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ABSTRACT 23 
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A fundamental goal of conservation science is to improve conservation practice.  

Understanding species extinction patterns has been a central approach towards this objective.  

However, uncertainty remains about the extent to which species-level patterns reliably indicate 

population phenomena at the scale of local sites, where conservation ultimately takes place.  

Here we explore the importance of both species- and site-specific components of variation in 

local population declines following habitat disturbance, and test a suite of hypotheses about 

their intrinsic and extrinsic drivers.  To achieve these goals, we analyse an unusually detailed 

global dataset for species responses to habitat disturbance (primates in timber-extraction 

systems) using cross-classified generalised linear mixed models.  We show that while there are 

consistent differences in the severity of local population decline between species, an equal 

amount of variation also occurs between sites.  The tests of our hypotheses further indicate that 

a combination of biological traits at the species level, and environmental factors at the site 

level, can help to explain these patterns.  Specifically, primate populations show a more marked 

decline when the species is characterised by slow reproduction, high ecological requirements, 

low ecological flexibility and small body size; and when the local environment has had less 

time for recovery following disturbance.  Our results demonstrate that individual species show 

a highly heterogeneous, yet explicable, pattern of decline.  The increased recognition and 

elucidation of local-scale processes in species declines will improve our ability to conserve 

biodiversity in the future. 
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1. INTRODUCTION 44 
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Comparative studies have made an invaluable contribution to our knowledge of extinction risk 

in a wide range of taxa.  These studies have demonstrated that some species are at greater risk 

than others because they possess biological traits that predispose them towards extinction (e.g. 

large body size) and/or they occur in areas of intense anthropogenic disturbance (e.g. high 

human population density) (e.g. Cardillo et al. 2005; Fisher et al. 2003; Jones et al. 2003; 

Owens & Bennett 2000; Purvis et al. 2000; Reynolds et al. 2005).  By enhancing our 

understanding of these patterns, and the mechanisms that underpin them, this research allows 

us to predict the future vulnerability of species and to improve the efficacy of conservation 

planning.  However, the translation of science into action on the ground requires that the 

knowledge gained from these emergent species-level analyses can be reliably applied to local 

sites, where conservation management is implemented.  Unfortunately, there are challenges to 

this process, not least because the local mechanisms responsible for driving population declines 

may be both variable across a species range and difficult to detect or identify when analyses are 

conducted at the species level.  As a result, the extent to which this application can be made is 

poorly known (Fisher & Owens 2004; Purvis et al. 2005).  This is an important gap in our 

knowledge for two reasons.  First, there has been a proliferation of species-level studies over 

the last decade, yet there remains uncertainty about how we can most effectively apply their 

findings.  Second, without this information it is difficult to know how we might best improve 

the quality of our science to make it more useful to conservation practitioners in the future. 

 In order to address this problem, we investigate how the risk of population extinction 

across species varies across a range of sites subject to a range of human pressure.  Such 

analyses require a taxonomic group that is sufficiently well-studied to provide reliable data on 

local-scale population change across a variety of different species and sites in response to a 

specific threat process (a single threat focus is necessary, since different threats can lead to 
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different patterns of species response, confounding the interpretation of emergent patterns: 

Isaac & Cowlishaw 2004).  We therefore looked at the responses of primate populations to 

timber extraction (selective logging).  Primates are among the most threatened of all mammals 

(Cowlishaw & Dunbar 2000), which in turn are one of the most important “flagship” groups for 

conservation (Ceballos et al. 2005), while timber extraction is one of the most important threats 

to tropical forest biodiversity (Asner et al. 2005; Curran et al. 2004).   
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 In the first part of our analysis, we ask what is the magnitude of the variation in 

population decline between species and sites. In the second part of our analysis, we investigate 

what factors might explain this variation.  At the site level, we test four hypotheses about 

extrinsic (environmental) factors: that species declines will be more severe where there has 

been less time for forest recovery and where logging was more damaging (Dunn 2004), where 

there is more seasonal environmental stress (Wright 1992), and where there is more ecological 

competition (Peres & Dolman 2000).  At the species level, we test five hypotheses about 

intrinsic (biological) factors: that species will be more vulnerable if they have slow 

reproductive rates (reproductive rate is related to recovery rate at small population sizes) 

