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1. Introduction

The ocean tides have a long and extensive history as a subject of scientific research [Cartwright, 1977,
Hendershort, 1981]. With respect to altimetry [Ray, 1993] found from an analysis of GEOSAT data that the
ocean tidal corrections represented 82 % of the total reduction in variance of co-linear differences, resulting from
all standard corrections. So it is clear that these large tidal corrections place heavy demands upon the relative
accuracy of global tidal models.

Altimetric data from the TOPEX/POSEIDON mission launched in 1992 will be used for studies of global
ocean circulation and marine geophysics, but before the data can be used it is necessary to remove the ocean
tides which are present in the raw data. Ray [1993] concluded that no sufficiently accurate global tidal models
exists to satisfy the aims of the mission. So even though we have a good understanding of the physics of the
tides, and numerical models have been able for some time to reproduce the majority of the principle features,
there is still room for improvement in the modelling of global ocean tides [Egbert et al. 1994].

One of the tremendous achievements of the T/P satellite mission has been the release of several ocean tide
models based extensively on T/P altimetry [i.e. Schrama and Ray, 1994; Ray et al., 1994; Desai and Wabhr,
1994, Knudsen, 1994; Sanchez and Paviis, 1994; Egbert et al., 1994; Ma et al., 1994; Eanes, 1994, Andersen,
1995]. All of these models provide significant improvements for all constituents, when compared to older models
by Schwiderski [1980] and Cartwright and Ray [1991]. An intercomparison of these recent global ocean tide
models has been presented by Andersen et al. [1995].

This project was initiated in 1994 by P. L. Woodworth to investigate and use the sophisticated methods for
ocean tide determination derived by A. Bennett [1992] for ocean tide modelling. As distinct from other empirical
approaches this approach uses the fact that the tides are constrained by two different types of information. The
first is that obtained from the laws of physics, and the second is the empirical data collected from tide gauges
and satellite altimetry. The aim of data assimilation in the tidal model is to derive a solution for the ocean tides
that in a mathematical sense best fits the hydrodynamic equations as well as the observational data.

Ole Baltazar Andersen became associated with the project during a seven month during stay at POL (spring,
summer 1994), and as initial results showed to be very promising he has continued working on the project after
leaving POL. Recently the first preliminary results were presented at the European Geophysical Society, XX
General Assembly, Hamburg, 3-7 April, 1995 in the session on remote sensing and modelling of ocean
phenomena. The title of the presentation was: "Integrating hydrodynamics and direct observations in global ocean
tide inversion. " Chapter 2 summarizes the theory involved in global ocean tide inversion as well as development
and experience using the code for global inversion for ocean tide modelling with main attention on the North
Atlantic Ocean.

The code was kindly provided to P. L. Woodworth by Andrew Bennett, Gary Egbert and Rodney James from
the Oregon State University (OSU). We are extremely grateful to all of these authors, as without their help and
support this project would not have been possible. We adopted their code, and made numerous changes to code
as we used a slightly different approach. However the structure of the code is still identical to the original
version provided by OSU.

The code for running the model is highly parallel and therefore extremely well suited for massively parailel
computers. It has been run on the Edinburgh CM-200 connection machine at Edinburgh Parallel Computing
Centre (EPCC). This version is data parallel code written in Fortran 90, the parailelism is implemented by the
use of compiler directives and array syntax.

The code provided from OSU was tuned to run on a CM-5 Connection Machine in USA. As a supercomputer
expert Mike Ashworth was involved in the project as to guide, tune and implement the code for running on the
Edinburgh CM-200 connection machine at Edinburgh Parallel Computing Centre (EPCC). For further progress
with this Global Tidal Model it is essential to transport the scheme to a more powerful machine. Use of the Cray
T3D will enable the model to run with grid sizes of higher resolution, thereby obtaining better spatial distribution
of representers. Also the facilities available on the CM-200 at Edinburgh EPIC will soon end. Hence a large part
of the project has been the conversion of the code into Fortran 77 and PVM (Parallel Virtual Machine) message
passing on the new Cray T3D machine at Edinburgh.

This part of the project has been undertaken by S. Wilkes (during autumn 1994) as partial fulfillment of his
degree of Master of Science in advanced scientific computation in the faculty of science at the University of
Liverpool. Chapter 3 report a summary of the results from his masters thesis on the parallel implementation of
the representer code on the Cray T3D

The initial aim was to derive ocean tide models constrained to the North Atlantic ocean using updated code
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on the facilities on the Cray T3D. However, during the final stage of the project, it was revealed that the Cray
T3D was very heavily booked. It was therefore decided to run the North Atlantic model using the CM-200
connection machine.

The status of the project is presently that all authors have left Bidston to work elsewhere. However, this does
not mean that the project will not be continued, as at least Ole B. Andersen hopes to continue to work on ocean
tides within the frame of this project. The results presented are convincing, and demonstrate the high potential
of the method. New ocean tide models with different resolution and for different areas of the North Atlantic are
presented. These models are comparable in accuracy to the widely used local model for the area. However, these
results clearly demonstrate that we can make much more progress using the method, but that it is essential to
use higher resolution in the ocean tide models in order to achieve that goal. Several suggestions to the practical
implementation of this are presented, so we hope to be able to improve both the technique as well as the resulting
ocean tide models using the facilities available on the Cray T3D machine at Edinburgh.

The approach that we have applied here seems to provide the basis for further improving the accuracy of
ocean tide models especially in the Northwest European shelf region, and a number of scientific communities
will be able to benefit from this improvement, especially those, that use ocean tide models as a standard
correction to be applied before studying other signals related to the ocean. I.e. altimetrists, geodesist and
oceanographers. Furthermore, inaccuracies in the applied ocean tide models have recently been seen [Baker et
al., 1995] to influence loading computations, which again can be seen to influence the determination of very
accurate gravity measurements as well as GPS measurements.

Copenhagen, 16 June 1995

Ole Baltazar Andersen
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2.  Global ocean tide inversion using Bennetts method
(O. Andersen)

The tides are constrained by two different types of information. The first is that obtained from the laws of
physics, as the second is data collected from tide gauges and satellite altimetry. Prior to the launch of the
TOPEX/POSEIDON satellite, data was limited to sea surface height measurements from coastal tide gauges as
well as a small number of pelagic tide gauge readings. By themselves the coastal tide gauges are of limited use
for global ocean tide modelling due to the complexity of the tides in coastal regions. However, Schwiderski
[1980a, 1980b] developed a hydrodynamic interpolation scheme in which the estimated harmonic constants were
used as a boundary condition for the numerical model derived using the dynamic equations. Imposing these extra
boundary conditions required local adjusting of the bottom-friction coefficient and relaxation of the no-flow
boundary conditions at the coast.

Due to the nature and origin of the code and method, parts of this description follow closely the method of
Egbert et al. and hence to what they reported in Egbert et al. [1994]. However, the theory will be briefly
reviewed in the context of the present analysis with main attention to the differences in the two approaches.

Hydrodynamic equations

The ocean tides arise from the influence on the ocean from the sun and the moon. The ocean tide field at a
position (§,A) is in the following denoted ((,A) . The ocean tide field is a complex vector field consisting of
a number of constituents #(Q,A) like

u(b,4)
U(OA) = Uy (D) omres U (BA)|  Where u(B,A) = | u($,3) @
h($,4)

whete u,($,A) and %, (,)) are the transport components in the north and east directions respectively and A(), 1)
is the elevation. It must be noted that all individual constituent fields that make up the ocean tide ficld u(¢,7\.)
are complex vector fields - this way 3n complex values are required to completely describe the ocean tide field
at each location, with the total ocean tide field arising from n constituents. Solving for the major four constituents
M,, S,, K,, O,) would then give a total of 12 complex parameters to be described at each location ($,A).

The code provided to P. L. Woodworth by Andrew Bennett, Gary Egbert and Rodney James from the Oregon
State University (OSU) allows a combination of all observational and hydrodynamic information into global tidal
fields best-fitting both the data and the dynamics in a least squares sense [Bernett, 1992].

The linearized shallow water equations are typically assumed for tidal modelling with parametrized
corrections for dissipation, tidal loading and ocean self attraction. To a good approximation the tidal fields u(,A)
at a frequency  satisfy the linearized shallow water equations, for the effects of open ocean self attraction and
tidal loading [Hendershott, 1981 subject to boundary condition on 6O

un =0 on 90,

h = h,on 30,,,

Su=f, A 2

where O is the full domain represented by the global oceans, f, is the astronomical forcing and where the indices
for position (¢,A) have been omitted for convenience.

The model has two types of boundaries &0. The rigid boundaries along coastlines 0O, and the open
boundaries along the (northern) edge of the model domain 500,,8,, The coastline boundary condition is no flow
normal to the coast, as n =(n,n,0) is the direction normal to the rigid boundary. Along the open boundary the
conditions are specified through the elevation at each grid cell using an existing ocean tide model (e.g. the model

of Schwiderski).
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The Laplace tidal operator .S for linearized shallow water equations is given by

io+K -f gHG+V,

S=| f iw+k gHG*V, 3
Ve Ve e

where H is ocean depth, fis the Coriolis acceleration, @ is the constituent frequency, V. and V represent the two
dimensional divergence and gradient operators on the spherical earth, K represent dissipation and G* represents
convolution with the Green's function for tidal loading and ocean shelf attraction [Hendershott, 1972].

Selected model parameters for the hydrodynamic equations

The forcing parameter f, for the astronomical potential given by Cartwright [1993] was used. This parameter
includes a correction for earth tide potentials. Convolution with the Green's function for tidal loading and ocean
shelf attraction G* was treated using the simple scalar correction factor G = 0.9 as also used in a number of
other hydrodynamic models (e.g Schwiderski). It must be noted that this scalar approximation is not the same
as the loading correction used to correct the altimetry - for altimetry the loading correction is simply the elastic
deformation due to the height of the water masses.

The bathymetry is obtained from the DBDB5 data base, which is notoriously inaccurate on the shelf and near
the coast. However the data base was supplemented by the bathymetric data from the northwest European shelf
bathymetry data base with the kind help of R. Flather. This way a much more reliable bathymetric model for
the area of main interest was used.

Dissipation parameters for the hydrodynamic equations.

Dissipation is a crucial parameter, and a wide range of formulations have been suggested in the literature.
Here we have investigated the use of two simple parametrizations. The first of these uses a linear relation
between bottom dissipation and bathymetry, using a linear decrease in dissipation with depth like

K = K,/ max(H,Hy) C))

This parametrization is defined by the drag coefficient X, and a minimum depth H, above which the
dissipation is defined to be constant. The parameters chosen by Egbert et al [1994] was (K, = 0.3 and H), =
300 meters), where Schwiderski used quite a different set of parameters (K, = 0.1 and H, = 20 meters).
Egbert et al [1994] chose their parameter set because they obtained the overall best result when compared to a
global set of 80 tide gauges. However, all of the gauges that they compared to were located in the deep ocean.
Hence, their choice of parameters might not be advisable for the shallow waters on the northwest European shelf.
In order to investigate which set of parameters that best fits the local conditions it was decided to test several
set of parameters. Two forward models for the M, constituent were derived using the two different dissipation
parameter set above. These solutions were computed to satisfy the Laplace tidal equations (Equation. 3), which
were solved by time stepping forward in a an Arakawa C grid with the mentioned parameters. The different
solutions are shown in Figure 1. In both Figure 1 and Figure 2 solid lines represent amplitudes and dashed lines
phase lag with respect to Greenwich. The contour interval for the amplitude is 10 cm. For the phase the contour
interval is 30 degrees.

The two figures are relatively similar in the deep ocean, which they naturally should be. However, they
becomes very different in the shelf area. Especially the parametrisation used by Egbert yields an ocean tide
model for the M, constituent which is very far from what is predicted by existing local ocean tide models. The
amphidrome point located in the centre of the North Sea and predicted by most ocean tide models is not present
in any of the models using the linear decrease in dissipation with depth. Furthermore the amplitude of the ocean
tide signal is a factor of 2 - 4 too small compared to existing models in most parts of the shallow North Sea.
Especially along the east coast of the UK these models are off by more than 1.5 meters of amplitude for the M,
constituent.

These results might be improved by still keeping the linear formulation ( Equation. 3) but using a quadratic



Figure 1 M, constituent model derived with different parameter set using linear relation between dissipation
and depth. Top: K,=0.3, H;=300 m, bottom: K,=0.1, H,=20m

relation between bottom dissipation and bathymetry. This time the dissipation decreases with the square of the
depth which will give a much higher change in dissipation in shallow waters than with the linear relationship.
This relationship looks like

One parameter choice was tested for the quadratic approach as well namely the drag parameter K, = 90.0
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K=K,/ (max(H,Ho))2 ®

and the minimum depth of /, = 900 meters. This set of parameters would yield almost constant dissipation in
most Northwest European shelf region, but some drastically changes in dissipation around the shelf.

