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ABSTRACT 

The aim of this study was to assess genetic structure and local adaptation of Albizia gummifera to 
associated mycorrhiza using three populations from Uganda, Kenya and Madagascar. Using 
variation in chloroplast DNA sequences, estimates of genetic diversity and differentiation were 
obtained. Local adaptation of A. gummifera to the associated mycorrhiza was investigated by 
planting seed from different A. gummifera provenances into soils inoculated with soil microbial 
samples from respective local sites. In addition, the stability of inoculum was tested by 
comparing the performance of fresh and stored soils as inoculum. Four weeks after seedling 
emergence, height measurements were initiated and continued for six weeks. Mycorrhizas in the 
soil inoculum were identified using direct microscopic observation. Genetic data were analysed 
using GENALEX while greenhouse data were analysed using GENSTAT. The results showed 
that the species is genetically diverse with 14 cpDNA haplotypes identified (hTOT = 0.803), with 
Uganda showing most diversity (h =0813) and Kenya the least (h =0.398). Although the majority 
of variation was distributed within populations (75%), significant population differentiation was 
observed (ΦPT = 0.249, p > 0.01) and each population contained private haplotypes: Uganda (5), 
Madagascar (3) and Kenya (1). Greatest genetic distance was observed between Kenya and 
Madagascar (2.711). The lowest distance was observed between Uganda and Kenya (0.298). The 
diversity of the mycorrhizal community varied between sites with Ugandan fresh soils being 
more diverse than Kenyan fresh soils. For the old soils, fungal diversity was highest in Kenya, 
followed by Madagascar and then Uganda. Based on the growth performance measurements, 
there was no evidence of adaptation of A. gummifera provenances to local mycorrhizas though 
plant performance for inoculated plants was higher than that of the control. From the study, it 
appears that the specific kind of fungi the A. gummifera plants are exposed to is not important, 
although they benefit from the exposure. The tree populations seem to have genetically 
differentiated and transferring them to sites outside their own may pose a genetic threat. More 
research is however needed to ascertain adaptive differences of A. gummifera to abiotic and other 
biotic factors, the suitable founding genetic diversity and other factors that may affect 
introductions. The exact mycorrhizas that colonise the plants also need to be identified.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The adverse impacts of ecosystem degradation on biodiversity have been widely documented 

(Balirwa, 2007; Hobbs, 2007; Jardine et al., 2007; Laurance, 2007; Oago and Odada, 2007; 

Scanlon et al., 2007). Although there has been extensive collection, storage and propagation of 

several tree species, especially the threatened ones as part of conservation efforts, there is a 

growing realization that it is not possible to conserve the earth's biological diversity through 

protection of critical areas and species alone (Early and Thomas, 2007; Lesica and Allendorf, 

1999). These efforts need to be augmented by restoration of degraded ecosystems whose success 

is closely linked to use of genetically diverse, uniform and well adapted local material.  

 

Even if there is empirical evidence that genetic diversity of an individual positively influences its 

fitness and persistence (Boyce, 1992; Reed and Frankham, 2003), the fact that many local 

propagules are collected from degraded and/or fragmented areas provides a salient question of 

the genetic health of these materials. According to Hobbs and Yate (2003) degradation affects 

genetic diversity through reducing gene flow and enhancement of inbreeding and genetic drift.  

 

Besides genetic structure, the function, rhizospheric properties and hence adaptation of a species 

may be confounded by mycorrhizal fungi among other functional groups (Chen et al., 2005; 

Ingleby et al., 2007; Klironomos et al., 2000; Medina et al., 2003). While a report by Chen et al. 

(2005) indicates that most known species of mycorrhiza are non specific and ubiquitous in their 

distribution, the work of Ingleby et al. (2007) provides evidence that ecosystems that have been 

heavily impacted by humans contain fewer fungal isolates, with negative implications on 

restoration. Besides, it is possible that some symbiosis may be specific. Therefore, generally, key 

questions considered when planning for restoration are: 
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a) Can local populations provide sufficient, genetically diverse seed to restore populations? 

b) Are local populations isolated or fragmented beyond the scope of gene dispersal? 

c) If local material is inappropriate: 

o For the target species, what is the spatial scale of gene flow and genetic 

differentiation? 

o At what spatial scale are populations locally adapted?  

o How much genetic variation is appropriate in propagules for restoration 

purposes?  

o Is there a risk, to extant local populations, of introduction of exotic material? 

d) Are the fungal spores in the field sufficient and non specific? 

Against the above background, this study aims at establishing the patterns of genetic structure of 

Albizia gummifera (J.F.Gmel.) and local adaptation to mycorrhizal fungi in East Africa (Uganda & 

Kenya) and Madagascar. 

 

 Albizia gummifera belongs to the family Fabaceae, sub family Mimosoideae. Whereas many 

activities have relied on well known species, A. gummifera is a lesser known leguminous tree 

species with potential for multifunctional benefits. It is a source of timber and medicine and also 

has potential as an agroforestry tree species. It forms mycorrhizal associations and has the ability 

to associate with many crops (Katende et al., 1995). The ability of the species to form 

mycorrhizal and rhizobial symbiotic associations coupled with fast growth in gaps makes it 

suitable for use in ecological restoration of degraded forests.  

 

1.2 Statement of the Problem 

Although a number of lesser-known species may have a potential to be used for forest 

restoration, in many cases there are few data to support their use.  In addition to the fact that the 

planting material from within the degraded areas may be genetically impoverished, attempts to 
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use such species for restoration have often been limited by seed shortage. Thus, to use these 

lesser-known species, there may be a need to source planting material from outside the 

restoration area. However, the adaptation and hence performance of most species out of their 

native range is equivocal. Since genetic diversity influences adaptive potential to the rapid 

environmental change typical in disturbed forests (Hamrick et al., 1991; Reed and Frankham, 

2003), quantifying the genetic diversity of potential species is important. Furthermore, because 

mycorrhizas are also important in the functioning of the plants in various ecosystems, their 

specificity and performance outside their local areas needs to be explored. 

  

1.3 Aim and Objectives 

1.3.1 Aim 

The aim of this study was to assess the extent to which genetic diversity and local adaptation of 

A. gummifera are important factors in choice of indigenous plant species material to use for 

replanting and the extent to which soil mycorrhiza contribute to provenance performance 

differences. 