(Johnson 2002; Reynolds 2003), high ecological requirements (Jones et al. 2001; Woodroffe & 

Ginsberg 1998), low ecological flexibility (Vazquez & Simberloff 2002), a high dependence on 

conspecifics (Courchamp et al. 1999), and a high dependence on the forest canopy (Harcourt 

1998).  These hypotheses are in line with those tested in previous comparative studies of 

extinction risk (e.g. Cardillo et al. 2005; Fisher et al. 2003; Owens & Bennett 2000; Reynolds 

et al. 2005), including studies of primates (Harcourt 1998; Isaac & Cowlishaw 2004; Johns & 

Skorupa 1987).  We also investigate whether the relationship between each explanatory 

variable and species vulnerability is a function of body size (following Cardillo et al. 2005).   
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2. MATERIALS AND METHODS 94 
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Changes in population abundance were collated from published studies and quantified as a 

response ratio (r), i.e. the abundance of a population in an area of logged forest divided by its 

abundance in a matching area of unlogged forest.  Hence, a value of r=1.0 indicates no change 

in abundance, but values above and below one indicate an increase and decrease respectively, 

while a value of zero indicates extinction.  Response ratios provide a useful metric for the 

measurement of effect size in ecological research (Hedges et al. 1999), and in this case allowed 

us to compare across studies that used different units of abundance, such as individual density, 

group density, and group encounter rates along transect.  We used the natural logarithm of the 

response ratio (response ratio + 1.0) to linearize the metric and normalize the data (following 

Hedges et al. 1999), and ran our statistical models with Normally distributed errors. The 

assumptions of Normality and homoscedasticity were tested post-modelling by examining the 

standardised residuals versus both the normalised scores and the fixed part predictions (the 

former gave a straight-line plot, whilst the latter was a cloud of points, supporting our model 

assumptions). 

The full dataset contained 293 response ratios across 66 primate species at 34 sites, and 

is provided in the electronic supplementary material accompanying this paper (see also Isaac & 

Cowlishaw 2004).  Sites were defined as distinct geographic areas, e.g. national parks, although 

these areas were variable in size.  At these sites, logged forest areas and matching unlogged 

(control) forest areas were defined following the authors of the original studies, on the basis of 

the presence/absence of selective logging, habitat similarity, and spatial proximity.  At eleven 

sites, data were collected from several (n=2-6) areas (“plots”) that experienced logging at 

different times and to different levels of timber extraction.  In total, 38 species and 26 sites 

occur more than once.  Data were discarded where additional disturbances, such as hunting or 

habitat fragmentation, had a significant presence.  
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The hypotheses under test, and their associated explanatory variables, encompassed 

both extrinsic (site) and intrinsic (species) factors.  The four hypotheses about extrinsic factors 

required data collected at the site level (or plot level within site, where appropriate) and were 

taken from the source papers for the response ratios.  The four key variables comprised: (1) 

recovery time (years since logging); (2) damage at logging, given by the % loss of trees (where 

damage was reported by extraction rate it was converted into % tree loss using relationships 

derived from those studies that used multiple damage measures: Chapman et al. 2000; Johns & 

Skorupa 1987); (3) seasonal environmental stress (climatic seasonality, indexed by site 

latitude); and (4) ecological competition, using two different indices: the number of  congeneric 

species, and the number of  primate species occupying a similar niche (i.e. same diet [frugivore, 

folivore, insectivore] and habit [arboreal, terrestrial]: Rowe 1996), at that site. 
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The five hypotheses about intrinsic factors required species-level data that were taken 

from the wider literature.  The full dataset is given in the electronic supplementary material (see 

also Isaac & Cowlishaw 2004).  Although patterns in species traits at the site level would also 

be of interest, these are unavailable in almost all cases, and are only likely to show minimal 

variation relative to interspecific patterns.  The five hypotheses under test involved eight 

species traits: (1) species reproductive rate/recovery potential was indexed by gestation period 