The result using the quadratic relation between bottom dissipation and bathymetry is shown in Figure 2. This
set of parameters yields a considerably more realistic result for especially the North Sea region. An amphidrome
is now present, and relatively high tidal amplitudes are seen along the coast of the UK. However the result is
still considerably different to what is predicted by local models in the coastal regions.

-30 -20 -10 0 10

Figure 2 M, constituent model derived using a quadratic relationship between dissipation and depth.
K, =90.0, H, = 900 m

These models differ greatly from each other, as well as from the FES94.1 model from Grenoble presented
in Figure 8 [Le Provost et al., 1994]. The FES94.1 version of the Grenoble model has recently been shown by
Andersen et al., [1995] to be a very accurate model for the Northwest European shelf region, so it is worrying
that these forward models are so different. Another way to examine the forward model is by looking at the
maximum amplitude reached globally.

The maximum amplitude of the M, constituent varies from a maximum of 1.2 meters for the model that uses
linear relationship between dissipation and depth with constant dissipation above 300 meters (on the shelves) to
2 meters for the model that uses linear relation between dissipation and depth for depths greater than 20 meters
up to 4.5 meters for the model that uses quadratic relationship between dissipation and depth. The latter is the
most reasonable as tides having that amplitude is seen on the Patagonian shelf..

The obvious choice seems therefor to be to use the quadratic relationship between dissipation and depth.
However, of some reason the linear relationship between dissipation and depth with (K, = 0.1 and H, = 20
meters) was chosen as this seemed to be the best choice for both deep and shallow waters, as it looked more
realistic in the deep ocean. However, it is very worrying that the forward model using this set of dissipation and
minimum depth parameters (Figure 1) has amplitudes, that are so far from the amplitudes predicted by other
ocean tide models especially for the northwest European shelf region.
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Observations.
The two types of information of the tidal state, that we have, can be represented like,
1, -] 0
L d

Here our knowledge about the hydrodynamics is included through the g5 = f, equation and the knowledge from
observations comes from the equation 4 _ s ,, where d is the data vector and L is a measurement functional
on the tidal field.

While it is relatively easy to find a model, that will satisfy the hydrodynamic equation part of the equations,
it is much harder to find a solution that will fit the full set of equations.

In the present analysis the only observations are height observations from tide gauge or satellite. L can
include all sorts of observation of the tidal field u (¢,A) like sea surface height measurements or readings from
current meters. However, in the preceding analysis we have only sea surface height measurements from satellites
or tide gauges. In this case the measurement functional L is equivalent to a height measurement described by

d = L(u+e )

where d is the measurement vector and e is an additive measurement noise. For the present analysis the
measurements were the harmonic constituents observed from tide gauge sites or harmonic constituents derived
from measurements at TOPEX/POSEIDON crossover locations.

Pelagic and Coastal Data Processing

Pelagic and Coastal data was obtained from the data banks at POL and kindly provided by D.Blackman and
Smithson [1992] as harmonic constants for all major ocean tide constituents.

Actually we do not need the harmonic constants of the full ocean tide for the estimation of representer

coefficients in Equation 13. Here we rather need the residuals to a prior model like g/ = 4 - Lu, (+¢)

For our observations this correspond to using the residual ocean tide signal rather than the full ocean tide signal
like

6hot = (hobserved - hot) (8)

Data were therefore reduced using an apriori ocean tide model. The choice of the apriori model is discussed in
a later section. Harmonic constants for the residual ocean tide signal were subsequently used as data vector d.
As standard deviation a value of 1 cm was used for all observed constituents.

TOPEX/POSEIDON Data Processing
The observations comprising the residual elastic ocean tide heights O, used in the subsequent analysis are
computed from TOPEX altimetric observations (/) using the following expression

6heot = hssh - (hsensor M heat) - (hOSU9IA * hqssh) - ho (9)

where A,,,,,, is the sum of altimetric sensor effects, Ai,5,,, is the OSU91A geoid model [Rapp et al., 1991}, A,
is the quasi-stationary sea surface height, and 4, is orbit error corrections. 4,,, is the correction for the chosen
apriori elastic ocean tide model for the correction of pelagic and coastal data above. The elastic ocean tide
models were derived from an initial ocean tide model using loading tide computations based on the adjusted
grenoble (AG94.1) model by Andersen [1995] and kindly computed by R. Ray at NASA-Goddard.

Standard corrections for the altimeter sensor effects (electromagnetic bias, ionosphere, wet and dry
troposphere) were applied using values provided in the GDR [4VISO, 1994], including a 100% inverse barometer
correction with a mean pressure of 1013.3 mbar [Callahan, 1993].

Data were subsequently analysed using the response method [Mimk and Cartwright, 1966] with the orthotide

extension by Groves & Reynolds [1975] for modelling the residual tidal heights which can be represented as
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k=2

8k, ($40) = ¥ (@A) P (D +v($,1) Q)] 10)

k=0

where Py(t) and Q%) are the nearly orthogonal orthotide functions and %, (§A) and v, (4 are the unknown
coefficients of the orthotide functions. Full definitions of the parameters involved and orthotide coefficients as
well as transformations between admittance functions and leading harmonic coefficients can be found in
Cartwright and Ray [1990].

Finally the derived harmonic constituents for the residual elastic ocean tides signal were converted into
residual ocean tide harmonic constituents using a loading value of -6 % [Ray and Sanchez, 1989]. This loading
correction is sufficient accurate as only ocean tide residuals were to be studied. Harmonic constituents for the
residual ocean tide signal were subsequently used as input in Equation 13. As standard deviation a value of 1
cm was used for all constituents similar to the accuracy of the tide gauge derived harmonic constants.

Approach

The major differences to the approach taken by Egbert et al. [1994] is mainly that we attempt to derive a
hydrodynamic ocean tide model using harmonic constants derived from tide gauge readings AND from
observations from TOPEX/POSEIDON, where Egbert et al. only used direct altimetric observations from
TOPEX/POSEIDON. Egbert et al [1994] used the direct observations from the TOPEX/POSEIDON satellite
at crossover locations and entered these directly into the formulations, whereas we derive the harmonic
constituent from the altimetric observation first, derive the residual harmonic constants, and subsequently use
these residual harmonic constants to derive the residual ocean tide signal.

The two approaches have different advantages. By using the direct observations as by Egbert et al [1994] they
had to take inter-constituent correlation into account and solve for several constituents simultaneously. This
approach is very sophisticated, and is the most correct approach, because inter-constituent correlation exists and,
hence, should be modeiled. However, when solving for several constituents the number of unknown increases
and in order to reduce the number of unknown they had to use a linear interpolation of the admittance function
in order to resolve for several constituent simultaneously. The use of linear admittance relationship is a very
crude approximation, but they were Egbert et al were forced to use it in order to limit the number of parameters
entering the subsequent inversion.

In our approach we did not attempt to use inter-constituent correlation, or more precisely, we assumed it to
be zero which is an approximation. This could be achieved by estimating harmonic constants from the direct
observations from the TOPEX/POSEIDON and entering this into the global inversion scheme along with
harmonic constants from tide gauges. Thereby we were able to run one constituent at a time and just estimate
the coefficients for one constituent which lowered the number of unknowns substantially to 3 complex parameters
at each location.

We also used different set of parameters for the hydrodynamic equations that better matches the local
conditions in the North Atlantic Ocean and particularly matches the local conditions in the northwest European
shelf region as this was our main area of interest. This also entailed the inclusion of enhanced bathymetry and
different dissipation parametrisation and the use of a different ocean tide model for the northern boundary of the
model grid.

Finally we attempted to use different resolutions of the model grids - both a relatively coarse model with a
resolution equal to the resolution of the model by Egbert at al [1994], but also testing the technique for a model
with higher resolution.

Finding the improved solution.

The inverse approach attempts a minimisation of a quadratic penalty functional or equivalent the minimisation
of a cost function like
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where C, are data error covariance matrices and C,; and C, are the covariances of the forcing error and the
observations respectively.

The use of this penalty functional enables a normalisation of the two sources of errors. However, it also
enables a trade-off between fitting the dynamics and fitting the data, as the observations and the dynamics can
be weighed through the choices of C; and C,.

Following Bennett [1992] it can be shown that the weighted least-squares fit to data and dynamics found by
minimising P is essentially the minimum variance best linear unbiased estimator (BLUE estimator) of the tidal
field, which is also known as the Gauss-Markov smoother. If the dynamical and data errors are furthermore
assumed to have normal distribution then the estimate is also the maximum-likehood estimate.

In order to solve this generalised inverse problem we minimise P. In theory minimisation of P is
straightforward, and after discretisation of the model we have a large linear least squares problem. However if
the ocean tides are to be represented with reasonable resolution, the number of unknown parameters becomes
prohibitively large. For instance, a reasonable model with a resolution of 0.7 degrees would entail a global model
with [512 x 256] grid points as shown in Figure 5. If we were to solve for one constituent this would requires
512 x 256 x 2 =~ 250.000 parameters. If we furthermore want to run the high resolution model as shown in
Figure 6 or Figure 7 then the number of unknown easily exceeds one million parameters.

We will therefore take the Hilbert space approach derived by Bennett [1992] for oceanography. This approach
uses a Hilbert space approach similar to that which is used extensively in solid earth geophysics [Parker et al,
19871. The derivation is based on generalised inversion using the Euler Lagrange approach and can be seen in
detail in Bennett [1992] section 5.3 - 5.4. The following equations are also reported in Egbert et al [1994],
however they are essential to describe the nature of the representer fields in the following section.

First of all we define the full space of possible tidal states by 3. This means that any tidal field u (§2) is in this
space 3. The measurement functional or "point elevation” L of the tidal field is therefore a functional acting on
the elements in this state space.

The Penalty functional is a positive definite quadratic form. It can therefore be used to define an inner
product on the state space 3 like

<upu > = [ [Su,1() 167 Su,l(x)d% 12

We hereby also have a norm. The subset for which <#%u> < oo (corresponding to weak assumption on C)
forms a Hilbert space. For each functional (reasonable) in this Hilbert space there exists an element 7, in the state
space <3 so that

L = <ru> 13)
The element 7, is called the Riez representer of the measurement functional L (Note that in our terminology L

is our evaluation functional of the ocean tide field - above for constituent i ). Following Bennett [1992] P attains
its minimum for a unique element in this state space. This element has the form

K
u=uy -+ ;bkrk a4

where u is the complete description of the tidal state, b, are the coefficients of the representers r,, and K is the
total number of representers. #, is the model satisfying the Laplace tidal equation subject to rigid boundary
conditions. This model is in the following often referred to as the initial model or the apriori model satisfying
the Laplace tidal equations. The choice of #, is crucial and the subject of a section to follow.

The coefficients b for the representers satisfy the X x K sysiem of linear equations
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where R is the representer matrix which has elements derived from interpolation in the representer fields 7, like

R, = <r,r;> = L[r] (16)

Hence, this approach has massively reduced the number of unknowns to its real dimension which is equivalent
to one "set of parameters for the total ocean field" for each (independent) observation. But all of our observations
are independent as we use harmonic constants as input. The so called "set of parameters " relates to the number
of parameters, which equals three complex coefficients for each constituent solved for. This is really a massive
reduction of the apparent dimension of the inverse problem to its true dimension. Where the straight forward
minimization was a prohibited task then the inversion of the representer matrix is possible within the limitations
of many computers. However the calculations involved are still quite formidable because we have to compute
the representers and their coefficient.

These calculations can be split into three separate sections.

1) Calculation of the representer fields r,,
2) Estimation of the coefficients of the representers (b,
3) Finding the improved solution

Calculation of representer fields 7,
The first task is by all means the most computational intensive task. It has therefore been the aim of the
implementation on the Cray T3D as it is highly parallel. The description of routines associated with this part of
the code can be found in detail in chapter 3.

Representers can be computed by solving the following set of equations, which are based on equation (I1.4 -
11.15) in Egbert et al. [1994]

S'a, = A, arn

§7, = Cpra, as)

where the operator S* in the first equation is the adjoint operator to S for the Laplace tidal equations and is
impulsive forcing at a chosen location (¢}, A,).

The way this system of equations is solved is as follows: First, Equation 17 can be solved by stepping

backward using the hydrodynamic equations using the adjoint operator S* with the forcing A, applied at the
location of the observation, for which the representer is to be calculated.
Thus, one yields the adjoint solution ¢ for Equation 17. This adjoint solution ¢, is then smoothed with
dynamical covariance function C* . This yields the inhomogeneous boundary conditions for equation 18, as well
as forcing parameters. Finally equation 18 is solved with respect to the representer field 7, by stepping forward
from the inhomogeneous boundary conditions.