 

1.3.2 Specific Objectives 

1. To evaluate the genetic diversity, gene flow and differentiation among A. gummifera tree 

populations. 

2. To assess the diversity of fungal communities associated with A. gummifera across 

experimental sites. 

3. To evaluate performance of A. gummifera provenances as tested in both home and exotic 

soils. 

4. To test inoculation protocols by comparing the extent of mycorrhizal formation from fresh 

and old soils. 

5. To determine the effect of fungal association on the performance of A. gummifera seedlings 

 3



1.4     Hypotheses 

1. At a regional scale, Albizia gummifera populations do not experience significant gene flow 

and hence are genetically differentiated. 

2. The A. gummifera tree and fungal populations have not co-adapted to local site conditions 

such that its seedlings and mycorrhiza perform equally well in all provenances/ecozones. 

 

1.5 Significance of the study 

Because natural regeneration may be slow to maintain equilibrium of all of the ecological cycles 

that depend on the degraded forests, there is a need for intervention through reseeding and 

planting with the indigenous species before some important attributes are irreversibly lost. The 

information collected in this study can be used for optimizing strategies for efficient collection 

and deployment of indigenous tree germplasm in ecosystem restoration. Such efforts can also 

contribute to increased productivity of degraded land by optimizing restoration efforts with the 

needs of local people in mind; hence restoration species will be targeted such that the balance 

between their ecological importance and their socio-economic importance is maximized. 

 

1.7 Scope of the study 

This study covered two countries in East Africa (Uganda & Kenya) and Madagascar, which are 

the working areas of the FOREAIM project. FOREAIM project aims at bridging restoration and 

multi-functionality in degraded forest landscapes of Eastern Africa and the Indian Ocean Islands. 

This current research has contributed to work package three of the project, which is: restoration 

through planting: characterization and silviculture of native and naturalized species to restore 

environmental and economic function. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 The need for tropical forest restoration 

Maintenance of biodiversity has become an increasingly important management goal, because 

biodiversity provides a broad array of ecosystem services that directly or indirectly benefit 

humans. These services include among others; water purification, sustaining and/or increasing 

primary production as well as storing and cycling nutrients. However, biodiversity conservation 

is counteracted by the high yet increasing habitat loss most especially of the tropical forests 

which habit most biodiversity (Laurance, 2007; Pandit et al., 2007) . Some of the tropical forests 

have been severely degraded, hampering colonization and hence natural recovery (Holl and 

Kappelle, 1999; Hobbs and Harris, 2001; Shono et al., 2006). Consequently severe impacts 

implicating species extinction are documented causing concern. To maintain alpha diversity 

(species diversity at the local scale), a dynamic balance of local colonization and local extinction 

is required (Tilman, 1993, Palmer et al., 1997).  

 

2.1.1 Causes of slow forest recovery 

The direct causes of limited recovery documented by various authors include limited seed rain, 

unfavorable microclimate and soil degradation, competition with grasses and other non-woody 

vegetation (Holl and Kappelle, 1999; Yates et al., 2000; Renison et al., 2004; Shona et al., 2006), 

limited seed dispersal and high seed predation, and production of smaller and less viable seeds 

(Renison et al., 2004; Shona et al., 2006). Where these conditions are severe, for example in over-

degraded areas, natural recovery/regeneration will be too slow to sustain complete ecosystem 

function. Human intervention through restoration can thus reverse these conditions and enhance 

recovery/regeneration. Though a relatively new science, restoration has already been proposed as 

one of the paradigms for sustainable livelihoods and environmental management especially 
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become relevant given the recent and anticipated climatic changes. Harris et al. (2006) for 

example documented that ecological restoration should be one of the important responses to 

climate change as it positively influences the planet's carbon budget. The primary objective of 

ecological restoration is the re-initiation of natural succession that will lead to the re-

establishment of ecosystem form and function (Montalvo et al., 1997).  

 

2.2 Restoration in practice 

Clewell et al. (2005) define ecological restoration as a process of assisting the recovery of an 

ecosystem that has been degraded, damaged, or destroyed. Ecological restoration intends to 

initiate and/or accelerate ecosystem recovery with respect to its health (functional processes), 

integrity (species composition and community structure), and sustainability (resistance to 

disturbance and resilience) (Clewell et al., 2005).  Most restoration attempts to return an 

ecosystem to its historic trajectory. Nevertheless, restoring originality may be impossible since 

the former dynamics may not be fully understood. Besides, the former disturbances may not 

function because of the existing environmental, political, economic and social dynamics, of 

which proactive restoration activities need to take into account (Clewell et al., 1994). Because 

these factors vary in different areas, a wide spectrum of philosophies can be found among 

restoration practitioners. 

 

2.2.1 Choice of a restoration strategy 

Interventions employed in restoration vary widely among projects, depending on the extent and 

duration of past disturbances, cultural conditions that have shaped the landscape, and 

contemporary constraints and opportunities. As reported by Holl and Kappelle (1999), lack of 

propagules in tropical forests is the most important constraint to secondary forest succession. 

Therefore, most restoration programs should aim to provide adequate regeneration materials. 

According to Lamb (1998) various approaches have been developed and applied depending on 
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the level of ecological disturbance. Of all these, planting in gaps, has been deemed the most 

plausible approach for large-scale recovery programs. This is especially true in areas where there 

are aggressive weeds, a typical phenomenon in abandoned agricultural areas, and in wide forest 

gaps (Holl & Kappele, 1999). There is evidence from various studies that planting accelerates 

natural forest regeneration.   

 

The regeneration materials can be novel to region, indigenous to the region but novel to the 

ecosystem or can be indigenous and local (Jones, 2001). Although novel species have been 

shown to considerably increase vegetation cover, it may not sustain the entire ecosystem (Holl 

and Kappelle, 1999). As such and due to their other advantages as documented by Holl and 

Kappelle, (1999); Montalvo and Ellstrand (2000); Bischoff et al. (2006); and Jones (2003) many 

restorations programs have given preference to indigenous species.  

 

Given all the advantages, the introduction of novel and potentially maladapted genotypes to 

restoration sites is still a major genetic concern in restoration. As demonstrated by  Montalvo 

and Ellstrand (2000) and Keller et al. (2000) demonstrated, use of non-local genotypes might 

reduce the success of restoration projects if they are maladapted and/or negatively affect 

adjacent native populations adapted to local conditions through gene pollution, out breeding 

depression and swamping.  