(days) and population density (individuals km-2); (2) species ecological requirements was 

indexed by body mass (female, kg), home range size (ha), and frugivory (% feeding time eating 

fruit and seeds); (3) species ecological flexibility was measured indirectly as the range of 

environmental variation to which the species is naturally exposed (i.e. the annual temperature 

range and rainfall seasonality at the centre of the species’ geographic range: Cowlishaw & 

Hacker 1997; Isaac & Cowlishaw 2004); (4) species dependency on conspecifics was indexed 

by group size (individuals); and (5) species dependency on the forest canopy was indexed by 

 6



degree of terrestriality (% time spent at or below 5m ± 2m in the canopy).  All data were loge 

transformed prior to inclusion in the models. 
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We used Generalised Linear Mixed Models (GLMMs) (Goldstein 2003) to model our 

data and to establish statistical significance. This approach is necessary to partition the variance 

in response into between- and within-species components, as well as allowing for differences 

within and between sites.  Our data were structured such that each observation referred to a 

particular species at a given site at a specific point in time: most sites contain several species, 

and most species occur at several sites. In other words, we have multiple observations of 

individual species across a varying number of sites, such that individual data points are not 

mutually independent.  We therefore used cross-classified GLMMs, implemented in MLwiN 

(Rasbash et al. 2000), to partition the variance appropriately and to test the significance of these 

random effects (i.e. observation, species, and site). These were then mapped onto a unique 

classification set (Browne et al. 2001) that provided a means for controlling for repeated 

observations within sites and species.  Our model thus took the form: 

yi = �X + uspecies(k)  + usite(j) + ei 

where the value y of the ith observation was modelled by the overall mean β together with 

random departures uspecies due to the species (k) in question, random departures usite referencing 

the site (j) in which the observation was made, and individual-level random departures ei for 

each specific observation (Rasbash et al. 2000; Rasbash & Goldstein 1994).  Fixed effects, X, 

were explanatory variables that were added in the normal manner.  The final model was a 

minimum adequate model obtained through backwards deletion that included all extrinsic and 

intrinsic variables.  We ran our models for 5x105 iterations using a Markov-chain Monte Carlo 

algorithm (Goldstein 2003). 

We also modelled other forms of potential non-independence in our data by fitting 

additional random effects that represent spatial scale (continent, and plot within site) and other 
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levels of taxonomy (suborder, infraorder, genus, and family).  Taxonomy above the species 

level followed Groves (2001), with the exception of the Platyrrhini & Catarrhini which we 

treated as infraorders.  
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3. RESULTS 

An initial summary of these data for each site and species (Figure 1) indicates that both show 

considerable variation around the median response ratio (r).  The site-level variation (Figure 

1a) may simply reflect differences in the species composition of the different sites.  

Alternatively, this variation may reflect genuine differences between sites, such that the same 

species has responded in dissimilar ways at different sites.  Such differences could be the result 

of natural environmental variation (e.g. some sites might be ecologically more vulnerable, or 

contain more competitors) or anthropogenic variation (although we have controlled for threat 

type, there may still be differences in threat intensity).  The presence of genuine differences 

between sites is supported by the pattern of species-level variation (Figure 1b).  This figure 

reveals a remarkable degree of intraspecific variability, such that while on average most species 

populations decline following logging (rmedian<1.0 for 20/35 species), most of these declining 

species also show an increase in abundance following logging in some instances (maximum 

r>1.0 for 13/20 species).   

To explore this pattern in more detail, we investigated how variation in the response 

ratio is partitioned across the hierarchical levels of both taxonomic classification (suborder, 

infraorder, family, genus, and species) and spatial scale (continent, site, and plot within site).  

