons within 1 kilometre squares 

of the British National Grid in Northamptonshire (UK).  Individual polygon centroids are the 

centres for each 1-km PM polygon; the average centroid is the centre of the four individual 

polygon centroids shown. 

 

Figure 5 Illustration showing the complexity of the As-rich Marlstone Rock Formation PM 

outcrop in central England with stream sediment and soil sample locations in a 10 kilometre 

square of the British National Grid. 

 

Figure 6 Scatterplots for: i) percentiles (•) of the As distribution for Wolfson and G-BASE 

stream sediment data (Areas A+B+C), and ii) GM As concentrations grouped by PM (.) for 

which n>8.  The least squares linear regression (---) was fit to the set of paired percentiles. 

 

Figure 7 Scatterplot of MSD (mean squared differences) from 10 % holdout validations (HV) 

for estimated and actual GM As concentrations for samples with the same PM code based on 

the mean of n nearest neighbouring samples for: a) two repeated HV for soil samples 
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developed over PM (see Figure 2) with elevated As concentrations, b) three repeated HV 

using subsets of stream sediment samples from the Silurian Llandovery mudstone-dominated 

sedimentary rocks of Central Wales (no Quaternary deposits) which exhibit considerable 

lateral variation in stream sediment As concentrations. 

 

Figure 8 Scatterplots of GM As in stream sediments versus GM As in soil plotted on a 

logarithmic scale for different PM groupings, and their second order polynomial regression 

models (---) for: a) 1km-PM polygons (n=29416), b) 1km-PM polygons averaged over 5-km 

grid squares (n=4025), and c) PM with data grouped by 5, 10km, 100km grid square, and 

geological map sheet (n=1188). 

 

Figure 9 Categorical map of mineral topsoil equivalent geometric mean As ABCs (mg kg-1) 

for England and Wales. 

 

Figure 10 – Least squares non-linear regression model for the relationship between topsoil As 

GMs for individual PM groups and the estimated proportion of samples exceeding the 

regulatory threshold based on a log-normal distribution. 
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Table 1 Summary of the soil and stream sediment geochemical survey data used in this study (with reference to areas shown in Figure 1: G-BASE topsoil (A) GBASE deeper 
soil (A+B), GBASE sediments (A+B+C) and Wolfson Atlas (A+B+C+D). 
 
Survey Area in 

Figure 1 
Number 
of 
samples 

Mean 
sampling 
intensity  

Soil 
sample  
depth 
(cm) 

Size fraction analysed  Elements 
determined 
(including As, Cr, Ni) 

c Analytical 
method -As 

c Analytical 
method – Cr & 
Ni 

Survey dates 

a GBASE 
topsoil 

A 6332 1 per 2 km2 0-15 <2mm 45 major and trace 
 

XRFS XRFS 1994- 1996 

a GBASE 
deeper soil 

A+B 20,302 1 per 2 km2 35-50 <150μm 45 major and trace XRFS XRFS (DR-
ESd) 

1988 – 2000 

a GBASE 
sediments 

A+B+C 43,088 1 per 1.5 
km2 

n/a <150μm Between 30 and 45 
major and trace 

XRFS (AASd ) XRFS(DR-
ESd) 

1977- 2000 

b Wolfson 
sediments 

A+B+C+D 50,000 1 per 2.5 
km2 

n/a <177μm 19 major and trace 
 

KHSO4 fusion; 
Gutzeit 
method 

DR-ES 1969 

a Johnson et al., 2005; bWebb et al., 1978 
c XRFS (X-ray Fluorescence Spectrometry); DR-ES (Direct Reading Emission Spectrometry); AAS (Atomic Absorption Spectrometry: ammonium persulphate and 75% HCl 
acid digestion and solvent extraction); d samples collected north of Area A in Figure 1. 
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Table 2 Coefficients for regression equations relating collocated deeper soil and topsoil GM PHE concentrations grouped by PM across area A+B for: a) As, b) Cr, c) Ni 
(shown in Figure 2) 
 
Dependent 
variable ( y ) 

Independent variable 
( x ) 

Intercept (α ) 
± Std. error 

Coefficient (β ) 
± Std. error 

R2 Number of 
observations 

Standard error of 
observation 

a) GM Topsoil As 
for PM group 

GM deeper soil As 
for PM group 

0.24 (0.56) 1.01 (0.03) 0.89 186 4.6 

b) GM Topsoil Cr 
for PM group 

GM deeper soil Cr 
for PM group 

-1.85 (3.72) 0.88 (0.04) 0.72 176 13.8 

c) GM Topsoil Ni 
for PM group 

GM deeper soil Cr 
for PM group 

-2.92 (1.17) 0.86 (0.04) 0.76 176 5.7 

 



National-scale estimation of soil ABCs: page 28 of 33 

Table 3 Summary statistics and proportion of variance (%) accounted for in log transformed PHE 
concentrations in soils and stream sediments for areas shown in Figure 1. 
 