The two equations were solved using time stepping on an Arakawa C grid (Se chapter 3) by applying periodic
forcing and then explicitly time stepping from homogenous or in-homogenous initial conditions. The solution was
in both cases achieved in 10000 time steps using a step length of 50 seconds. This corresponds to letting the
model run for 500.000 seconds which is equivalent to around 6 days, and which should be adequate for obtaining
a reasonable stable accurate solution. The step length is considerably shorter than what has been reported by
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other authors like Egbert et al, 1994 or Gjevik and Straume, [1989]. The reason for such short time step is the
fact that the northern model boundary is placed along the 82°N parallel. At this latitude the grid spacing in the
longitude direction is reduces by a factor of 7 compared to the grid spacing at Equator. Hence, in order to keep
the system stable, a very short time step was needed.

The solution obtained from Equation 17 is to be smoothed using the dynamic error covariance function so
as to give the inhomogeneous boundary conditions. This smoothing is described like

Py = f‘f’(x,x’)u (x")d,x’ 19)

Such convolution is a rather time-consuming task even on a parallel computer. This has to do with the fact that
each grid point which is to be smoothed is influenced by every grid point in the array. This arises from the
integration term which requires the contribution from all cells in the grid to be estimated, and hence, it requires
communication with all points in the grid.

However Egbert et al [1994] suggested that an iterative approach was used to parallelise the approach. This
approach substitute the summation/integration in Eq. 19 with an iterative use of a local smoother or a repeated
multiplication like

Fxu = (I+yDYWu (20)

The theory of this smoothing approximation is described in appendix B of Egbert et al [1994] The idea is
iteratively to smooth or convolve the solution by repeating local smoothing. Local smoothing only requires
communication with eight nearest points, which makes it far more suited for parallel computers and hence much
faster to perform. By repeating the process, communication gradually progresses further away as also the nearest
point is smoothed by the second to nearest points and to forth. A convolution with a correlation length of 500
km can be done in 250 iterations, using ¥ = 0.01 to maintain the stability of the process.

Representer fields r,, _

For each (independent) observation we need to calculate one representer field. An example of such an
representer field is shown in Figure 3, which is a plot of the amplitude and phase of the height component of
the representer field.

45 90 135 180 225 270 315

45 90 135 180 225 270 315

0.0 360.0 Degree
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Figure 3 is located on previous page

Figure 3 Example of a representer field (K, constituent) - elevation component. Forcing is applied at the dot
in the North Atlantic. Contours indicate amplitudes (Interval is 2 mm). The cyclic greyscale displays phases.

Generally the representers are very broadly peaked with a2 maximum in the vicinity of the location of the applied
forcing dependent on the local dynamical conditions. It is also evident that the representers have relatively large
amplitude throughout the basin where it is located. The representer fields are actually triplets with two transport
components in addition to the shown elevation component.

The representer can be understand in both a physical sense and a mathematical sense.

The physics of the representer fields are relatively hard to decipher, but in a sense the representer fields
displays how the total model field reacts to an applied forcing with the chosen frequency and location. The
representer field in Figure 3 thus indicate how an applied forcing at the location of the dot will result in a global
field with the shown elevation and phase components.

However, the representers can also be viewed as covariance functions for the dynamical model. This can
be argued as follows. As the evaluation potential is bounded Moritz [1989] showed, that the Hilbert space
actually has a reproducing kernel [See also Tscherning, 1986] If the Hilbert space has a reproducing kernel
Kix,y) [Moritz, 1989] then the representer for the functional L has a very simple form

r(x) = L’K(x,y)

where [’ denote that L acts on the reproducing kernel as a function of y. This reproducing kernel might be
interpreted as covariance function for the dynamical residuals. The representer will be have its maximum at or
near to the location of the representer depending on the local conditions. The representer in figure 3 shows the
K, constituent. Moving away from the location of applied forcing the phase changes and the amplitude drops,
which again is influenced by the local conditions.
Similarly the representer matrix R where
R, = <r,r;> = Lr] 22)

may then be viewed as the covariance of Lfu-u,] = d-L{u,] ( = Rb) in the absence of measurement errors. This

means that R contains information on how the dynamic errors affect the measurement deviations from our prior
model u,.

Estimation of coefficients for the representer fields (b,

The estimation of the coefficients (b,) of the representers are found from Equation 15 where the elements of the
representer matrix are found using Equation 16. This inversion might also involve some quite heavy
computations [Egbert et al., 1994] if the number of unknowns is large.

However by assuming no inter-constituent correlation each constituent can be treated independently which
limits the number of unknowns by a factor of around 10 compared to that which was used by Egbert et al.
[1994]. The number of unknowns is then further reduced by constraining the solution to the North Atlantic. This
does in practice mean that the density of representers is much higher in the North Atlantic than in any other
ocean of the world which limits the number of representers drastically. These reductions lead to a number of
unknowns which does not exceed 1000. The inversion could therefore be treated using standard inversion
software as implemented in the GRAVSOFT software package [Tscherning et al., 1994].

In order to reduce the number of unknowns it is often very informative to have a look at the singular value
decomposition (SVD) of the representer matrix. performing a SVD can be viewed as a rotation of the data
vectors and the measurement functionals. Subsequently the inverse solution may be expressed as
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where r* and d* are the rotated functionals, and A and O are the eigenvalues of the representer matrix and the
variance of the measurement errors respectively. It is obvious that if A < < & then the eigenvalues are much
smaller than the measurement noise and this datum can safely be ignored.
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Figure 4 Ordered eigenvalues of the representer matrix for the M, solution from 372
representers

This practically means, that the summation can be truncated at a level X with out major loss of accuracy. The
solution estimated from the truncated set of eigenvalues using Eq. 23 is often referred to as the Regularised least
squares solution of the problem. For our solution the ordered eigenvalue spectra can be seen in Figure 4 The
eigenvalues were determined from the representer matrix for the M, constituent. It is obvious that the summation
can be truncated at a much lower number than 400 - actually a truncation level of 50 will probably be sufficiently
accurate with the chosen parameters for our hydrodynamic model. Further discussion on the tradeoff problems

between the number of eigenvalues and the accuracy of the final ocean tide model is presented in Egbert et al.,
[1994].

Finding the improved solution

From the estimated coefficients the improved solution can finally be obtained in two ways.
One is through a direct summation over the representer fields using the coefficients b,, by directly forming the
summation as in Eq 14 or Eq. 23. The other approach is a little more elaborate and is to convert the coefficients

b, for the representer field into equivalent forcing and subsequently running a forward model using these forcing
coefficients (Egbert et al., [1994]).
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We used the simple approach of just summing the representer fields whereas Egbert et al. [1994] ran a
forward model for their final solution using forcing coefficients derived from the estimated coefficients b, for
the representer field. When running the final forward solution Egbert et al. [1994] furthermore demonstrated,
that this model can be run with higher resolution than the resolution used for the calculation and running of the
representer fields derived previously. This will yield a FINE resolution final model based on COARSE resolution
representer fields.

Theoretically there is no guarantee that the solution on a refined grid will minimize the penalty functional
in Eq. 11. However, a solution can be found, that minimizes the penalty functional by iterative use of a
conjugate gradient search for a minimum solution.. Practically Egbert et al. implemented this on the CM-200
using the CMSSL library routine for Equation solving, where they used the subroutines for conjugate gradients.

We extensively tested their approach as we would have liked to use it as it seriously reduces the demand for
storage capacity and CPU time. However, there were considerable problems with a pumber of routines in the
CMSSL library on the CM-200 in Edinburgh due to different versions of the CMSSL library impiemented on
the CM-200 at the time of testing the code. Therefore, we finally have to abandon this approach and rather
calculate a FINE resolution final model based on FINE resolution representer fields. This implied a substantially
heavier use of storage facilities. But for the project the CONVEX Mass storage facilities at the Proudman
Oceanographic Laboratory (POL) could be used.

Mesh sizes - Model domain.

Our primarily goal
was to derive an accurate
ocean tide model for the
North Atlantic Ocean
and especially the
northwest European shelf
region. The area of
interest is therefore
roughly limited by the
20°N and 80°N parallel
and the 100°W and
40°E meridian.

However, the version
of the code that we
received from Egbert el
al at the Oregon State
University was tuned for
global ocean tide
modelling. One of the
implications of this
globalness was a clever
use of shift operators in
which the entire arrays
could be shifted around
the earth by one grid cell Figure 5 Mesh size for a model having 512 x256 gridcells corresponding to a
in the longitude spatial resolution of 0.7° x 0.6°
direction, and which
speeded up the computations.The shifting is possible as the eastern and western limits are identical in global
grids. However, this was not easily ported into local models, so we therefore decided to take the simplest
approach by just running global models for which we needed to alter the code as little as possible.

For the calculation of representer field Egbert et al. used a global regular grid with a longitude by latitude
grid size with 256 by 128 grid points. This corresponds to a spatial resolution of 1.4° x 1.2° (longitude by
latitude) of the global representer fields. The grid cells are not perfectly square as the model! area is limited in
the latitude direction. Egbert et al used the 70° N parallel as northern model domain boundary as they only used
altimetry from TOPEX/POSEIDON. To the south Antarctica always forms a natural boundary for ocean tide
models. Their final model by Egbert et al, was computed on a refined grid having a size of 512 x 256
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corresponding to 0.7° x
0.6°. This resolution is
shown in Figure 5 for
the Northwest European
shelf region.

We experimented
using two different grid
sizes on the CM-200. In
our first approach we
used a global regular
grid with a size of 512 x
256 elements
corresponding to a
spatial resolution of 0.7°
x 0.6° for the calculation
of the representers and
also the final model. The
resolution of this model
is shown in Figure §,
and in the Northwest
European shelf region it
corresponds to a spatial
resolution of 35 km by . RN T
65 km in the longitude : 12 N Sa— T Y 3
by latitude direction.

We also experimented  Figure 6 Mesh size for a model having 1024 x 512 gridcells corresponding to a

with a global model sparial resolution of 0.35° x 0.3°
constrained to

observations from tide

gauges and TOPEX/POSEIDON altimetry in the Baltic Sea using a global regular grid with a size of 1024 x 512
elements. This corresponds to 0.35° x 0.3° which in turn corresponds to (17 km x 30 km) for the calculation
of the representers as well as for the final model. The resolution of this model is shown in Figure 6. For this
model we only calculated 25 representers, whereas we for the coarser model above calculated around 400
representers.

For both models we used the Antarctica as southern boundary whereas the northern boundary was chosen
to be the 82° N parallel. This boundary was chosen as to include all of the Greenland-Iceland-Norwegian Sea
(GIN sea) as well as large parts of the Barents Sea. Furthermore this would make this model applicable to
altimetry studies from the ERS-1 and ERS-2 satellites, asthese satellites have an inclination of 98°.

Finally, we hope to test a model on the Cray T3D machine in the future which should have a size of 2048
x 1024 array elements corresponding to 0.15° x 0.12° resolution for the calculation of the final model. The
resolution of such a model will meet the increased demands for global models which are accurate also in coastal
regions. The resolution of this global model will be similar to the resolution of the Flather Shelf model
(Described below), which is often used for tidal prediction on the UK coast. And the resolution of such a model
approaches the capabilities of the finite element model from Grenoble. The resolution of this model is shown
in Figure 7.

However, there are considerably problems handling such a model. The basic problems will not be the
limitation of resolution due to memory on the Cray T3D, as the machine is equipped with more than 16 Giga-
byte of memory which is plenty for our purposes. However, handling of the global representer fields will be the
most difficult and time consiming task for this model. As an example the storage of a representer field with this
resolution requires (2048 x 1024 x 8 x 8 bytes (four constituents)), which is a little less that 100 Mbyte for ONE
representer. A reasonable model requires between 300-10000 representers.

This storage problem can be limited in two ways. Firstly by using the approach derived by Egbert et al,
which calculates representers on a coarser grid and the final solution on a fine grid. Secondly, the results so far,
have shown that it is not necessary to store the entire global grids for each of the representer fields. As can be
seen from Figure 3 then the representer field are broadly peaked around the location of the representer with
reasonably amplitudes in most of the basin where they are located. Hence, the representers have only significant




22

amplitude within around
2000-3000 km from the
location of the
representer. In the rest
of the ocean domain the
effect is merely a phase
change of insignificant
amplitude. This signal
could therefore easily be
skipped (or defined to
zero amplitude) without
compromising the
accuracy of the method.

Practically this could
be implemented by using
a threshold value. If the
amplitude was beiow this
value then this value
could be put to zero and
ignored. This means,
that one could limit the
storage requirements by
just storing a preselected :
area around each = -8

representer and defining Figure 7 Mesh size for a model having 2048 x 1024 gridcells corresponding to a
all other ocean areas to spatial resolution of 0.15° x 0.15° as intended to run on the Cray T3D

have zero amplitude with :

respect to that representer. This would entail some programming, but it would be worthwhile doing when
experimenting using these high resolution grids in the future.

Open boundary.