We found no significant variance between suborders, infraorders, families or genera (all 

P>0.1), reflecting the fact that species median response ratios to logging show no phylogenetic 

signal (Isaac & Cowlishaw 2004).  We also found no significant variance due to intercontinent 

or interplot differences.  However, there was significant variation elsewhere.  Specifically, we 
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found that differences between species account for 18.4% of the total variance, and differences 

between sites account for a further 20.2% of the total variance.  (The remaining 61.4% is 

residual error that incorporates other unexplained sources of variance, including measurement 

error).  This result indicates that, although species show consistent differences in their patterns 

of population decline, there is also comparable variability within species that is related to local 

site differences. 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

We then explored what factors might explain these patterns of variation.  We began by 

exploring extrinsic site-level factors.  In the four hypotheses under test, we found no support 

for an influence of logging damage (% tree loss), seasonal environmental stress (latitude), or 

ecological competition (number of competitor species at site).  However, there was a strong 

effect of recovery time (time since logging): X2
1=9.69, P<0.002.  Thus, population declines are 

recorded as less severe at those sites where there has been more time for recovery since timber 

extraction.  We then tested our five hypotheses about species vulnerability by adding the eight 

intrinsic species characteristics to our recovery-time effect model.  Our results indicate that 

slow reproductive rate (long gestation period), high ecological requirements (large home 

range), and low ecological flexibility (small annual temperature range at the centre of the 

species geographic range) are all associated with a population decline following timber 

extraction, as predicted (table 1).  In addition, an unexpected positive body-mass effect was 

also obtained.  No other variables were statistically significant in the model.  We also found no 

significant interactions between any intrinsic or extrinsic fixed effect and body size (all P>0.1). 

The predictions of our model are illustrated in Figure 2.  In the case of recovery time 

(time since logging), the response ratios are at their lowest immediately following logging and 

gradually ascend towards a value of one (the baseline population abundance in undisturbed 

forest) over the following 50 years.  In contrast, the four species traits vary across the baseline.  

Thus, some species characteristics are associated with a population decline following logging 
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(e.g. small body size, long gestation period) while others are associated with an increase (e.g. 

large body size, short gestation period) when all other effects are held constant. 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

 

4. DISCUSSION 

The main purpose of our study has been to enhance our understanding of how patterns of 

extinction risk at the species level might translate to the local scale where conservation action is 

usually implemented.  We have sought to do this through an exploration of how patterns of 

variation in local population decline can be influenced by both species biology and site 

characteristics.  Our results indicate that, at the local level, the nature of the site can explain as 

much variation in patterns of population decline as the biology of the species.  This finding 

builds on two previous strands of work. The first investigated how well species-level traits can 

predict population-level time to extinction (O'Grady et al. 2004; Saether et al. 2005) and 

minimum viable population size (Brook et al. 2006; Traill et al. 2007) across a variety of 

species.  The second investigated biological correlates of local population decline in exploited 

marine fish, in comparisons between areas of high and low exploitation (Jennings et al. 1998; 

Jennings et al. 1999), inside and outside marine reserves (Mosquera et al. 2000), and over time 

(Dulvy et al. 2000) (see also Reynolds et al. 2005).  Both areas of research have provided 

pioneering insights into the links between species- and population-level vulnerability to 

extinction.  But to date only the latter work in marine fisheries has incorporated site-specific 

information in their analysis, specifically the level of threat (harvesting pressure).  To our 

knowledge, ours is the first study to incorporate information on threat intensity together with 

the wider environmental characteristics of the site, and – most importantly – to assess the 

relative importance of species-level and site-level characteristics in determining the emergent 

patterns of population decline. 

 10



Recent studies at the species level have established that a full explanation of variation in 

species global declines requires an understanding of both the species biological traits and the 

threat processes that drive these declines (Cardillo et al. 2005; Fisher et al. 2003; Owens & 

Bennett 2000; Reynolds et al. 2005).  Our analysis at the site level demonstrates that the same 

holds true for the understanding of local declines.  This is an important result, because it is at 

this spatial scale where the mechanisms of population regulation and extinction operate, and 

where conservation ultimately takes place.  In addition, the present study adds another layer of 

complexity to our knowledge of extinction processes.  Previously, we have shown that 

individual species exhibit different patterns of decline in response to different threat types (e.g. 

hunting and habitat disturbance), and to the different anthropogenic processes that comprise 

these threats (e.g. selective logging and shifting cultivation, within habitat disturbance) (Isaac 

& Cowlishaw 2004).  Here we show that different responses can also emerge within these 

specific anthropogenic processes (in this case, selective logging), and that these responses are 

influenced by local processes (i.e. recovery time).  This intraspecific variation indicates that the 

mechanisms involved in most species declines are likely to be heterogeneous and complex.  