 

2.3  Local adaptation 

Local adaptation is where local genotypes express phenotypes that are optimum for current local 

condition (Kawecki and Ebert, 2004). As noted by Garcia de Leaniz et al. (2007), it is a process 

driven by natural selection, which leads to adaptive variation between populations. Consequently, 

plants with locally adapted genotypes may show a home-site advantage by growing better in their 

site of origin than plants from other sites (McGraw & Antonovics, 1983; Kawecki & Ebert, 
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2004; Bischoff et al., 2006). This form of interaction - referred to as antagonistic pleitropy also 

implies that no single genotype is superior in all habitats. Therefore, when planning for a 

restoration, performance in new habitat must be assessed. 

 

Although substantial evidence  is available demonstrating adaptation and relative superiority in 

performance of the local provenances over the introduced ones (Joshi et al., 2001; Linhart & 

Grant, 1996; Worrell, 1992), a study by Galloway and Fenster (2000), using Chamaecristata 

fasciculata found no evidence in support of local adaptation except at very large spatial scale of 

over 1000km. More important than showing no adaptation empirical data is also available to 

illustrate that some species can actually be maladapted to their local environments. This is cited 

as the explanation for high mortality and patchy distribution of surviving seedlings in a number 

of restoration programs despite all efforts devoted to maximizing plant quality (Vallejo et al., 

2005). Therefore, given the contradicting results, site and species specific assessment of 

adaptation is critical for FOREAIM project. 

 

2.3.1 Adaptation Versus no adaptation 

According to Bischoff et al. (2006) and Garcia de Leaniz et al. (2007), it is impossible to have no 

adaptation given the fact that the environment always varies in space and time. Since at a 

particular point, an organism will be more suited to specific environmental conditions, there is 

never a single phenotype that can outperform the others under all environmental conditions. 

Besides, better adaptation (as seen in invasive species) being only thought to be short term 

(perhaps a few generations), it is speculated that native populations possess fitness advantages 

that come into play only after long time- perhaps 50 or 100 years which constrains their 

performance in the short term. Thus, introduced species may be able to out-perform native 

species but only in the short term but only in the short term (Allendorf and Lundquist, 2003). A 

report by Bischoff et al. (2006) indicates that sometimes failure to detect local adaptation in 

 8



experimental studies results from insufficient simulation of the local environment and the 

inability to properly delineate a local species.  

 

2.4 Delineating a Local Species 

Defining a species that is local to a restoration site is a challenge since the range of many species 

is not known (Alleaume-Benharira et al., 2006). As reported by Jones (2003), whether material is 

local or not is a matter of scale which varies from region, ecosystem to population level. A 

number of practitioners have however, defined local provenances in terms of proximity to the 

area to be restored. This is because adaptation to a specific site is expected to decrease with 

increasing geographical distance from the source population as a result of a concomitant increase 

in genetic isolation and environmental differentiation. 

 

2.4.1 Gene flow and Genetic identity of forest ecosystems 

Defined by Endler (1977), gene flow is the proportion of newly immigrant genes moving into a 

given population. It is the major determinant of genetic structure among populations of sexually 

reproducing plants. In plants, it occurs mainly by seeds and pollen, the latter being more 

common due to limited dispersal distances of the former (Oddou-Muratorio et al., 2001; Levin et 

al., 2003). In some wind-dispersed species though, for example A. gummifera, seeds can go up to 

several kilometres. As documented by Levin et al., (2003), the distance of travel depends on seed 

characteristics and dispersal mode, which is an adaptation of the plant being dispersed. Similarly 

the dispersal of pollen grains will depend on the characteristics and the mode of dispersal. 

However, in general, more seeds or pollen grains are always dispersed within a shorter distance 

from the source than in a longer distance (leptokurtic distribution) (Levin et al., 2003; Sato et al., 

2006). For most organisms the longer distances are usually incidental though a number of studies 

have demonstrated the significance of long distance gene flow inferred from the unexpectedly 

low differentiation in out crossing plant species. Patterns and levels of gene flow via pollen and 
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seed dispersal are one of the most critical determinants in the establishment of genetic structure 

(Sato et al., 2006) 

 

2.4.1.1 Implications of gene flow dynamics to restoration 

The importance of gene flow for selecting restoration material is that populations of the given 

taxon neighbouring the target site have higher gene exchange and hence genetic identity than 

separate but related taxa. As documented by Hartl & Clark (1997), gene flow among populations 

that exceeds about four migrants per generation causes homogenization of neutral alleles among 

populations, effectively producing panmictic populations. Individuals from such populations are 

ideal for restoration. Though protected polymorphism in a heterogeneous environment may be 

maintained between the demes even if dispersal results in complete mixing of the gene pool, in 

such a case demes will not differentiate genetically and hence there will be no local adaptation 

(Griswold, 2006).  

 

Wright (1931) demonstrated that species cohesion breaks down only when gene flow is reduced 

among populations to less than one migrant per generation thereby allowing differentiation. 

When gene flow is above one but less than four migrants per generation, populations may evolve 

at the ‘major’ genes while experiencing uniformity at neutral alleles. Therefore, there is need to 

ascertain the extent of gene flow among selected species and ecosystems since it varies between 

different species and ecosystems. 

 

2.4.2 Environmental homogeneity and selection differential   

Like genetic similarity, environment homogeneity decreases with increasing geographical distance 

from the source population. Environmental factors are important in that, even in presence of 

substantial gene flow (potential gene flow), realized gene flow may not occur where 

environmental selection is strong (Griswold, 2006; Garant et al., 2007).  
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In restoration, the implication of this is that use of genetic similarity indices that rely on realized 

gene flow measures may not be appropriate in delineating which populations have genetic 

connectivity. This also means that use of geographic distance to deduce genetic similarity may 

not be factual in presence of other forces of selection. Actually, it is documented that though 

individuals may be separated geographically, they may tend to develop similar adaptive traits if 

they are located in similar ecosystems.  Therefore, these may be better propagules than 

neighbouring populations with disparate conditions (Galloway and Fenster, 2000).  

 

2.5 Within-population gene dynamics in degraded forest ecosystems 

In degraded areas, a shift in pollinator species composition (Waser et al., 1996; Yates et al., 2007) 

might still be accompanied by changes in patterns of pollen flow for animal pollinated species. 