The model used in the present analysis is limited to the north by the 82 °N parallel. The §2° N parallel is
therefore the only open boundary of the model, where elevation has to be specified using an existing ocean tide
model. Only a few model are presently available that can be used to provide elevation along this open boundary.
They are the global hydrodynamic model by Schwiderski [1980] and from Grenoble [Le Provost et al., 1994 -
see description below] A few local model can also be used. They are the models for the Arctic ocean by Kowalik
and Proshutinsky [1993] or the models by Gjevik and Straume [1989] and Gjevik et al., [1993].

We chose to use the local model for the Arctic ocean by Kowalik and Proshutinsky [1991] as this model
should be very accurate in the Polar seas. However the model from Grenoble should also be very accurate,
whereas the accuracy of the Schwiderski model is more questionable.

Computer resources and performance tests.

We conducted a few performance test on the Edinburgh CM-200 connection machine at Edinburgh Parallel
Computing Centre (EPCC). The first test was a timing of the time stepping algorithm which is the key algorithm
in the construction of representer fields. Each iteration in the time stepping algorithm required 28 floating point
instructions per cell in the model grid. By running the 10000 iterations we could achieve a performance of
0.6Gflop (16K processor model) which is very satisfying and which indicates that the code is very well suited
for paralle!l processing. The time consumed for the calculation of one representer containing the four major
constituents on a 512 x 256 cell grid was estimated to be around 12 minutes on the CM-200 in the 16K processor
mode (during night and weekends).

This time does not include the reading of the input files as well as writing of the output files which takes
another 5-7 minutes for a 512 x 256 model and around 20 minutes for the 1024x512 model . The reading of
input parameters for the calculation of representers requires knowledge/grids to 13 parameters at each cell of
the grid which is required by the time stepping in an Arakawa C-grid. This is e.g. depth and mask values in the
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center of each cell, in the corners of each cell and on the center of each cell sides (See description in chapter
3). This is a total of 16 Mbyte of unformatted data which must be read before the calculation of representers can
start. However these parameters are identical for all representers so the input reading must only be performed
once for each job. One job generally corresponds to the calculation of 20 representers as the time limitations are
four hours CPU time for one batch job on the CM-200 connection machine at Edinburgh. Output for each
representer on a 512 x 256 grid is equivalent to 4.5 Mbyte unformatted data for a model which consists of the
four major ocean tide constituents. These huge amount of output data can be treated using a sophisticated system
of unformatted data and direct access files. The use of direct access files is absolutely essential for the subsequent
interpolation in the representer fields when deriving the elements of the representer matrix. Here the direct access
can elegantly be used so one avoid the reading of more than the required elements in the representer matrix.

Choice of apriori hydrodynamic model ().

Our initial or apriori model satisfying the Laplace tidal equation subject to rigid boundary conditions u, is
used in Eq. 14. The choice of this model is crucial in order to obtain a realistic final model. However, as
indicated in the Figures 1 and 2 the pure hydrodynamic model calculated using the Laplace Tidal Equations is
not very close to a realistic ocean tide mode! for the region like e.g. the Flather shelf model for the northwest
European Shelf region [Flather, 1981, 1988]. Furthermore these forward models did not match tide gauge
readings in the area very well. Our test using this model as apriori model and subsequently performing the ocean
tide inversion and calculating a solution that fits both dynamics and data the final result was not as accurate as
e.g. the Flather model. The reason for this must be found in the relatively complex tidal regime in the North
Atlantic Shelf region which is extremely different to resolve with the chosen resolution for our model equal to
0.7°.

Such results is not very satisfactory, so in order to try to make a model comparable to or hopefully to make a
model which is better than the present best model for the area - it was decided to make an approximation at this
point by choosing an alternative apriori model u,.

K
U = UGrenoble(FES94Y) * ; by 24)

Rather than using the pure hydrodynamic model calculated from the Laplace Tidal Equations as initial model,
it was decided to make an approximation and try to use the model from Grenoble as apriori model and calculate
residual ocean tides to that model. This has several implications, because it violates parts of the theoretical
assumptions. The theory is mainly violated because the base functions (representers) have actually be calculated
using a different set of hydrodynamic parameters as well as different resolution for the hydrodynamic model than
the apriori hydrodynamic model (Grenoble). However, it is very important to note, that the covariance function
for the dynamic error used to define the inner product (Equation 12) in our Hilbert space and hence the
derivation of the least squares solution (Equation 14) was derived in a consistent way. This is due to the fact that
the dynamic error covariance function is actually calculated from the Grenoble model. Hence the improved
solution is actually the minimum solution in the Hilbert space except for the approximations made due to the
choice and use of different model parameters.

One of the results of this approximation is, that we will not be able to get the transport components as output
from our global inversion solution. We will only be able get the elevation component of the final ocean tide
field, as we have not had access to the transport components on the Grenoble model. On the other hand the
advantage of using the Grenoble model should be that we are able to get some of the complex content of the
ocean tide signal modelled with the Grenoble model, which we can not resolve using our linear formulation.
However in our assumption (Equation 24) we only assume that the residual ocean tide signal to the Grenoble
model is well modelled using a linearized model. This might be even more correct, as the assumption inherent
in Equation 14 (The residual ocean tide to a linear forward model is accurately modelled using a linear
formulation) is questionable with the accuracy of the existing forward models.
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Figure 8 M, constituent of the Grenoble model [Le Provost et al., 1994] in the Northwest European shelf
region. Solid lines represent amplitudes, dashed lines phase. Contour interval is 10 cm.

The Grenoble model (FES94.1).

39 Tide Gauges M, S, K, 0O, M,+S,+K,+0
1

Grenoble (0.5° x 0.5 2.23 1.20 0.96 0.51 2.63

OSU, TPXO0-2 (0.5° x 0.5% 2.14 0.87 0.78 0.45 2.45

Table I Comparison with 39 tide gauges in the Atlantic Ocean (the 39 tide gauges is a subset of the 104
tide gauge set prepared by C. Le. Provost and other members of the T/P subcommittee on ocean tides.

The Grenoble model (FES94.1) is actually a very accurate hydrodynamic ocean tide model to use as starting
point for modelling ocean tides. The Grenoble model has been produced by C. Le Provost, M. L. Genco, F.
Lyard, P. Vincent and P. Canceil [Le Provost et al. 1994], and is based on a finite element hydrodynamic
scheme. This model along with the model that by Schwiderski are the only two recent global models, that do
not presently include satellite altimetry in their solution. The design of the model is based on a non-linear
formulation of the shallow water equations, and the model covers the global ocean (including the Arctic ocean)
except for some minor areas such as the Bay of Fundy. The model is provided on a global regular latitude -
longitude grid of 0.5° x 0.5° resolution, with eight constituents (M,, S,, N,, K,, 2N,, K;, O,) and Q,. Five
secondary constituents (Mu,, Nu,, L,, T, and P,) have subsequently been deduced by admittance interpolation.
The model used here is the pure hydrodynamic model version FES94.1

The M, constituent for the North Atlantic ocean is shown in Figure 8. In order to illustrate the accuracy of
this model a comparison to 39 tide gauges in the Atlantic ocean is shown in Table 1 for this model along with
the OSU TPXO-2 model by Egbert et al.

In Table 2 the comparison with a set of 65 tide gauges on the Northwest European shelf is furthermore shown
The location of these tide gauges are displayed in Figure 9. These tide gauge readings consist of a selection of
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65 Tide Gauges M, S, K, 0, M,+S,+K,+0,
Schwiderski (1° x 1°) 5.79 1.92 1.15 0.78 6.26
Cartwright & Ray (1° x 1.59 8.25 3.74 2.46 0.94 12.16
Grenoble (0.5° x 0.59 3.99 2.12 1.29 0.70 4.74
OSU, TPX0-2 (0.58° x 0.70° 9.34 8.55 1.45 1.14 12.80
Andersen AG94.1 (0.5° x 0.5 3.23 2.23 1.29 0.70 4.21
Flather NEA, 1981 (0.33° x 0.5% 5.08 2.74 1.59 1.12 6.09
Flather shelf, 1994 (0.16° x 0.11°%" 3.84 1.57 2.11 0.82 4.73

“The comparison towards the Flather shelf model was limited to 47 tide gauges located within the coverage of the model.

Table I Comparison with a set of 65 tide gauges in the Northwest European shelf region for a number of
global and local models.
-20 -15 -10 -5 0 5 10

s 58 tide gauges published by IAPSO [Smithson, 1992]

supplemented with 7 pelagic tide stations in the North
Sea as obtained from the data banks at POL., Bidston
Observatory.

The two widely used local models are added to
the Table for comparison. One is the 36km Flather
NEA model, a non-linear hydrodynamic finite
difference model described by Flather [1981]. This
model uses a regular (0.33° by 0.5° latitude -
longitude grid covering approximately 37° < ¢ <
72°, -30° < A < 25° with open boundary forcing

56

52

48
based on Schwiderski and some tide gauges. Another
local model is the 12km Flather model (0.11° by
o 0.16° which covers the NW European shelf (48° <
“ e e ¢ < 62° -12° < A < 139, and is used
-10 -5 0 5 operationally for coastal flood forecasting in the UK.
Figure 9 Location of 65 tide gauges in the North The model is optimized to predict water levels on UK
West European shelf region. coasts, and open boundary forcing is based on

Flather, 1981 NEA model resuits and tide gauges
around the shelf. It is important to note that a subset of the 65 tide gauge set used in this investigation has been
assimilated into the Flather model as well as the Schwiderski model and the Grenoble model, which means, that
the 65 tide gauges set will not give a totally independent test of these models.

It is important to note that the apparent accuracy of the OSU TPXO-2 model (an eight constituent “extended
model to the model described in Egbert et al., [1994]) does not provide very accurate ocean tide estimates in
the Northwest European shelf region compared to the other models. This model performs very well in the deep
ocean, but the model has problems in the shallow waters of the Northwest European shelf region, where it
performs substantial worse than e.g. the model from Grenoble. The causes for this is probably due to a coupling
between the fact that the OSU TPXO0-2 model did only have two representers in the North sea, and the fact that
it uses the forward model in Figure 1 as a initial model (Eq. 4) for the tides in the North sea.

Choice of covariance functions.

The observations and the dynamics can be weighted through the choices of the covariance functions C; and
C. as mentioned in connection with the explanations following Equation 11. The penalty functional or cost
function enables a normalisation of the two sources of errors, and hereby it can also be used to enable a trade-off
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between fitting the dynamics and fitting the data. However for the presented models we have tried to choose
values for the covariance functions from a consideration, that the models should be using as realistic variance
parameters as possible and still being fairly easy to implement.

Dynamic error covariance

45 % 135 180 225 270 315
M2 Dynamic error variance : From Grenoble model

-7.0 -5.0 logl0 (md/s4)

Figure 10 Dynamic error variance function for the M, constituent as calculated from the model of Grenoble.
The greyscale is logarithmic ranging from 107 to 10 m*/s®.

The dynamic error covariance is used to smooth the backward solution in order to yield the inhomogeneous
boundary conditions as well as forcing for the subsequent forward solution when calculating representer fields.
(See the equations 15, 16). The dynamic error covariance havs 3 complex components (two from the momentum
equations and one from the continuity equation). In order to keep computations as simple as possible the 3
components are assumed to be uncorrelated.

The design of the dynamic error covariance function is also largely determined by computational
considerations. The most simple approach would be to use the same covariance function everywhere. However,
this is not very satisfactory as the dynamic conditions change dramatically going from e.g. the open ocean into
the shelf regions.

Therefore a slightly more complicated covariance function was chosen. This approach is identical to the
approach used by Egbert et al [1994] This covariance function is described for each constituent separately using
the following form

Clx,x] = o(x,)0(x;)0(cosy) 25

where O(x)’ is the spatiallt varying variance and €(cos\) is the spatial correlation function . This correlation
function \ has a decorrelation length scale of around 5° which is identical to the correlation function used by
Egbert et al [1994].

Dynamical errors covariance function will have errors due to the approximations used when describing the
model. These approximations arises from the choices of:
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dissipation parameters,
the bathymetric model,
the applied grid spacing,
the applied linearized shallow water equations,
the treatment of loading,

AT tncde e T D) st CAOOAT

Mciniosn ana benmett [1984] concluded that the crude parametrisation of dissipative effects is without doubt the
largest and most dominant source of error. Especially the fact, that a number of very different parametrisation
can be used to describe the dissipation parameters (Figure 1-2), implies that the error associated with these
parameters must be almost of the order of the parameters themselves. So it is obvious, that one must assume very
large errors in the dissipation parameters. For the zonal component the hydrodynamic equations according to
Equation 3 yield

(iw+ Ku - f + chgxh— =fo (26)

Assuming 100% error in the dissipation terms, the dynamic variance or the forcing error of,
this term of the above equation can be described like (Egbert et al. [1994])

o]
i

vertef = IKU1 = [Ea?(lz%y—o) F @

where U'is the transport scale in the northerly direction for the zonal component.