One implication of this heterogeneity for analytical study is that we should therefore approach 

“typical” values for species susceptibility to decline with caution (especially when such values 

are based on data drawn from only a handful of sites).   

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

In light of these results, it is also apparent that patterns of intraspecific variation contain 

useful information, and that we should make full use of this information wherever possible.  

This is well illustrated by an earlier analysis of the same dataset used here, based solely on 

median response-ratio values, that only managed to detect one of the four species traits 

associated with population decline following logging, namely ecological flexibility (i.e. annual 

temperature range at the centre of the species geographic range) (Isaac & Cowlishaw 2004).  
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The difference between these two studies also highlights the strengths of GLMMs over more 

conventional statistical approaches in such analyses.   
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Moreover, our study has allowed us to obtain a more textured understanding of how 

certain biological traits can influence extinction risk.  Most notable among our species-level 

results is the relationship between population response ratio and body mass.  While larger 

species are usually identified as more vulnerable due to their slower reproductive rates and 

higher ecological demands (Purvis et al. 2000), our results show that once these effects are 

controlled body mass can have a positive influence.  Several previous studies have reported 

comparable findings across island communities of both shrews (Peltonen & Hanski 1991)and 

birds (Cook & Hanski 1995) once the effects of population size were controlled.  Similarly, 

Owens & Bennett (2000) reported that larger birds are less susceptible to habitat disturbance.  

These patterns have been attributed to the fact that bigger species have larger energy reserves 

(Lindstedt & Boyce 1985), making them better able to survive periods of food scarcity.  The 

relationship between body mass and extinction risk is thus more complex than often assumed.  

More recent modelling work suggests that the best body size to minimise extinction risk is 

contingent upon the type of environment: larger species are at lower risk of extinction than 

smaller species in fluctuating environments, but at greater risk of extinction when catastrophes 

occur (Johst & Brandl 1997).    

In addition to the body mass effect, gestation period, ecological flexibility (indexed by 

annual temperature range at the centre of species geographic range), and home range size also 

influenced the pattern of population response, in each case in the predicted direction.  When 

these patterns are assessed in relation to the baseline of ‘no change’ (r=0) (Figure 2), it is also 

clear that certain species characterised by particular biological traits may benefit from logging.  

This is most clear for the fast reproducers (short gestation periods) and more adaptable species 

(those naturally occurring in more variable environments).  This pattern is consistent with the 
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fact that these traits tend to characterise those primate species that colonise more variable 

habitats such as secondary forest (Ross 1992), a habitat associated with logged forest areas (e.g. 

Cowlishaw & Dunbar 2000).  Nevertheless, while these relationships provide useful insights 

into the mechanisms that might underpin primate responses to logging, and the associated traits 

that might act as indicators of vulnerability, it should also be remembered that a considerable 

proportion of the variance in our analysis still remains unexplained.  No doubt some of this 

partially reflects methodological differences between studies, including measurement error, but 

other factors are also likely to be involved that it has not been possible to include here, e.g. 

forest regenerates more quickly following logging at some sites than at others (Lawes & 

Chapman 2006). 
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The most important message of our study is that more attention needs to be paid to 

understanding the local patterns of population decline across sites, and to integrating this 

information into analyses at the species level.  This follows from our finding that species 

extinction is not a unitary or homogeneous phenomenon, even within a specific anthropogenic 

process.  Such an approach will substantially enhance the applied value of comparative studies 

of extinction risk in at least two ways.  In the short term, it will help us to identify more 

accurately both priority species (in this case, those primate taxa that are slow-reproducers, with 

high ecological requirements, low ecological flexibility, and small body size) and priority sites 

(in this case, the most valuable sites will be those where long recovery periods have elapsed 

since the last logging disturbance).  In the long term, by bridging the gap between local site-

level processes and global species-level patterns, we will be able to develop a more powerful 

science to guide and underpin effective conservation action. 
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Figure legends 

 

Figure 1.  Variation in response ratios (r) across sites and species.  The response ratio is the 

population change in response to logging (calculated as the abundance in logged forest divided 

by the abundance in matching unlogged forest), where r=1.0 is no change, r>1 and r <1 is an 

increase and decrease respectively, and r=0 is extinction.  Median r values are shown by the 

black horizontal bars, interquartile ranges are shown by the grey vertical bars, and minimum 

and maximum values are indicated by the vertical lines.  The y-axis is square-root transformed 

(for ease of presentation).  (a) Response ratios across sites.  (b) Response ratios across species.  