This is especially true if the behaviour and pollination efficiency of the new pollinator differ from 

those of the original species. The consequences of this, however, are a multitude. Inbreeding, 

allee effects and genetic drift, with a consequent reduction overall in heterozygosity are of great 

significance in restoration (Hartl and Clark , 1989).  

 

2.5.1 Implications of Genetic drift and Inbreeding to Restoration 

Inbreeding, allee effects and genetic drift are phenomenons that are likely to affect small 

populations in degraded areas, following the models given by Hartl and Clark (1989). The 

dangers of using inbred germplasm in restoration programs are related to increased susceptibility 

to demographic and environmental stochasticity (Yates et al., 2007). However, the impact of 

population size reduction will only be apparent where degradation negatively impacts on gene 

flow. When gene flow occurs, more individuals contribute their genes to the next generation, 

maintaining genetic diversity and counteracting the negative fitness consequences of small 

population size and isolation.  
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The effect of degradation on gene flow has been deemed to differ in species depending on life 

history traits such as breeding system, dispersal syndrome and longevity of the species concerned 

(Hobbs & Yate, 2003; Costin et al., 2001; Dick, 2003; Hobbs and Yates, 2003; Yates et al., 2007). 

Although, lack of gene flow between populations may be an incentive for conservation purposes 

(Alleaume-Benharira et al., 2006), there is strong empirical evidence which suggests that 

genetically diverse populations would be preferred for restoration because of the importance 

genetic diversity confers on organisms.  

 

2.6 Importance of genetic diversity to forest restoration 

Among and within population genetic diversity is required to ensure ecosystem resilience and 

adaptability (Montalvo and Ellstrand, 2001). Empirical evidence and genetic theory suggest that 

genetic diversity plays an important role in the survival of living organisms especially in surges of 

rapid changes. A report by Frankel & Soul´e (1981) indicates that genetic variation is the raw 

material for evolutionary change since it allows populations to evolve in response to 

environmental change, whether that be new/changed diseases, parasites, predators and 

competitors, or greenhouse warming, ozone layer depletions, or other results of pollution. Pre-

existing genetic variation is also critical for short-term evolutionary change.  

 

In addition, several authors (Hamrick et al., 1991; Mckay et al., 2005 and Carnus et al., 2006) have 

also reported that genetic diversity is important in performance of organisms since genotypes 

partly determine organisms' physical form and function. Genes regulate size, shape, physiological 

processes, behavioral traits, reproductive characteristics, tolerance of environmental extremes, 

dispersal and colonizing ability, the timing of seasonal and annual cycles and disease resistance, 

among others.  

 

 12



2.7 Categories of Restoration Gene Pools 

Populations from the target site plus those from adjacent areas that are genetically connected to 

the site via gene flow (metapopulations) are referred to, according to Jones (2003) as the primary 

restoration gene pool (RGP). Jones (2003) also suggested that the Primary RGP material would 

be the most appropriate material for restoration, if it is available or when the ecological function 

of the target site has not been fundamentally altered in a manner that makes such material no 

longer adapted.  

 

The populations that are genetically disconnected from the target site are referred to as 

secondary restoration gene pools (Jones, 2003). Jones suggested that these should be the next 

alternative where the primary gene pool is lacking or where the target area is disturbed. Though 

its use may be associated with some risk, Jones (2003) proposed that the attached risk may be 

low in species whose genetic distribution follows a normal distribution curve. Transplant studies 

which especially take into account environmental variation can help predict the risk of failure in 

the field.  

 

2.8 Micro-scale variation  

Besides selection of the best local species for restoration, there is growing appreciation of the 

importance of the effects of micro scale variation on recruitment and spatial structure of the 

populations.  Ecosystems are very heterogeneous in biotic and abiotic terms. However, 

functional heterogeneity (variability of a system property affecting ecological processes) is only a 

fraction of the available structural heterogeneity (variability of a property measured without 

reference to ecological effects) (Gomez et al., 2004; Valladares and Gianoli, 2007). 

  

Nevertheless, in view of the fact that the most limiting factor for growth in most tropical 

environments is the limited availability of soil nutrients, mycorrhiza should be very important in 
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establishment and survival of plants. Actually, mycorrhizas are an important soil factor that may 

influence both abiotic and other biotic properties of an ecosystem (Onguene & Kuyper, 2002) 

and hence plant and ecosystem productivity. As documented by (Palmer et al., 1997), restoration 

of function of a system may require restoration of key linkages related to food web structure that 

is a number of trophic levels and their connectence or taxa critical to material processing such as 

decomposers. Due to this, fungi are highly envisaged as critical in a successful restoration. 

 

2.8.1 Effect of mycorrhiza on plant performance and adaptation 

According to Klironomos et al. (2000), arbuscular mycorrhiza form intimate relationships with 

around 85% of the terrestrial plants. Although mineral nutrient accumulation and acquisition 

from soil is considered to be the primary function of mycorrhizas, other roles for these fungi 

have been suggested. These include; provision of protection from parasitic fungi and nematodes 

and suppression of competing non-host plants, non-nutritional benefits to plants due to changes 

in water relations, phytohormone levels, carbon assimilation and growth form changes to root 

architecture and vascular tissue (Azcon-Aguilar et al., 2003; Ingleby et al., 2007).  

 

As reported by Azcon-Aguilar et al. (2003), Klironomos et al. (2000) and Robertson et al. (2007), 

the importance of arbscular mycorrhiza in ecosystems translates into reduction in competition 

between plants and preventing nutrient losses from the system, which in turn contribute to the 

stability and diversity of ecosystems. Besides, there is increased reproductive success as networks 

of hyphae supported by dominant trees may help seedlings become established or contribute to 

the growth of shaded under storey plants (Chen et al., 2005).  Mycorrhizal roots and fungal 

fruiting bodies are also important as food sources and habitats for other micro and macro fauna, 

which are also important in ecosystems. Ecto-hyphae are important in maintaining soil physical 

and biological properties.  
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Lastly and of great value to restoration is that hyphae may transport carbon from plant roots to 

other organisms involved in the ecosystem cooperating with other members of the 

decomposition soil food-web (Chen et al., 2005; Ehlers and Thompson, 2004). It is because of 

this function that the presumption that some mycorrhizal plants can act as nurse plants or 

keystone species can hold. Functional relationships associated with nurse plants is an area in 

many ecosystems that has not been fully explored though a few studies have demonstrated co-

adaptation of some species (Ehlers and Thompson, 2004). Given these functions, numerous 

researchers have suggested a relationship between the recovery time of disturbed ecosystems and 

the abundance of infective propagules of mycorrhizal fungi.  