This is a very convenient formulation for computing the dynamic covariance, as it can be implemented
numerically. This way the dynamic error covariance function can easily be computed from an existing ocean tide
model using a geostrophic approximation for the estimation of the transport components.

As the errors in the description of dissipation is so dominant it was decided to ignore other sources of errors
in the dynamic error covariance function. Hence, the dynamic error variance function was calculated from the
model of Grenoble using a geostrophic approximation in order to derive the transport components. In order to
avoid too large variations in the dynamical errors parameters, and in order to avoid, that possible spurious effects
in the Grenoble model could propagate into the final solution, the Grenoble was smoothed prior to estimating
the dynamic errors with a very simple 1 degree running mean smoothing filter.

The error variance function for the zonal component is shown in Figure 10. The dynamic error variances
varies from 5.0 x 10°m*/s* in the deep ocean to 1.0 x 10 in coastal regions. The figure is originally a color
figure. Unfortunately the black and white version became very dark which makes it difficult to decipher.
However, lightgrey in the figure corresponds to areas, where the dynamic variance is largest.

The measurement error covariance
The measurement error covariance function enters the inversion when solving for the coefficients of the
representer fields. For simplicity the measurement error covariance function is described like a diagonal matrix
having the form
C =04 (28)
Hence, the observations will be assumed to be uncorrelated. Both the standard deviation for the harmonic

constants derived from tide gauges as well as from satellite observations are assumed to have similar accuracy.
The value of G will therefore constally be equal to 1 centimeter.



28

Location of representers and observations.
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Figuie 11 Location of representers m the North Atlantic ocean. (+) selected TOPEX/POSEIDON crossover
locations. {o) selecied tide gauge locations.

There are several
considerations on how
the spatial distribution of
the representers should
be. As mentioned
previously the
representer field for a 56
location ($,A) indicates,
how the model reacts to 54
forcing applied at this
location. The distribution  s2
of representers should
therefore have a s
somewhat homogenous v
spatial coverage, and the 44
density of the
representers should be
adequate to represent the Figure 12 Location of representers in the northwest European shelf region. (+)
tidal features in both the selected TOPEX/POSEIDON crossover locations. (o) selected tide gauge
open ocean as well as in  locations.
the shelf regions. On the
other hand, the chosen correlation length in the dynamic covariance function is five degrees. And this length is
used to smooth the backward solution when calculating the representer fields.

For our COARSE model we used a global regular grid with a size of 512 x 256 corresponding to 0.7° x
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0.6° for the calculation of the representers
and the final model. For this solution 482
representers were calculated at the
locations displayed in Figure 11. 264 out
of these representers were derived at
TOPEX/POSEIDON crossover locations,
whereas the remaining 218 representers
were computed by applying the
astronomical forcing at the location of tide
gauges.

An additional 80 representers are
located at the tide gauge stations of the set
of 104 tide gauge stations as located in
Figure 14. A close up of the distribution
and location of representers in the
northwest European shelf region is
presented in Figure 12.

The density of representer fields for
observations from the TOPEX/POSEIDON
satellite is relatively dense in the shallow
water regions around the Northwest
European shelf (indicated by +) as all
available crossover locations on the shelf
have been chosen for the analysis. In the
deep parts of the North Atlantic Ocean
only a subset of the availabie crossovers
were selected as displayed in Figure 11.

The global model constrained to represe
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Figure 13 Location of representers in the Baltic Sea and Danish
Waters.

nters in the Baltic Sea used a global regular grid with a size of 1024

x 512. corresponding to 0.35° x 0.3° (17 km x 30 km) for the calculation of the representers as well as for the
final model. For this model we only calculated the M, constituent and a total of 30 representers were used. 23
of these representers are estimated at tide gauge locations, whereas the remaining seven representers were

calculated at TOPEX/POSEIDON crossove

13.

r locations. The location of these representers can be seen in Figure
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Figure 14 Location of 104 tide gauges used for the comparison of models. Outside the North Atlantic Ocean
the tide gauges marks the position of representers.



Ocean tide Model Results.
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Figure 15 M, constituent for the Northwest European shelf region. Solid lines represent amplitudes, dashed
lines phase. Contour interval is 10 cm.

Figure 16 S, constituent of the model for the Northwest European shelf region. Solid lines represent
amplitudes, dashed lines phase. Contour interval is 5 cm.
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Figure 17 K, constituent of the model for the Northwest European shelf region. Solid lines represent
amplitudes, dashed lines phase. Contour interval is 2.5 cm.

The resulting model computed from global inversion approach having a resolution of 0.7%nd derived from
fitting 372 representers are presented in the figures 15 - 18 for the four major constituents M,, S,, K;, O,
respectively. The models exhibit very accurate ocean tide field throughout the model domain, but it is obvious,
that the major problem with the presented solution is the masking applied. The masking relates to the fact, that
the resolution of the model is simply too coarse toenable proper ocean tide modelling in coastal regions.

However the accuracy of these new solutions are very promising as will be seen.

In Table 3 the comparison is made with a subset of 58 tide gauges shown in Figure 8 in the Northwest
European shelf region. The subset consisted of 58 stations. These were the stations from the 65 tide gauge
stations located in Figure 9 which were within the coverage of the computed model (Due to the masking).

58 Tide Gauges M, S, K, 0O, M, +S,+K,+0,
Grenoble (0.5° x 0.5° 3.91 2.12 1.19 0.72 4.65
OSU, TPX0-2 (0.58° x 0.7%) 9.01 8.28 1.40 1.18 12.23
Global Inversion (0.62° x 0.7°) 3.75 1.67 1.42 0.61 4.38
Flather NEA, 1981 (0.33° x 0.5°% 4.89 2.61 1.52 1.01 5.83
Flather shelf, 1994 (0.16° x 0.11°)" 3.84 1.57 2.11 0.82 4.73

“The comparison towards the Flather shelf model was limited to 47 tide gauges located within the coverage of the model.

Table Il Comparison to a set of 58 common tide gauges in the Northwest European shelf region for a

number of global and local models..



Figure 18 O, constituent of the model for the Northwest European shelf region. Solid lines represent
amplitudes, dashed lines phase. Contour interval is 2.5 cm.

Compared with the apriori or initial model from Grenoble the major improvement in RMS differences with
the selection of tide gauges is seen for the S, constituent. A minor improvement is also seen for the M, and O,
constituents. It must be borne in mind, that in such a comparison both inaccuracies in the model as well as in
the derived harmonic constituents will limit the obtainable accuracy.

For the M, constituent a RMS difference of 3.75 cm with tide gauge readings is actually VERY accurate,
as the averaged RMS amplitude of the M, constituent is close to 1 meter in the shelf region. A puzzling resuit
is the fact that the RMS differences do not seem to become better for the K, constituent - on the contrary it
becomes worse. One reason for this might be that we still have problems with the software. However, it is
VERY puzzling, that we have problems for the EXACT same constituent as the Flather shelf model. This
indicates, that the problems might arise from the harmonic constants for the tide gauges - and that they might
not be sufficiently accurate The recording length of a number of these tide gauges (which also entered the Flather
shelf model) are less than one month, which is too short to perform a reliable and stable extraction of the K|
constituent See eg. [Baker, 1990] for a discussion on this problem.

Finally Figure 19 presents the M,constituent for the Baltic Sea. However, we are not able to claim anything
about the accuracy of this model, since there were problems in stabilising the solution and since we did not have
access to any independent model that we could test the model against - actually we know of no other ocean tide
model for the baltic Sea - except for the unpublished model by Lakshmi Kantha from the university of Colorado.

Conclusions - Future work.

The final model for the North Atlantic Ocean presented in the Figures 15 through 18 for the four major
constituents M,, S,, K,, O, respectively presents very "accurate"prediction of the tides in the North Atlantic and
on the Northwest European shelf region. This demonstrates the high potential of the method applied for ocean
tide modelling. Also Figure 19 presents a new M, ocean tide model for the Baltic Sea - even though it was not
possible to compare this model to other existing model, as we did not have access to any other ocean tide model
for the Baltic Sea.

The reason for writing "accurate” above arises from the fact that the derived model is constrained to tide
gauge data and TOPEX/POSEIDON data. This introduces a problem of finding an independent data set in order
to perform an independendent test of the accuracy of the model. This means, that a comparison to tide gauges



data and TOPEX/POSEIDON
data will never give an
independent evaluation of the
model as the data enters the
model in its derivation. It is
therefore relatively hard to
make an independent test of the
accuracy of the model.
However it can be done by
selecting a independent set of
tide gauge data, and e.g. using
data from other satellites than
the TOPEX/POSEIDON
satellite. This can be data from
the ERS-1 or ERS-2 satellites or
data from the older GEOSAT
satellite.

The most striking result is
probably that the resolution of
the presented models in Figure
15-18 is clearly mnot good
enough in order to model the
tides on the shelf. We simply
need to consider running a

' G model on the Cray T3D
15 20 ' 25 machine in the future which

Figure 19 M, constituent of the high resolution test model constrained to ~ Should have a size of 2048 x
representers in the Baltic Sea. Solid lines represent amplitudes, dashed 1024 array elements

. &0 o
lines phase. Contour interval is 2.5 cm. corresponding to 0.15 x 0.12
resolution for the calculation of

the final model. The resolution
of such a model will meet the increased demands for global models which are accurate also in coastal regions.
The resolution of this global model will be close to the resolution of the Flather Shelf model, which is frequently
used for coastal tidal prediction around the UK. And the resolution of such a model approaches the capabilities
of the present finite element model from Grenoble. There are severe problems handling such a model. However,
the present investigation has given us inspiration and experience on how to use the method, and also on how we
can solve the practical problems. Hence, we hope to be able to improve the method further in the future.

Our approximation of using the model from Grenoble as apriori model, rather that using the pure
hydrodynamic model calculated from the Laplace Tidal Equations as initial model has been shown to result in
very accurate ocean tide estimations. However this approach violates the theory and there are several implications
when taking this approach. On the other hand the advantage is that we are able to get some of the non-linear
content of the ocean tide signal modelled using the Grenoble model, so that we just have to assume that the
residual ocean tide signal is well modelled using a linearized model.

In our approach we avoided the use of constituent correlation, or more precisely we assumed it to be zero
which is an approximation. This could be achieved by estimating harmonic constants from the direct observations
from the TOPEX/POSEIDON and entering this into the global inversion scheme along with harmonic constants
from tide gauges. Thereby we were able to run one constituent at a time and just estimate the coefficients for
one constituent which substantially lowered the number of unknowns. The advantages of this simplified approach
were so large, large that it must be recommended for further test with the model.

We also attempted to use a set of parameters for the hydrodynamic equations that best matched the local
conditions in the North Atlantic Ocean and particularly matches the local conditions in the northwest European
shelf region rather than using parameters that best fits global conditions even though the model was global. This
entailed the inclusion of enhanced bathymetry and different dissipation parametrisation and the use of a different
ocean tide model for the northern boundary of the model grid.

The crude parametrisation of dissipation was shown to be crucial to the accuracy of the final model. We
chose a linear relationship between depth and bottom friction. However, we recommend that test is performed
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to show if one obtains better results using the quadratic relationship between depth and bottom friction, and what
results will come out if one used the relative accurate forward model as initial or apriori model which could be
derived using these parameters (Se Figure 2).

The status of the project is unfortunately that all authors have left Bidston to work elsewhere. However, this
does not mean that the project will not be continued. At least Ole Andersen hopes to continue to work on ocean
tides using this approach within some framework in the future.

The results presented in this report are very convincing, and demonstrate the high potential of the method,
and the models derived in this analysis are comparable in accuracy to the widely used local models for the area.
However, our experience with the method convinced us that we can still make more progress in modelling the
ocean tides in the North Atlantic ocean and especially on the Northwest European shelf, but that we must use
higher resolution in the ocean tide models in order to achieve that goal. However, it is important to realize that
the work performed by Stuart Wilkes and Mike Ashworth on adopting the code to run on the Cray T3D actually
means that most of the practical preparations has already been accomplished.

This approach as developed by A. Bennett combines hydrodynamic and data from tide gauges and satellite
observations seems to provide the basis for further improving the accuracy of the ocean tide models especially
in the Northwest European shelf region. A number of scientific communities will be able to benefit from this
improvement. This will especially benefit communities that use ocean tide models as a standard correction to be
applied before studying other signals related to the ocean. This will be altimetrists, geodesist and oceanographers
and other scientist involved with measuring i.e. dynamical changes of the earth, as the ocean tides indirectly
affect loading computations, high precision gravity measurements and even GPS measurements.
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3. Parallilisation of representer code (S. Wilkes, M. Ashworth)

The project will involve working solely on parallelising the first section of code that forms the representer
matrix, this first program "repx” contains no calls to external library routines, and hence is totally self contained.
The calculation of the representer matrix executed by the first section of code is split up into several main
subroutines. This code is data parallel code written in Fortran 90, the parallelism is implemented by compiler
directives and array syntax. The compiler directives tell the CM-200 how to map out the data over its array of
processes. The array syntax shows the compiler specifically where operations may be executed in parallel.