All sites and species where sample size n>2 are plotted.  Sites are grouped by country and then 

by continent, from the Americas eastward to Africa and Asia: BR=Brazil, CR=Costa Rica; 

GB=Gabon, GH=Ghana, MA=Madagascar, UG=Uganda; ID=Indonesia, MY=Malaysia.  

Species are listed alphabetically. 

 

Figure 2. The effects of selective logging on primate populations.  The response ratio is the 

population change in response to logging (calculated as the abundance in logged forest divided 

by the abundance in matching unlogged forest), where r=1.0 is no change, r>1 and r <1 is an 

increase and decrease respectively, and r=0 is extinction.  Panels show how the response to 

logging is a function of both extrinsic and intrinsic variables. The extrinsic variable is recovery 

time (years since logging).  The four intrinsic variables are body size, gestation period, home 

range size and ecological flexibility (indexed by the annual temperature range at the centre of 

the species geographic range). Data are predicted values obtained from the overall best-fitting 

model, back-transformed from the loge-transformed data, holding other variables constant at 

their median value. 
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Table 1.  Intrinsic and extrinsic factors in local primate population declines following timber 

extraction. Recovery time (years since logging) is a site characteristic, while body mass, 

gestation period, ecological flexibility (indexed by the annual temperature range at the centre of 

the species geographic range) and home range size are species characteristics.  Parameter 

estimates, standard errors, and associated  Wald Chi-square values for the fixed effects of the 

minimum adequate model of primate population response ratios are given.   

 

____________________________________________________________________________ 

 

Parameter   estimate se  χ2  df P 

____________________________________________________________________________ 

 

Intercept    2.58  1.13  5.24  1 <0.05 

Recovery time    0.09  0.03  7.74  1 <0.01 

Body mass    0.16  0.06  6.47  1 <0.02 

Gestation period  -0.50  0.22  5.34  1 <0.05 

Ecological flexibility   0.07  0.03  6.52  1 <0.02 

Home range   -0.08  0.04  4.70  1 <0.05 

____________________________________________________________________________ 
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Figure 2. 

 

 
 
 

0

0.5

1

1.5

0 15 30 45 60

Time since logging (years)

0

0.5

1

1.5

0 20 40 60 80

re
sp

on
se

 ra
tio

Body size (kg)

0

0.5

1

1.5

5 15 25 35 45

Gestation period (weeks)

0

0.5

1

1.5

3 6 9 12

 
 
 
 

15

Ecological flexibility (oC)

0

0.5

1

1.5

0 10 20 30 40 5

Home range (km2)

Extrinsic
factors

Intrinsic
factors

0

0

0.5

1

1.5

0 15 30 45 60

Time since logging (years)

0

0.5

1

1.5

0 20 40 60 80

re
sp

on
se

 ra
tio

Body size (kg)

0

0.5

1

1.5

5 15 25 35 45

Gestation period (weeks)

0

0.5

1

1.5

3 6 9 12 15

Ecological flexibility (oC)

0

0.5

1

1.5

0 10 20 30 40 5

Home range (km2)

Extrinsic
factors

Intrinsic
factors

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0


	Cowlishaw cover.pdf
	Article (refereed)

	Cowlishaw_et_al_msPP
	yi = X + uspecies(k)  + usite(j) + ei
	Table 1.  Intrinsic and extrinsic factors in local primate population declines following timber extraction. Recovery time (years since logging) is a site characteristic, while body mass, gestation period, ecological flexibility (indexed by the annual temperature range at the centre of the species geographic range) and home range size are species characteristics.  Parameter estimates, standard errors, and associated  Wald Chi-square values for the fixed effects of the minimum adequate model of primate population response ratios are given.  
	Home range   -0.08  0.04  4.70  1 <0.05

	Cowlishaw cover.pdf
	Article (refereed)