 

Various studies have also demonstrated the importance of mycorrhiza in plant performance 

although the degree of dependency varies within species. Whereas some plants have obligatory 

mycorrhizal associations, others can have facultative, or no mycorrhizae at all.  In natural 

ecosystems, plants with facultative mycorrhizal associations or non-mycorrhizal roots are more 

common in very dry, wet or cold habitats where plant productivity is limited by 

soil/environmental conditions, or in disturbed habitats where mycorrhizal fungus inoculum is 

limited (Brundrett, 1991). Non-mycorrhizal trees are however, rare.  

 

Though most of them are thought to be ubiquitous (Menoyo, 2007; Chen et al., 2005)  and non 

specific in infestation, the response of plants to mycorrhiza in a given soil or vice versa may vary 

depending on soil and climatic characteristics and mycorrhizal status of the dominant species 

(Klironomos et al., 2000; Menoyo et al., 2007). For example, Baer (2004) demonstrated that 

chronic disturbance can alter availability and/or spatial distribution of mycorrhizas, which can in 

turn strongly influence vegetation pattern, community structure, and diversity in terrestrial 

ecosystems.   
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It is also being speculated that mycorrhiza from a particular place or host may not perform well 

in new places or on a new host due to adaptation even though the converse may also be true. 

For instance Klironomos et al. (2002) indicated that within a given habitat, new plants are usually 

associated with positive microbial feedback interactions, while natives displayed a more stable 

negative relationship with soil flora and fauna. In addition Klironomos et al. (2000) documented 

that these fungal communities can comprise of genotypes that are mutualists as well as cheaters 

(parasites). However, like for many fungi, their position along the parasitism-mutualism 

continuum will depend on the plant symbiont as well as edaphic factors.  Brundrett et al. (1996) 

supposed that mycorrhiza can probably be (i) a single generalist phenotype showing a similar 

degree of adaptation to all habitats; (ii) a single specialist phenotype optimally adapted to one 

habitat (usually the habitat that is most frequently encountered or of highest quality) and poorly 

adapted to other habitats; and (iii) a set of specialist phenotypes each maximizing fitness in one 

habitat type. Local adaptation requires an outcome close to (iii).   

 

In general terms, relationships between genetic diversity, habitat heterogeneity and the scale of 

adaptation in trees are complex, involving a variety of factors. One other unresolved issue 

involves ascertaining whether all the variation observed in organisms is adaptive or not. As 

Garcia de Leanize et al. (2007) documented, not all genetic variation is adaptive, and yet not all 

phenotypic variation is inherited. Therefore, there is need to distinguish between adaptive and 

non- adaptive variation.  

 

2.9 Adaptive versus non-adaptive variation 

There are three strategies that organisms may use to exploit new areas. These are genetic 

differentiation, phenotypic plasticity (the ability of an organism with a given genotype to change 

its phenotype in response to changes in the environment) and genetic polymorphism (existence 

of two or more forms of individuals in the same species (Dybdahl and Kane, 2005; Valladares 
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and Gianoli, 2007). If two genotypes express the same phenotype in the same environment, 

phenotypic differences observed under natural condition result from phenotypic plasticity. 

Conversely, if phenotypic differences between genotypes are maintained across different 

environments, the variability comes from a genetic polymorphism. Whereas the genetic 

differentiation is adaptive, plasticity and polymorphism may or may not have a genetic 

component. It is thus important to differentiate whether the observed variations have a genetic 

basis in order to guarantee survival over generations.  
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CHAPTER THREE 

METHODS 

 

3.1 Study Sites: Location and Biophysical Conditions 

3.1.1 Mabira Forest Reserve, Uganda 

Mabira forest is located in South Central Uganda between 0o 22’ - 0o 35’N and 32o56’ - 33o 02’E. 

The forest covers an area of 30,600 ha (Nature Uganda, 2006). It is a mid elevation forest located 

between 1070 and 1340 m above sea level, occupying gently undulating plains with numerous 

flat-topped hills and wide shallow valleys. The reserve is isolated from other protected areas by 

agricultural land (Natureuganda, 2006). Within the forest, there are 27 official village enclaves 

inhabited by local people involved in subsistence farming.  

 

The degradation history is such that they are areas that have been very recently (0-20yrs) 

encroached although some were encroached on in the 1950s – 1980s. There is also an 

undisturbed nature reserve. The climate is tropical with two peaks of rainfall from March to May 

and September to November with mean annual rainfall of 1200-1500 mm, and temperatures that 

rarely exceed 280C (Komutunga and Musiitwa, 2001). About 95% of the area is covered by 

medium altitude moist semi-deciduous forest (Langdale-Brown, 1960). The remaining portion is 

occupied with medium altitude moist evergreen forest.  However, the forest has been greatly 

influenced by human activities making some areas characteristic of sub climaxes. The three 

recognized sub climaxes are: colonizing forest, mature mixed forest and Celtis mixed forest. 

 

3.1.2 Kedowa Forest, Kenya 

Kedowa is located on the South Western part of Mau Forest Complex which is located between 

0°30’ South and 35°20’ East and in the Rift Valley Province of Kenya. The rainfall pattern at the 

western flanks is governed by the moist monsoon winds from the Indian Ocean and dry winds 
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from the Great Rift Valley. Mean annual rainfall varies from 1,000 to 1,500 mm with peaks in 

April and August. The western flanks are under the influence of the Lake Victoria macroclimatic 

region and are generally wetter. Rainfall is above 2,000 mm and more evenly distributed 

(www.ifrikenya.org/kedowa.htm.).  

 

The forest being a reservoir of unique biological diversity plays a significant role in water 

catchment, feeding the major rivers and streams that make up the hydrological systems of Lake 

Victoria. The complex has been under pressure by adjacent communities and immigrants from 

other areas. The settlers are clearing land for cultivation removing remnants of the forests and 

opening up new forest areas through non-residential cultivation. Although the forest is legally 

registered as a forest reserve where human activities are controlled through enactment of rules 

and regulations, there have been cases of illegal encroachment and harvesting of various forest 

products such as timber, poles, posts, charcoal, grass, building stones among others. There is 

also overgrazing and excision all of which have led to a notable decrease in forest cover 

(www.ifrikenya.org/kedowa.htm.)  