Description of Code and Method

Description Of Repx

istep:
This is the main program, its task is to read in from unformatted files the main data arrays that will be used
in the calculation of the representers. Both two and three dimensional arrays are handled at this stage of type
integer, real and complex. Also other important types of information are read into the algorithm including
data for setting up the gridsize, locations of open boundary nodes, frequencies of the constituents, parameters
to determine the harmonic analysis sampling rate, and the total number of sampling locations. Next, the main
program enters a loop which completes one cycle for each representer, inside this loop all of the main
subroutines are used in forming the final result. Finally when the main loop has been completed the results
are written to a file.

chkpar:
This is the first routine that is called by the main program, it is called immediately after information about
the gridsize has been read. Its task is to check that the parameters used in this particular run of the algorithm
match those set for the main program in file 'gridsize.inc'

mkwts:
This is next to be called. It is a routine that computes latitude-dependent weights for the discrete
approximation of integrals on the finite difference staggered grid and boundary. In this routine Fortran 90
"cshift' statements are used upon arrays to calculate updates for the finite difference scheme used

avgker:
This is the first routine to be called inside the main loop (avgker is called prior to this but as a co-ordinate
checker only) it takes an individual point and constructs a number of complex arrays, which are estimates
of the forcing amplitudes integrated over the timestep used. These arrays also provide details of fixed
boundary conditions at the open boundary nodes

bstep, tstep:
This is a backward time stepping routine that uses the forcing arrays calculated in avgker. Initially various
sign changes are performed upon some of the arrays used in this routine, but these are undone later. The
routine then enters a time stepping loop, values are updated using 'cshift' statements again corresponding to
the finite difference scheme. After the time stepping loop is complete, a set of equations are solved using
Cholesky decomposition . tstep is identical in structure to bstep, except it solves the forward tidal equations
by time stepping

chdec, Itslv, utslv:
The routine chdec is called from inside bstep and performs the Cholesky decomposition. Routines ltslv, and
utslv are linear equation solvers for lower and upper triangular matrices respectively

fwdfrcx, fwdfrc:
After bstep is called, either fwdfrcx or fwdfrc uses the results from the backward stepping problem to
calculate the forcing arrays and boundary conditions for the forward stepping routine. The calculation of the
closed boundary nodes are completed first using cshift statements upon whole arrays. The next stage is the
forming of boundary conditions for the open boundary nodes, these are calculated by taking a location of a
point at a time to build the final array. Next these boundary conditions are smoothed using the Fortran 90
intrinsic 'sum’ statement. After all calculations have been completed upon the boundary nodes, forcing arrays
are calculated for the interior locations. The difference between the two routines is that fwdfrcx computes
interconstituent forcings using cross correlation, and fwdfrc does not.

Finite Difference Scheme Used
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The scheme is based upon the solution of the linear hydrodynamic equations below:-
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where t denotes time, u and v are x and y components of velocity respectively, g is acceleration due to gravity,
Y is the geostrophic coefficient taken as constant, u is the vertical eddy viscosity, z is the free surface elevation,
and b is the water depth. Which leads to the following difference equations:-
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where i and j indices are in the x and y directions on the finite difference grid in Figure 21. The k index is the
vertical mode, and ¢,™ are certain model parameters. At each time step the field is updated explicitly, and the
u and v fields are updated semi implicitly to improve stability for all i, j, and k [Harding and Wait, 1994].

The type of grid used during the main time stepping loops of routines bstep, and tstep is an "Arakawa C-
grid" as shown below:-
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Figure 21

The serial implementation of the finite difference scheme described above contains the following
computational kernel, represented in pseudo code (for one constituent):-

do for all timesteps
do i,j for all gridpoints
update z(i) from u(1,j), v(i,j), u(i-1,j), and v(i,j-1)
enddo; enddo
do 1,j for all gridpoints
update u(i,j) from z(i,j), z(i+1,j), v(i,j), v(i+1,j), v(i,j-1), and v(i+1,j-1)
enddo; enddo
do i,j for all grid points
update v(i,j) from z(i,j), z(i+1.j), u(i,j), u(i-1,)), u@i+1.,j), and u(i+1,j-1)
enddo; enddo; enddo
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So it can be seen with reference to figure 21 that the update to each z value depends on its neighbouring u's and
v's, with updates to the u and v velocity fields requiring four v and u points respectively [Ashworth and Davies,
1991].

Identifying Communications

A parallel code can be perceived as a number of processes all of which are functioning individually. Hence
during the execution of a parallel program there is need for communications to take place between the separate
sequential processes. Initially a decomposition will take place of the full data domain into subdomains. Afier this
stage the majority of messages to be passed between processes will involve the use of the finite difference scheme
described above (identified in the code by ‘cshift’ statements). There also exists lines of code where single
locations in arrays are is operated on individually, therefore only the processes that holds the corresponding
values must be used. Intrinsic sum operations on arrays require data to be passed between the processes in such
a way that after the operation all processes must hold a value of the sum performed upon the full domain. Finally
after all the necessary calculations are complete each process must return its subdomain to a master process for
writing of the final result.

Environment For Code Development

Workstations running a UNIX operating system were used to develop the code on the CRAY EL98 at
Proudman Oceanographic Laboratory (POL). The message passing software used to develop the parallel code
is Parallel Virtual Machine (PVM). PVM is a software system that enables a collection of heterogeneous
computers to be used as a coherent and flexible concurrent computational resource [Beguelin et al, 1994]. PVM
version 3.3.3 was obtained by sending electronic mail to retlib@orin.gov, and the received files PVM were
installed on the CRAY EL98 (See Appendix Section 2). When installed on workstations a number of identical
executable processes are spawned by the master process, then a daemon process handles all the necessary
communications that need to take place between separate processes. This particular system is architecture
independent, hence enabling the code to be ported easily between machines if necessary. PVM can be used with
programs written in either C or Fortran, access to PVM is made by calls to PVM library routines for functions
such as process initiation, message transmission and reception, and synchronisation.

Code development was in Fortran 90, and compilation of the program was performed by use of a makefile
which kept track of those routines which were not up to date (See Appendix Section 3). Owing to limits placed
upon interactive use upon the CRAY EL98, the code was executed as a batch job (See Appendix Section 3).
Presently there is no Fortran 90 compiler expected on the T3D until mid 1995 (though Fortran 90 array syntax
is supported), so after a working version was developed, a translation of the source code into Fortran 77 will
take place.

The Cray T3D presents the user with a Single Program Multiple Data (SPMD) model for programming the
machine. This means that for every processor in a set of processing elements on the T3D, holds a copy of the
same executable, one per processor, and that each of these processes is started at the same time [Booth et al,
1994}. This contrasts with workstation PVM as no spawn command is needed or is available. Therefore for
easier porting of the final code the parallel program will be written in a SPMD style. Each process in an SPMD
program runs the same code, though they are not constrained to foliow the same path through the program.
Advantages of SPMD are the programs are of a simple structure, easy synchronisation, and that processes can
break synchronisation if necessary. One draw back of programming in an SPMD style is that if the code contains
tasks performing completely different roles, then each processor has to allocate instruction and data space it will
never use (Simpson, 1994)

The T3D contains 256 DEC Alpha 21064 processors, and has a total of 16Gb of memory, the front end
attached is a Y-MP with two processors. The nodes are configured as a 3D torus, with each node containing two
processing elements. Transfer rates between nodes have a peak of 300Mbs™ in all six directions.
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Preliminary System Design

Decomposition Of Data

As the model is a "Global" tidal inverse problem, then the data used can be perceived as belonging to a
longitude/latitude grid. Hence we must assume cyclic connectivity ie. 180°W is equal to 180°E. At the start of
the code a decomposition of the full data domain into subdomains needs to be carried out. On the CM-200 the
grid was mapped onto a rectangular array of processes (by compiler directives), therefore cshift statements were
used to enforce the concept of cyclic connectivity. The T3D has fewer processors so the domain is to be
partitioned onto a rectangular array of processes each possessing a subdomain.

The input and output of data fields covering the whole domain is not trivial when the domain is split up over
a number of processes. There are two main options for approaching this problem. The first is the master process
reads in the whole data set, then sends out the appropriate portions of data to each slave. When the work is
complete each slave sends back its result to the master, which then writes the final resuits to disk. The second
option is to arrange the format of data files so that the data for each subdomain are on different records of a
direct access file. Each process can then read and write its own data in parallel. Option two was rejected as much
shuffling of the data files would be required, and also this method is not scalable owing to different data files
being required for different numbers and configurations of processes. Although the first idea is more complex
to program, it is easily scalable, and has the advantage of keeping the data in the same order, this is a geometric
decomposition of the data set. It would be desirable for the master process to divide up the whole domain
amongst the slaves, ensuring that an equal part of the full domain is kept for itself. This is because if the master
lay idle, doing no work except that of input and output of data this would require on odd number of processes
(assuming the full domain is split into a rectangular array of processes) which is not allowed upon the T3D.
Therefore this idea would allow a more simple porting of the final code to the CRAY T3D.

This distributed domain decomposition affects a few a operations, these are the shifting of arrays (cshift
statements), any operations upon a single point in the domain, and global summations upon arrays (sum
statements).

Shifting Of Arrays

The cshift statements used for the implementation of the finite difference scheme correspond to a
communication between all the processes (See Figure 22). Here the result of a shift east on data partitioned into
rectangular subdomains is shown.

The 'x' symbol on process 1 will just be
shifted east one place as, this is occurring
within the interior of the subdomain, no
communication between processes are
required. However the '+' symbol initially
present on process 1 is situated in the east
column of the subdomain and is required by
process 2 for the next value update. In this
+ case a communication is required that will
involve sending all the values in the right hand
column of process 1 to the left column of
Figure 22 process 2. Hence whenever a cshift statement

occurs, a one dimensional slice of each
subdomain will need to be sent to neighbouring processes which requires it. Therefore communications will occur
only at the boundaries of each process. An efficient implementation of this strategy can be achieved by ensuring
that each process holds copies of certain sections of the neighbouring process's data. Each process maintains a
halo or guard band (See Figure 23).

The symbols show the values that would exist in the halos on each process. Using this concept of halo regions
for each process implies that the data required for a cshift operation is immediately available without any
communication needing to taking place. Though, after the guard band has been used for an update of values
within the subdomain, the used guard band must then be updated itself with the value from the neighbouring
process.

Figure 24 represents a shift of data in a westerly direction. Process 1 needs the data stored in its east halo
in order to complete the operation, when the figures have been used process 2 will then update the eastern halo
of process 1. It is not necessary to update the other three halo regions as shifting data in an west direction within
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that subdomain only leaves the east halo out of date. Hence if during a calculation four cshift statements were
used in north, south, east and west directions then it would be necessary to update all four guard bands of the

subdomain.

Location Of A Single Point
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Contained in routines avgker,
fwdfrex, and fwdfrc are sections of
code that operate open one single
point in the full domain at a time.
In the routine avgker a location of
a point elevation easurement is
considered, information is also
given as to whether the point is to
be treated as a boundary elevation
or not, from this the forcing arrays
for the back time stepping problem
are written. A similar method is
used in fwdfrcx and fwdfrc for
constructing the forcing arrays for
the forward time stepping problem.
This will imply that just one
process will do the relevant section
of work whilst those remaining
continue with other tasks. Hence it
can be seen that a method of

mapping a point in the full domain to the same point in the sub domain is required (See Figure 28).

If the work being carried out by the process owning the data point is of interest to the other processes then
they will all wait for that particular slave to finish its task. When that process has finished the calculations,
communications will need to take place in order to update those processes not aware of the new values. However
the work may be of importance in a local sense only, if this is the case then the other processes can continue.
It would be possible therefore, for each process to be synchronously carrying out a piece of useful local work
on several co-ordinate points in the full domain.
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Figure 25

Global Summations

Places in the code where the Fortran intrinsic 'sum’ is used upon an array indicate that a communication will
have to take place between all the processes. Instead of operating in the whole subdomain each process should
perform the intrinsic operation on just the interior area. This is because the same values should not be used in
the global sum twice ie. those values stored in the guard bands are copies of other stored values elsewhere in
the whole domain. As soon as each process obtains its local sum communications can begin.

There are a number of ways in which a set of local
sums can be accumulated into one global sum. One
method is to send all the local sums to the master
process, the summing of each result to attain the
global sum is carried out just by the master. Then
depending upon whether each slave needs a copy of
this value the master may inform all other
processes. Another method is for each process to
1 send its local sum value to the next process in a
circular fashion, when the neighbour receives the
N value it adds it to its running total then passes the
2 4 6 8 value its just received on again. This continues until
all processes have the same running total. One of
the methods requiring less communications than the
two mentioned previously is shown in Figure 26.