 As Cr Ni 
 Topsoil (<2mm, n=6332) Area A  
Min. 1 1 1 
Mean 16 74 23.5 
Geometric mean 13.6 67 19.8 
Geometric SD 1.68 1.6 1.9 
Max. 342 2534 459 
Skewness 8.4 28.3 6.1 
Loge transformed skewness 0.62 -0.68 -0.79 
aVariance (%) accounted for 
by PM classification 

34.7 30.1 42.9 

 Deeper soil (<150 μm; n=20,302) 
Area A+B  

 

Min. 0.45 2 0.5 
Mean 17.6 95 34.2 
Geometric mean 14.1 88.4 29.9 
Geometric SD 1.8 1.4 1.7 
Max. 463.8 6787 7804 
Skewness 8.7 48.8 117 
Loge transformed skewness 0.67 -0.55 -0.51 
aVariance (%) accounted for 
by PM classification 

39.2 28.5 27 

 GBASE sediments (<150 μm; n=10,322) 
Area A+B 

 

Min. 1 1 1 
Mean 17.9 97 42.7 
Geometric mean 14.8 92.4 39.1 
Geometric SD 1.8 1.4 1.5 
Max. 407 2144 1789 
Skewness 7.6 17.9 27.2 
Loge transformed skewness -0.1 -1.2 -0.2 
aVariance (%) accounted for 
by PM classification 

24.2 25.1 20 

a using ANOVA applied to the loge transformed data  
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Table 4 Summary statistics (mg kg-1) for G-BASE (GB) and Wolfson (WS) sediments for areas 
A+B+C in Figure 1  
 
 GB As  WS As GB Cr WS Cr GB Ni WS Ni 
Min. 1 1 1 1 1 1 
Mean 25.44 17.2 107 58.8 38.9 32.1 
Median 13.0 12.0 97.9 51.0 36.1 28.0 
Geometric mean 15.0 10.9 99.6 43.8 34.5 24.8 
Geometric SD 2.37 2.25 1.41 2.31 1.63 2.16 
Max. 12400 4000 14590 30810 32390 3275 
Skewness 82.5 42.35 93.9 150 13.7 37.2 
Loge transformed skewness 0.82 0.75 -0.05 -1.46 -0.57 -0.87 
n 27387 31006 32328 31006 32329 31006 
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Table 5 Coefficients for regression equations between GMsed and GMsoil based on more than 4 samples in each PM group at different scales: a) nearest 5 samples for 1-km 
polygons, b) grouped by 5 km grid square, and c) grouped by nested-scale approach (see text).  The regression plots are shown in Figures 8a-c. 

 
Dependent 
variable ( y ) 

Independent variable 
( x ) 

Intercept (α ) 
(± Std. Error) 

Coefficient  1β    
(± Std. Error) 

Coefficient 2β  
(± Std. Error) 

R2 Number of 
observations 

Standard error of 
observation 

a) GM As deeper 
soil (nearest 5) by 
PM class 

GM As sediment 
(nearest 5) by PM 
class 

1.03 (0.04) 0.51 (0.03) 0.03 (0.01) 0.42 29416 0.31 

b) GM As deeper 
soil (5 km grid 
square) by PM 
class 

GM As sediment (5 
km grid square) by 
PM class 

1.60 (0.11)  0.03 (0.08) 0.13 (0.01) 0.47 4025 0.31 

c) GM As deeper 
soil (nested-
scales) by PM 
class 

GM As sediment 
(nested-scales) by 
PM class 

1.31 (0.20) 0.17 (0.15) 0.12 (0.03) 0.55 1188 0.27 
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Table 6 Mean Square Deviation (MSD) and bias statistics for GMsoil and soil equivalent GMsoilest for i) (areas A+B) after application of regression equations (Figures 8 a-c) 
to 1-km PM polygons based on three different scales of combining stream sediment data by PM polygon for estimation of soil equivalent As ABCs, and ii) independent 
validation data. 

   
Mean Squared Deviation

( loge concentration)
  

       

Soil As concentration 
Range (mg kg-1) 
 

Number of 
1km-PM 
centroids 

1-km 
polygons 

(cf. Fig 8a)

1km-
polygons
avg. by 
5km2 

(cf Fig 8b)

Nested-
scale 

approach 
(cf. Fig 8c)

 Independent  
validation  

data 
(n=41) 

< 10 41596 *0.214 * 0.214 0.237  n/a 
10-20 111917 0.079 * 0.072 0.095  0.248 
20-30 21734 0.196 0.194 *0.186  0.252 
30-40 5662 0.486 0.502 *0.460  0.442 
40-60 3489 0.683 0.761 *0.624  0.936 
60-90 1405 1.122 1.266 *1.012  0.502 
>=90 1104 2.016 2.366 *1.793  2.080 
Bias  0.061 0.058 *0.032  0.191 
* minimum MSD and bias for As concentration range 
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Table 7 Mean Square Deviation (MSD) for measured soil As (GMsoil) and estimated GM soil (GMsoilest) based on sediment data after application of the regression equation 
from the nested approach (Fig 8c) for 1km-PM polygon centroids using i) GM, and ii) inverse distance weighted interpolation based on natural log transformed data. 

Distance to furthest sample – range 
(km) 

Count 
soil samples GM 

IDW 
interpolation 

  MSD MSD 
0 - 2.5 3129 **0.19 0.21 
2.5 – 5 7377 **0.22 0.24 
5 – 10 5846 **0.27 0.29 
10 – 20 4163 **0.32 0.34 
20 – 40 1370 **0.33 0.37 

*40 – 80 663 **0.27 0.29 
*80 – 160 170 **0.40 0.42 

*>160 29 **0.46 0.56 
* sediment data not grouped by PM at distances greater than 50 km. 
** smallest MSD for distance class 
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Table 8 Geometric mean As ABC and 95% confidence intervals (±) for concentration ranges shown in Figure 9 for areas where GM As has been estimated using soil or 
sediment values (Soilest). All units are mg kg-1.  
 

  Soil Soilest 
GM As Concentration  

range 
GM As for 

concentration range 95% confidence interval (±) GM As for concentration range 95% confidence interval (±) 
<15 12 4 10 5 

15-20 17 6 17 9 
20-30 23 9 24 17 
>30 48 38 59 62 
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