 

3.1.3 Madagascar: Vohimana Site 

Vohimana Forest Reserve is representative of the middle altitude evergreen forests in eastern 

Madagascar. It is located between longitudes 48°30′22″ E and 48°31′22″ E and latitudes 

18°55′12″ S and 18°56′24″ S, at an altitude of between 705 and 936 m. The annual rainfall is 

between 1,500 and 2,500 mm, with the possibility of an ecologically dry season in 

September/October (Brand, 1997). Vohimana forest is an important rain forest in eastern 

Madagascar. It is endowed with globally unique amphibians and orchids, medicinal plants and 

endemic birds in the region. It also has the biggest and the most beautiful lemurs of the country, 

in particular 'Indri' and 'Syfaka à diadème'. The forest is, however, extremely threatened by 
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anthropological pressures although it represents the last key link of the corridor of the park of 

Mantadia towards forests more to the South. 

 

3.2 Assessing genetic structure of A. gummifera 

3.2.1 Sampling design 

Genetic structure of A. gummifera and the status associated mycorrhiza status of the three sites 

were compared. Within each site a minimum of 30 mature A. gummifera individuals separated by 

at least 100 meters were sampled from each population. The 30 individuals were required for the 

mean to fall in the 95% confidence interval, for variance stabilization and for inclusion of rare 

alleles (Sokal and Rohlf, 1995). The individual tree locations were geo-referenced with a Global 

Positioning System (GPS) for easy monitoring. Leaves were collected from all individuals and 

seeds were taken from at least five trees. Leaves were dried on silica gel prior to DNA extraction.  

 

3.2.2 Selection of markers 

Chloroplast markers were used because of being haploid and are considered good indicators of 

mutations and other historical bottlenecks, founder effects and genetic drift. Chloroplasts evolve 

slowly and exhibit little variation at the intraspecific level (Clegg et al., 1991). The chloroplast 

DNA (cpDNA) markers have also been widely favored for phylogenetic inference (Olmstead et 

al., 1992) and to some extent, for within-species genetic studies. Since chloroplast DNA is also 

maternally inherited, therefore reflecting seed dispersal and maternal gene flow, it is an effective 

tool for genetic variation studies and for identifying postglacial migration routes (McCauley, 

1994). In addition, the geographically structured cpDNA variations permit the elucidation of 

evolutionary history and the study of intraspecific phylogeography (Soltis et al., 1997). Therefore, 

in relation to the study, cpDNA had the ability to provide evidence for whether the populations 

under study have evolved as a single population and whether they can be treated as a single 

population in restoration. 
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3.2.3 RFLP analysis 

DNA was extracted using a DNeasy plant kit (QIAGEN). For amplification of chloroplast 

RFLP regions, an initial screening of more than 20 RFLP primers was done. Although some 

failed to amplify through all the populations, a number of them (Table 1) gave good 

amplification (Fig 1) and hence were screened. However, only RPS/RPL, CCMP5R/CCMP5F 

and TFC/TGF showed variation.   

Table 1: cpDNA primers that were used in initial screening 

Primer Sequence 5’-3’  Reference 

RPS GTCGAGGAACATGTACTAGG Forward Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
RPL TTTGTTCTACGTCTCCGAGC Reverse Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
CCMP5R TTTGTTCTACGTCTCCGAGC Forward Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
CCMP5F TGTTCCAATATCTTCTTGTCATTT Reverse Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
TRNVR CCGAGAAGGTCTACGGTTCG Forward Demesure et al. (1995) molecular ecology 4 129-131 
TRNF CTCGTGTCACCAGTTCAAAT Reverse Demesure et al. (1995) molecular ecology 4 129-131 
TFC CGAAATCGGTAGACGCTACG Forward Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
TGF GGGGATAGAGGGACTTGAAC Reverse Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
PSBCE GGTTCGAATCCCTCTCTCTC Forward Demesure et al. (1995) molecular ecology 4 129-131 
TRNSE2 GGTCGTGACCAAGAAACCAC Reverse Demesure et al. (1995) molecular ecology 4 129-131 
PSBF CGCAGTTCGTCTTGGACCAG Forward Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
PSBB GTTTACTTTTGGGCATGCTTCG reverse Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
CCMP10R TTCGTCGDCGTAGTAAATAG Forward Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
CCMP10F TTTTTTTTTAGTGAACGTGTC Reverse Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
PSBA CGAAGCTCCATCTACAAATGG Forward Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
TRNH ACTGCCTTGATCCACTTGCC Reverse Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
TRNS GCCGCTTTAGTCCACTCAGC Forward Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
TRNG GAACGAATCACACTTTACAC Reverse Hamilton, M.B.(1999) Molecular ecology, 8, 513-525
 

Reactions were carried out in 25 µL of solution consisting of 5µl of template DNA, 1.6 µL of 

dNTP (Promega), 0.4 µL of each primer (Thermo), 2µL of buffer and 0.2µL of Taq polymerase 

(New England Biolabs). Polymerase chain reaction was performed using MBS satellite 0.2G 

thermal cycler with the following programme. An initial 3-minute denaturation at 94°C was 

followed by 40 cycles of 94°C for 1 min and 1 min of annealing at 57°C and extension at 72°C 

for 10 min. 5µL of the PCR product were then checked on agarose for successful amplification 

(Figure 1). With successful amplification, 5µL of each sample were digested at 37°C for 6hrs with 

0.1µL Hinf I in a 20µL volume with 2µL of the corresponding buffer. The digest was then 

visualised by Polyacrylamide Gel Electrophoresis (Figure 2). Fragments were scored by 

comparison to the standards. 
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Figure 1: Typical agarose gel produced 

 

Figure 2: A mutation produced with RPS primer on PAGE gel 

 

3.3 Assessing the abundance and diversity of Mycorrhiza 

3.3.1 Collection of soil samples 

New and old soils were collected near the trees selected for seed collection. Four sub samples 

were taken from the north, east, west and southern directions of the base of the tree, not more 

than 2 m away. These were mixed to obtain a composite sample from which 2 kg were taken for 

spore analysis and for inoculating the experiment. Five samples were taken from the five trees 

which were not less than 200 m from one another.  
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3.3.2  Spore Extraction and Identification 

Fungal spores of arbuscular mycorrhiza were extracted from soil by wet sieving and decanting, 

followed by sucrose centrifugation following the methodology proposed by Gerdemann and 

Nicolson (1963) and Walker et al. (1982) respectively. The supernatant was poured through a 

50 µm mesh and quickly rinsed with tap water. Spores were counted using a Doncaster dish 

under the dissecting microscope, and grouped according to morphological characteristics. 