If in general there exist 2" processes (where
n=1,2,3,...) then a global sum can be calculated as
follows: firstly each process sends its local sum one step right, after this the original value each process held is
added to that which has just been received. Next each process sends its own newly calculated local total two
steps right and repeats the summation with the current total and the value just received. For example in Figure
26 process 1 sends to processes 2, 3, and 5. In general for each cycle, t, process 'i' sends to process '2"!", where
the first cycle is t=1. This then continues with the steps rising as a power of two until all process hold the global
sum value needed.

The first method is easy to code and performs well for low rumbers of processes. Though for large numbers
of processes this is not a good idea especially if the global sum is needed for subsequent calculations. The second
method is preferable as the sum is performed in a smaller number of steps, therefore less communications are
needed. The third method uses the lowest number of steps, in the general case (for 2" processes) a global sum
could be held by all processes in nstep communications given by :-

where nproc is the number of processes.

Figure 26
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nstep = In (nproc)
In (2)

Returning Of Results For Output

After all calculations are complete, each process must send back its result to the master for writing to disk.
Effectively this will be the reverse process of the data decomposition. The difference being that just the interiors
of each subdomain will be sent back, and the halo regions will be discarded. The master receives all the data
necessary and stores it into arrays equal in size to that of the full domain.

In all the above designs for paralellisation of these operations the PVM communications details is separated
from the computational kernels where possible, except in the case of operations upon a single location in the full
domain for the routine fwdfrcx.

Implementation Strategy

Initialisation Of PVM

Within the parallel code the first task is to initialise PVM, this takes place at the beginning of the main
program istep (Appendix Section 4). An immediate call is made to pvmfmytid This routine enrols that particular
process into PVM, creating a unique task identifier (tid) for the calling process. The next step is to spawn a
number of copies of the executable file. The number spawned is determined by how many processes are
required, if 'nproc’ processes are required, then 'mproc-1' will be spawned because the master process is
included. Each of the new processes has its own tid which is used for identification. Task identifiers are essential
in ensuring that each process takes the correct path through the code, and also are used when messages need
sending between processes.

Setting Up Subdomains
Before the whole domain can be farmed out to each process it is necessary to set up the sub domain in the
required shape. Given that the total number of processes used is one of the following integers;

nproc=n*

where aproc is the number of processes, x = 1, 2, 3,4, . . ., and n is given in figure 27
as
From the equation the number of processes
(npx) needed in the horizontal, and vertical (npx and
[ nx npy) can be calculated. The gridsize being used
as a test case for calculation of the representers
is of dimension 256x128 (ratio 2:1), hence nproc

5 can be chosen to be 2, 4, 8, 16, etc., the
nxs = nproc processor array can therefore be formed to be in
a ratio of 2:1. For development upon the CRAY
EL98 eight processors were used giving a 4x2
array of processes.

Now that the shape of the process array has
been established it is necessary to ensure that
each process kmows the identity of the processes handling the adjacent sub domains. Calculation of the
neighbours is dependent upon the identification number of each process. From an array of tids (that holds each
processes task identifier) each process was identified stating from zero (for the master) upwards to 'nproc-1'.
A formula is then used to calculate the correct north, east, south and west neighbours using modulo arithmetic.
(Note for this code, neighbours in the ne, nw, se, and sw directions are not needed as shifting of data is only
in a horizontal and vertical sense.) The calculation also depends upon the number of processes in the vertical
'npy’, and the total number 'nproc’. For an array numbered in the same way as figure 25, (vertically), the north,

east, south, and west neighbours are calculated as follows (where me is 0, 1, 2, . . . nproc-1):-
north = me-1: if(mod(me,npy)=0) then north = me-(npy+1)
south = me+1; if(mod(me,npy)=1) then south = me-(npy-1)

(npy)

——x ——

Figure 27
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east = me-<npy; if(east > npy-1) then east = east - nproc
west = me-npy; if(west < 0) then west =west + nproc

The routines initialising the process array are in pvm_setup.f
Farming Out Of Full Domain

Full Domain

eli z
alf v
big w .
clh 4 x Sub Domain
dli Y l
|
master packs 1 3 5

buffer for process 4

abcdefghi . .vwxyz

| Send to 4 — 2 4 6

Figure 28

The process array has now been initialised into the correct dimensions, ensuring that each process knows its
adjacent neighbours. The task of farming out the initial arrays can now start. Initially all processes must know
how large their subdomains are, nxsub, and nysub horizontally and vertically. If the whole domain is nxm, then
nysub=npy/n, and nxsub=npx/m, though two must be added to each of these to include the guard bands (see
figure 23). Then knowing the size of each subdomain the master process locates the correct array section and
sends it to the appropriate slave. The master does this by copying all of the correct elements for a particular
process into a temporary buffer. This is a vector of length equal to the number of elements in the subdomain
ie. (nxsub+2)*(nysub+2). The buffer is then sent to the corresponding process, which then unpacks the contents
by copying the elements into its own sub array. This procedure is repeated for each process and for each array
(See Figure 28).

Figure 28 illustrates that the master process copies to the buffer all the values for the guard band, as well
as those for the interior region in the subdomain. As this is a global model it is correct to implement the
subdomain such that the north and east edges of the whole domain are neighbouring to the south and west edges
respectively. Hence if the data for a process is situated on the edge of the domain, then the master must copy
halo values from the correct location on the opposite side of the array. For example in figure 28, elements 'e,
1, z' from the north edge are used to make up the south part of the halo region for process number 4. A piece
of pseudo code to perform this is written below:

if(master)then
do iproc for all processes:
do 1 for nxsub+2; do j for nysub-+2
li=(i-1)*nysub+2+j
buffer(it) = element in full domain
enddo; enddo
send buffer to iproc
enddo;
elseif(iproc)then
receive buffer from master
do i for nxsub+2; do ) for nysub+2
ii=(i-1)*nysub+24j
element in subdomain = buffer(ii)
enddo;enddo
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endif

The section of code performing the farming out of the arrays is in pvm_farm.f (Appendix Section 10). The
routine is called by all the processes after the main arrays have been read from the disk in program istep.f. The
routine is called every time a new array is to be split up over the subdomain. Assuming that initially the best
way to port a section of code to another machine is with the minimum of change, pvm_farm.f is used in the
following way. As integer, real and complex arrays are used throughout the code three separate routines were

formed, the following code fragment illustrates use of the routine:
if(iam.eq.0)then
do j=1,mm
do i=1,nn
read(1,rec =irec)imv(i,j),fu(i,))
do ic=1,nc
read(2,'(2e10.4)")lcau(ic,i,j)
enddo, enddo,enddo
endif
call farm_i(lmv,mv);
call farm_r(lfu,fu);
do i=1,nc
call farm_c(lcau(i,:,:),cau(i,:,:)
enddo
In the above example, the first two calls to the farming routine are for two dimensional integer and reat
arrays respectively. The final call represents how the routine would be used upon a three dimensional complex
array, slices of the array are sent out to the slaves one at a time. The first argument in the call is the array name
for the full domain, and the second is the name used for the sub domain. The name of the arrays containing the
full data set were changed (an 'l' was added to the front of the name to indicate large array (first argument)).
But the original names of arrays used throughout the code remained unchanged and were used for the sub arrays

(second argument). This routine is also used for farming out data in the subroutine mkwts.

Communications Required For Cshift Statements

Implementations of the cshift statement (in both the Fortran 77 and 90 message passing codes) depends upon
each process knowing its four adjacent neighbours in the north, south, east, and west directions, also the
direction and dimension of the shift must be known. The first use of a cshift statement is inside the routine
mkwts (for making the integration weights). From the previous section it is clear that a shift of data in a
particular direction requires the opposite guard band to be updated (shift to north implies update southern halo).
Before any implementation can take place it is important to realise that all Fortran compilers access elements of
an array columnwise. This has the following implications See Figure 29

h East & West
North & South
a
(1) nysub+2 (2) h =& 1 °
1
— nxsub+2 —
o

Figure 29

Any shifts in an East/West direction will involve sending a one dimensional matrix of dimension
(nysub+2,1), illustrated above by (1). However a North/South shift of data requires a (1,nxsub+2) dimensional
matrix to be sent. PVM allows data to be sent with a stride defined, in the first case this is not necessary so a
stride of one is used, but in the second example it is. For a North/South halo update the stride will be equal to
the dimension of the subdomain in the vertical, ie. nysub+2. So to ensure that the correct values of an array
are sent differing strides were used in the west/east and north/south updates:-

wsage:  call pvmfpack(type,name,length.stride,info)
eg: call pvmfpack(REALA,array(2,1),nysub+2,1,info) (west)
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call pvmfpack(REAL4,array(2,1),nxsub+2,nysub+2,info) (north)

The above code tells the process to pack a particular piece of data in order to send it to another process;
REALA is the type of data we are wishing to send, array(2,1) is the start address of the data, the next argument
is the number of items to be packed (the length of the halo), next is the entry which declares the stride, and
finally info which returns a negative value if an error has occurred. After the data has been packed all the
processes send it in the desired direction. Next each process receives the data being sent and copies it to the
correct guard band in its subdomain. All the routines for the halo updates can be found in pvm_comms.f
(Appendix Section 11), as with the routine used for division of the full domain a separate piece of code was
written for handling real, complex and integer arrays. Implementation into the code has the following structure:

hu(:,:) = (hz(:,:) + cshiftthz.dim=1,shift=-1))/2.
call one minus one r(hu)

Here the real array hu is updated by use of a shift south, so immediately afterwards (before hu is used in any
further calculations) the halo is updated by use of the appropriate subroutine. The cshift statement is used
extensively throughout the code. In particular the back and forward time stepping routines (Appendix Sections
6, and 8), for the test case being looked at the main time stepping loop was 2000 iterations. Therefore calls to
the routines stored in pvi_comms.f account for the majority of communications during the calculation of the
representers.

Location Of A Single Point

Before a position in the whole domain can be mapped to a point in the subdomain the process holding the
entries of the arrays of interest must first be located. This can be performed by using the co-ordinate values in
the full domain in conjunction with the dimensions of the subdomains. One implementation is to check the first
column of processes, if the global co-ordinate is not located here move to the second column and so on. As soon
as the correct process has been located the mapping will be identical for all processes, again dependent upon the
size of the subdomain. The mapping used is as follows (adopting the notation from the previous section; (6,0)
is mapped to (\W,P)).

¥y : ¢ - mod (O,nysub)+1
¢ : ¢ ~ mod (¢,xsub)+1

The only values of 0 and ¢ for which both of the above mapping gives an incorrect result are 8 = 1*nysub,
and ¢ = j*nxsub (where i,j=1,2,3 ...). If this situation arose then this would cause a mapping of 6 and ¢ to
a value of one in each case. In physical terms (6,¢) equalling (i*nysub,j*nxsub) implies that the point in the full
domain actually lies in the last row, and or last column of the interior of the subdomain. So for a sub domain
of dimension (nysub+2, nxsub+2), the correct mapping would be (6,¢) ~ (nysub+1,nxsub+1). This can be
easily implemented using 'if' statements.
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The updating of single points at a time is used in three routines, avgker, fwdfrcx, and fwdfrc. The next
consideration is whether any results from calculations being performed by the sole process are needed in by other
processes. In both fwdfrcx, and fwdfrc all the calculations made effect only the arrays held upon the working
process. However in the avgker routine (that outputs the forcing and boundary conditions for the backward
problem) this is not the case. For a point on the coastal boundary, two u and v node squares are considered (See
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Figure 30).

The point being considered is marked as x above (this applies to any point on the boundary that lies between
two u and v node squares). The boundary node x is interpolated from an average of any and all of the eight u
and v nodes lying on the rigid boundary, shown above by the two squares. The possibility could arise that the
u-node values and the v-node values lie on different processes. If this is the case, when the weights are calculated
for bilinear spline interpolation the two separate processes must share the calculated weights to reach the final
answer. This would take the following form in pseudo code wtot_u and wtot_v are respective weights totals for
the processes dealing with node u and v:-

if(slave_u is not equal to slave_v)then
if(slave_u)then
calculate wtot_u total and send to slave_v
receive wtot_v from slave_v
update my forcing array with wtot_u+wtot_v
endif
if(slave_v)then
calculate wtot_v total and send to slave_u
receive wtot_u from slave_v
update my forcing array with wtot_v+wtot_u
endif: endif

Global Sums

Intrinsic sum functions are used inside the fwdfrcx and fwdfrc routines to temporarily calculate the
contribution of the penaltv functional to the boundarv errors. As deccribed ahave imnlementation of this ig }-n
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ensuring that each process performs the intrinsic sum of the interior of its subdomain. After, a call will be made
to a routine which performs the operation described in figure 26. It is used in the following way which each
process executes:

pbdry = sum(bu(l,2:n-1,2:m-1)*conj(bu(l,2:n-1,2:m-1))*wbu*usc(1,2:n-1,2:m-1) *usc(1,2:n-1,2:m-1)
call sum_r(pbdry)

the argument passed to the routine is each processes local sum, see pvm_sum.f (Appendix Section 12).