Counting was done twice for every sample to eliminate error. Permanent slides were prepared 

for each different spore morphotype using polyvinyl alcohol and polyvinyl alcohol plus Melzer’s 

solution (1:1). After confirming the uniformity of the morphological groups under the optical 

microscope, the different morphotypes were identified to genus and where possible to species 

levels. Spore identification was mainly based on spore size and color, wall structure, presence or 

absence of germination shield and hyphal attachment. These observations were corroborated 

with observations of freshly formed AMF spores in trap cultures. 

 

3.4 Dependence of A. gummifera on Mycorrhiza 

3.4.1 Green house experimental design 

 

Figure 3: Experimental set up 
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1)  Treatments 

a)  Seeds  

Two seed lots both from Kenya. One collected from Kedowa, (Londiani) in February 2006 and 

the other from Tavete (Batch 05100905) in June 2006.  A total 250 seeds of each seed lot were 

scarified on sandpaper to enhance germination before sowing in the pots. 

 

b) Inocula 

Five different soil inocula were used. The soils were categorized on basis of origin and  time of 

collection. In March 2007, soils were collected from Kenya, Uganda and Madagascar and stored 

at 4 oC. In September 2007, fresh soil was collected from the same sites in Kenya and Uganda. 

New soils were collected not more than two weeks before the experiment was set up, whereas 

the old soils had been in cold storage for at least six months. The sixth soil treatment was a 

control treatment which comprised an autoclaved (1 hour at 121 oC) mixture of the 5 different 

soil inocula.  Each of the 12 treatments (6 soil inocula x 2 seed lots) was replicated eight times. 

 

2.  Set up 

a)  Preparation of pots 

Pots were two-thirds filled with a mixture of sand, sterilized loam and gravel mixed in a ratio of 

1:1:1. This was followed by approximately 50 g of the soil inoculum, which was then covered 

with more soil mixture. Control pots (with autoclaved inoculum) were prepared first. This was 

followed by thorough cleaning and disinfection of hands and all used equipment prior to setting 

up of each soil inocula to prevent cross-contamination of treatments. Five seeds per pot were 

then sown so that they were roughly equidistant from one another. Thereafter they were covered 

with more soil mixture. The pots were then watered immediately.  
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b)  Lay-out: randomization and blocking 

A randomized block design was used. Random numbers dictated the position of the block and 

the position of each pot within the blocks. Each treatment was represented once in each block. 

Blocking was used to account for some perceived extraneous factors like aspect and edge effect.  

 

c) Glasshouse growing conditions 

Glasshouse temperature was maintained at a maximum of 28oC (day) and a minimum of 20OC 

(night). Irradiance was maintained to a minimum of 14 h. Natural light was supplemented with 

high pressure mercury vapor lamps of similar wavelength. Watering of the plants was done 

whenever need was perceived. 

 

3.5 Data collection  

3.5.1 Germination 

Assessment of germination commenced a week after sowing since more than 50% of the seeds 

had germinated. A second count was done the following week. Pots without germinated 

seedlings were planted with spare seedlings transplanted from other pots of the same treatment. 

After thinning, each pot had one seedling. A spare pot of each treatment was also set up and 

spare seedlings were transplanted to this pot during the thinning process. 

 

3.5.2 Height and diameter measurement 

Height measurements commenced a week after thinning. Weekly measurements were made. The 

heights were measured from soil level to tip of growing bud. To avoid cross-contamination, the 

ruler was thoroughly cleaned and disinfected after measuring seedlings from each treatment. 

Height measurements were done for the first six weeks when plants were still fragile and later 

weekly consecutive diameter measurements were taken at 1M from radical. 
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3.6 Data analysis 

3.6.1 Genetic diversity and structure 

The mutations were identified by presence or absence of an allele at the locus of concern. The 

following genetic parameters were computed for each population using GENALEX: number of 

haplotypes, Nei’s unbiased haplotypic diversity (he), genetic distance and identity, 

intrapopulation diversity (HS), total diversity (HT) and PhipT (analogous of Fst fixation index) 

(Nei, 1973; Excoffier et al., 1992). Gene flow among the populations was estimated on the basis 

of PhiPT values 

 

3.6.2 Mycorrhiza abundance and diversity 

Species richness, spore density and relative abundance of each fungal species in the rhizosphere 

of each soil were calculated. Mycorrhizal fungal diversity was then calculated by using the 

Shannon–Wiener index, which combines two components of diversity: species richness and 

evenness of individuals among the species and Simpson’s diversity index (Magurran, 1988). 

 

3.6.3 Heights and Diameters 

The mean height and diameters of the seedlings, intervallic increment, correlations and the 

variances were analysed using GENSTAT. Whereas the heights were treated as absolute values, 

the increments were square root transformed to achieve normal distribution. Normality was 

checked using various tests namely Anderson-Darling, Cramer-Von Mises and Watson. Bartlett’s 

test was used to check for homogeneity of variances. Graphs were generated using SIGMAplot. 

By comparing the seedlings that either were or not exposed to mycorrhizal fungi, the 

experiments permitted the assessment of the relative dependence on mycorrhizas for survival 

and growth in the different species. Correlations were assesses using MI NITAB. 
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CHAPTER FOUR 

RESULTS 

 

4.1 Genetic structure of A. gummifera 

4.1.1 Genetic variation within and between the populations 

A total of nine mutations at three loci were detected which allowed the identification of fourteen 

haplotypes among the three populations (Table 2).  