Sending Back Arrays To The Master

Implementation of this is very similar to the routine that divides up the full domain, the major difference
being that at this stage the halo regions are discarded, just leaving the interior regions where the important results
needed are stored. Initially each process copies its interior region into a buffer (now containing (nxsub*nysub)
elements). Each slave then sends its work buffer back to the master. The master process receives the message
from the slaves in order, so that it can correctly unpack the information to construct a result equal in dimension
that of the full domain. This has the following structure:-

doi = 2,nmxsub+1
do j=2,nysub+1
buffer((i-2)*nysub+j-1) = subarray(j,i)
enddo; enddo;
if(iam not the master)then
send buffer to master
wait for reply from master
elseif(iam the master)
copy my buffer to array
do iproc=1,nproc-1
receive buffer from iproc
copy iproc's buffer to array
enddo
send message to slaves
endif

An important addition to this routine is that all the slaves wait to receive an acknowledge from the master
process after their work has been sent. The master sends the acknowledge after it has received all the necessary
data. If this extra code was omitted then some of the worker process could send the information, and exit the
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code before the master had received it. Without this acknowledge it was found that the code would sometimes
'hang’, as the master process would be trying to receive data from one of its slaves that no longer existed, in
this situation the message would never arrive, and the master would wait for ever. The routines for sending back
arrays to the master are contained in the file pvm_return.f (See Appendix Section 13) and are used in the reverse
sense compared to the farming out of data.

do ii=1,nc
call send_back_c(caz(ii,:,:),Icaz(ii,:,:))
enddo

The first argument is the name of the subdomain, and the second is the name of the full domain which just the
master process will hold.

Conversion To Fortran 77

The major change to the code that is required in order to enable porting of code to the CRAY T3D is the
replacement of the Fortran 90 intrinsic cshift (discussed above). No PVM syntax needs to be used in this routine
as each time a cshift statement is reached all the necessary process control has been set up previously. The
routine simply copies the correct slices of the original array to a temporary array to form the shifted version.
Implementation of this routine was also achieved by introducing some temporary arrays (all temporary arrays
were named after the original array followed by a 't"), and is used as follows.

ujm(:.:) = cshift(mu(:,:),dim=2,shift=-1)*ujm(:,:)
call cshift_i(mu(:,:),mut(:,:),2,-1)
uim(:,:)=mut(:,:)*ujm(:,:)

The line of code on the left becomes the two lines of code on the right when the cshift statement is replaced.
As with previous routines the '_i' represents an integer array. The first argument is the array to be shifted, the
routine returns the shifted array 'mut’ to be used in the calculation. The final two arguments correspond to the
dimension and shift direction to be used. The cshift replacements are in file 'cshift.f' (Appendix Section 14).

The next task is the replacement of any variable declarations using the double colon (::) syntax illustrated
below,

complex, dimension (nc,n,m) :: cau, cav, caz
is replaced with,
complex cau, cav, caz
dimension cau(nc,n,m), cav(nc,n,m), caz(nc,n,m)

Also parameter declarations must be replaced with Fortran 77 syntax. Finally at the start of back and forward
time stepping routines, a double precession complex declaration is made upon a vector. This is also not supported
on the T3D, therefore a single precision declaration must be used instead.

Using Different Numbers Of Processes

All of the above implementations are designed for in general any number of processes (provided the full
domain can be divided up equally amongst all processes). There are two files that must be changed to vary the
number of processes, these are parallel.inc, and gridsize.inc (See Appendix Section 1). In parallel.inc there are
some parameter statements, NPROC is the number of processes to be used, nx, and ny which were the sizes of
the full domain. Changing NPROC this tells the main program to spawn more or less processes, nx, and ny are
altered for different sized data sets. The setting up the dimensions of the process array is explicitly carried out
in the parallel.inc by setting npx and npy, on porting to the T3D the factorisation routine will be used in place
of this. The file gridsize.inc contains the dimensions of the sub domains to be used these are 'n' and 'm' (the
original dimension of the full domain in the serial version) where m=nxsub+2 and n=nysub+2. The size of
the full domain is represented by nn and mm. These parameters need to be considered when a different data set
of number of processes are going to be used.

Debugging and Testing
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Debugging and Testing Techniques ,

All the debugging and testing carried out upon the code was with the use of 'write' statements. In the final
code just the master will handle Input and Output (I/0), but for development the slaves were also used for
writing information to files.

Using the above code, if slave 3 (iam=3) writes to unit 50 this has the effect of producing an output file called
"debug.3out’ which contains only data which slave number 3 has written. Updates on the arrays were tested by
using routines in 'pvm_return.f' ie. sending the appropriate array to the master for writing to a file. This is
coded as follows:
do ii=1,nc
call send_back_c(caz(ii,:,:),lcaz(ii,:,:))
enddo
if(iam.eq.0)then
open(77 file="caz.par')
write(77,%)lcaz(1,:,:)
endif

The above section of code was used extensively throughout the testing process. For comparison with the
original code the same code fragment appeared in the serial version at the same point, the two output files were
then compared. Finally the change from double precision complex to single precision complex, (needed in the
parallel code) was also carried out for the serial version to ensure that the same precision was used throughout
both pieces of code, this is important when comparing results between the two versions.

Debugging & Testing Results

Initially afl development of the PVM version upon the CRAY EL98 was carried out with eight processors.
Using four vertically and two horizontally, the dimension of the subdomains on each process was 66 by 66. This
number of processes was considered a 'safe’ maximum number allowed upon the CRAY EL98, as for numbers
greater than eight (sixteen was tested) some of the processes were not able to spawn (due to limits imposed on
the CRAY EL98 at Bidston). This left messages not being sent or received. Implementation was carried out in
the order described above, though initially the Fortran 90 cshift statements were not replaced until after the first
full run through of the parallel version (in Fortran 90) was complete. The first changes were made to the main
program istep, and then to the routines in the same order they are called by the main program.

Initial conclusions were that differences in the ninth significant figure had accumulated over the 2000
iterations of the time stepping loop to the extent of that observed in the outputs from this routine (differences
in the first significant figure). This seemed a reasonable conclusion as the forcing arrays also contain the fixed
boundary conditions at the open boundary nodes, so a change in the entries to these arrays also has the effect
of slightly changing the boundary conditions for the problem. To verify this theory a number of tests were
carried out which involved inter changing data sets between the original code and the parallel version.

The first test was to use forcing arrays from the original code as inputs to the forward time stepping routine
in the parallel version. It was found that the results obtained were extremely close compared to the original
results, differences in the twelfth significant figure were observed. This confirmed that the parallel
implementation of this particular routine was correct. The next test involved using the outputs of the complex
forcing arrays from the parallel routine as inputs for the tstep routine in the serial version. This test produced
results similar to the original data also, where differences were being found in the fifth significant figure, not
the first as expected. The results of this test disprove initial conclusions.

As results of a reasonable accuracy (compared to the original result) had been obtained from both the parallel
and serial codes by reading the forcing arrays from the parallel code into the serial version and vice versa. The
next logical test was to run the parallel code again, but instead writing gu, gv, and gz to a file to be read back
in before the first reference to them. Immediately after the last update of the forcing arrays (for tstep) gu, gv,
and gz were written to a separate files. Each of these files were read back into the code by the master process
and farmed out to the slaves, each process then continues with the rest of the routine as previously. For a
comparison of the output of the results obtained from the serial code (using the forcing arrays output from the
paraliel version), differences were observed in the sixth significant figure. A close match was also observed for
the original code using the original forcing arrays, differences were only in the fifth significant figure. The table
below summarizes the results found from this series of tests:
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Code Type &
Results Used

Serial Code
Inputs from
Parallel Code

Parallel Code
Inputs from
Serial Code

Parallel Code
Inputs from
Parallel Code

Parallel Code
No Inputs
(Straight Run)

Serial Code Difference in Difference in Difference in Difference in
(Original) 5™ Sig. Fig. 12" Sig. Fig. 5* Sig. Fig. 1* Sig. Fig.
Serial Code Difference in Difference in Difference in
Inputs from N/A 5™ Sig. Fig. 6™ Sig. Fig. 1* Sig. Fig.

Parallel Code

The above testing has revealed that the parallel code gives the correct answer only when the forcing arrays
gu, gv, and gz are output to a file and read back in again before they are referenced. This suggests that the
arrays gu, gv, and gz are being overwritten somewhere between the two following code sections:

1. repx_par.f (Appendix Sec. 4)

if(lcrosscov)then
call fwdfrex( )

2. step.f (Appendix Sec. 8)
do istep = istepl,istep2
if(mod(istep,2).eq.1)then

else force(:,:)) = 0
call fwdfre( ) do 3501 = 1,nc
endif 350 force(:,:) = force(:,:) + real(gu(l,:,:))

There are no references to gu, gv, or gz between the two code fragments shown above. Fragment number
one represents the last update of gu, gv, and gz. The second fragment indicates where the next reference to any
of these three arrays is made(in forward time stepping loop for odd steps). Comparison of the forcing arrays used
as input to reach the correct answer, and those giving the incorrect answer reveal no difference between the two
data sets.

All of the above results obtained were for eight processes, the outputs are identically reproducible using four
processes on the Cray EL98. This was found in testing that the code runs for nproc number of processes where
nproc=2" and n=1,2,3,... .

Conclusion on parallel implementation using PVM

Development of the parallel code was achieved by use of PVM and Fortran 90 upon the CRAY EL98 at
POL. The full domain of the model was divided by the master process into sub domains containing halos over
an array of slave processes. The master also held a subdomain of its own so each process performed some
"useful” work during the execution of the program. Necessary communications were then implemented within
the code for operations requiring data to be sent between processes. These operations were cshift statements,
global summations and the update of a single location in the domain. After all necessary calculations were
complete, each slave sends its result back to the master process for writing to a file.

This method resulted in a parallel code that obtained the same results to the original serial code within an
accuracy of five significant figures (for in general 2" processes; 4 and 8 processes were tested). For large
programs, the order in which instructions are accessed by a compiler can sometimes lead to small changes in
results for the same operations. After insertion of code for process and communications control small changes
in the values of the forcing arrays used in the forward time stepping routine were observed. This first piece of
code where the parallel version's results deviate from those of the serial code is probably due to the compiler
operating on instructions in a different order. After implementation of the communications, replacement of the
cshift statement for conversion to Fortran 77 was carried out. This lead to deviations being observed at an earlier
stage in time after completion of the back time stepping routine. Therefore using a subroutine for replacement
of the cshift statement seems to lead to more implications of accuracy at the level of the compiler.

The code currently reaches an answer to within five significant figures only when the forcing arrays used in
the forward time stepping routine are; written to a file after the last update, and read back into the code just
before the main time stepping loop. Otherwise the answers obtained differ from the original results in the first
significant figure. Tests carried out were inconclusive, as no differences were found between those forcing arrays
output to files, to those used in an execution of the code giving incorrect answers. This problem may be caused
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by an overwriting issue, but due to time considerations the bug was not located.

The Fortran 90 code was converted into Fortran 77 ready for compilation and running upon the CRAY T3D
in Edinburgh. Due to the Fortran 77 compiler not allowing array slices to be passed to subroutines as arguments,
there was insufficient time to change the code to enable a measure of performance of "repx” upon the T3D. This
is the first recommendation for further work that needs to be completed by assigning temporary two dimensional
arrays to each slice of the three dimensional arrays to allow compilation.

The next consideration is for more testing of this code to be carried out. The bug causing problems with the
forcing arrays is an important issue as the input and output of such massive files (gu, and gv are 3.5 Mb in size
and gz is 27.5Kb) limits performance. There also remains a section of code that has possibilities for
parallelisation. After the time stepping loops in the routines tstep, and bstep have been completed a Cholesky
decomposition and solve takes place. Currently this section of the code is handled by the master process, but
improvements in performance could be gained by parallelisation, one approach would be try and locate a
message passing routine (all ready written) to "plug-in" or adapt for the Cholesky decomposition and linear
solver.

Once successful porting of the code to the T3D has taken place, some time spent on optimisation the code
would be beneficial in producing significant speed up. Work also needs to be started upon the two remaining
codes (still coded for the CM-200 connection machine). These are for estimating the coefficients of the
representers, and finding an improved solution. The second program contains a CMSSL library call for a matrix
inversion. This library call will have to be ported to an equivalent message passing parallel operation upon the
Cray T3D.

Finally perhaps a more natural way for this Fortran 90 Global Tidal Model to be ported to the Cray T3D is
to use Cray Research Adaptive Fortran (CRAFT). CRAFT uses Cray Fortran 77 and compiler directives, it also
has some Fortran 90 extension such as array syntax and intrinsics, However this compiler on the Cray T3D is
not yet available.
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