 

Table 2: Haplotypes identified by PCR-RFLP analysis of the chloroplast genome  

Haplotype 
Code 

5R/5F – HinfI RPL - HinfI TFC – HinfI 

 1 2 3 1 2 1 2 3 4 
H1  1 0 0 1 0 1 0 0 0 
H2 0 1 0 1 0 1 0 0 0 
H3 0 0 1 1 0 1 0 0 0 
H4 0 1 0 0 1 0 1 0 0 
H5 0 0 1 0 1 0 1 0 0 
H6 0 0 1 1 0 1 0 0 1 
H7 0 0 1 1 0 0 1 0 0 
H8 0 0 1 0 1 1 0 0 1 
H9 0 0 1 1 0 1 0 1 0 
H10 0 1 0 1 0 1 0 1 0 
H11 0 1 0 0 1 1 0 0 0 
H12 0 1 0 1 0 1 0 0 1 
H13 0 1 0 1 0 0 1 0 0 
H14 0 1 0 1 0 0 1 0 1 
‘Code’ refers to haplotypes, 5R/5F, RPL, TFC are the chloroplast sequences examined and 1,2,3,4 refer to the 
character states of different mutations, where 0,1 indicates presence or absence of the fragment. 
 

Whereas Kenyan samples have only five of the haplotypes, Ugandan samples have nine 

haplotypes while Madagascan populations have six of the haplotypes (Figure 4). In a similar 

pattern, Ugandan samples have the highest number of private haplotypes (5), followed by 

Madagascar (3) and then Kenya (1).  
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Figure 4: Frequencies of haplotypes in Kenyan, Ugandan and Madagascan populations 

 

All the three sites share only one haplotype (haplotype 5). Kenyan and Ugandan populations 

share the highest number of haplotypes between each other (Figure 5). While 60% of the 

haplotypes in Kenya are found in Uganda, Kenya and Uganda share only 40% and 22% of their 

diversity with Madagascar 
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4.1.2 Genetic diversity 

Total genetic diversity in the dataset was high, hTOT = 0.886 with a range of within-population 

diversity levels.  The Ugandan population was more genetically diverse (h= 0.813) than the 

populations from Madagascar (h=0.733) and Kenya (h=0.398). Across all measures of diversity 

(Number of alleles (Na), effective number of alleles (Ne) and number of private alleles), the 

distribution of haplotypes  was such that diversity consistently decreased from Uganda to 

Madagascar, then to Kenya (Figure 6).  
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Figure 6: Mean Haplotypic Patterns Across Populations.  
Na represents the total number of alleles, Ne is the effective number of alleles 

 

4.1.3 Genetic divergence among populations  

The higher within population variation (75%) compared to the between populations variation 

(25%) was reflected in the total fixation index estimation, (ΦST = 0.249, p > 0.01). Nei’s genetic 

distance showed the strongest differentiation to be between Kenyan and Madagascan 

populations (d= 2.711), followed by that between Ugandan and Madagascan populations (1.227). 

Uganda and Kenya had the least genetic distance (0.298). The fixation index between Kenyan 

and Madagascan populations was highest (0.404) (Table 3). 
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Table 3: Population variability and estimate of gene flow (Nem) based on in φST value 
 
Source of variation d.f. SS Percentage of 

total variation 
p-value φST NeM 

Among populations 2 6.451 25 <0.01 0.249 1.506 
Within Populations 77 25.287 75 <0.01 - - 
Total 80 31.738 - - - - 
 

Table 4: Between-populations gene flow  

Populations PhiPT values Gene flow 
Uganda Vs. Madagascar 0.138 3.123 
Uganda Vs. Kenya 0.168 2.976 
Kenya Vs. Madagascar 0.404 0.747 
 

The relationship between geographical distance and genetic similarity is as illustrated in the map 

below (Figure 7). The pie charts represent the total size proportional to population sample size 

with partitions showing numbers of different haplotypes within each population. The similarity 

between Ugandan and Kenyan populations is evident, with common dominance of the red 

haplotype and several other shared haplotypes. The reduced diversity in the Kenyan population 

relative to that in the Ugandan and Madagascan populations is also clear. 

 

Figure 7: Geographical distance between the sites and haplotypes distribution.  
Each color represents a different haplotype  
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4.2 Mycorrhizal diversity 

4.2.1 Spore status in both new and old soils 

Typical spores were clearly observed under the dissecting microscope and were therefore easy to 

enumerate. Storage had a significant effect on the status of the spores. In the Ugandan samples, 

the new soils had 91% more spores than the old soils, yet the Kenyan new soils had 73% more 

spores than the old ones. Observing these spores under compound microscopes further reduced 

the overall effective spore samples since some of these had lost the basic parts critical for 

identification. There were many cases of spore parasitism especially in the Ugandan new soils. Of 

the total spores in the old Ugandan soils, only 58% of them were clearly identifiable (it was the 

proportion of live spores that had all the features needed for proper identification). In the new 

Ugandan samples 46%was identifiable compared to 56% in old Kenya samples, 92% of spores 

from new Kenyan samples and 49% of spores from Madagascan soil (Figure 8). 

0

20

40

60

80

100

120

Old New Old New Old

Uganda Kenya Madagascar
Soil Origin

Sp
or

e 
C

ou
nt

Total
Live

 

Figure 8: Spore counting in new and old soils 

 

4.2.2 Species abundance and diversity 

A total of 22 species (Table 2), representing five genera (Table 3) of arbuscular mycorrhiza were 

isolated and identified. Three other species from genus Acaulospora, Glomus and Gigaspora could 

not be well identified.   
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Table 5: Species abundance and distribution in the different soil samples  

Site Uganda Kenya Madagascar Total isolates
Collection Old New Old New Old 
Replicate i ii i Ii i ii i ii i ii 

Acaulospora denticulate 0 0   0 0 0 0   0   0 1 0     1
Acaulospora koskei 0 0   0 0 3 0   0   0 0 0     3
Acaulospora mellea 1 4 31 7 0 0 42 15 0 0 100
Acaulospora morrowiae 3 2   0 0 3 2   0   0 0 0   10
Acaulospora paulinae 0 0   6 0 0 0   3   0 0 0     9
Acaulospora scrobiculata 0 0   2 0 0 0   5   0 3 0   10
Acaulospora sp. 0 0   0 0 0 0   0   0 0 4     4
Acaulospora spinosa 0 0   2 2 0 0   0   0 0 0     4
Entrophospora infrequens 0 0 0 5 0 0 0 0 0 0 5
E-strain chlamydospore 0 0 0 5 0 0 0 4 0 0 9
Gigaspora albida 0 0 0 0 0 1 0 0 0 0 1
Gigaspora gigantean 0 0 3 1 1 0 3 1 0 0 9
Gigaspora sp 0 1 0 0 0 0 0 0 0 0 9
Glomus aggregatum 0 0 8 3 0 0 6 0 0 0 17
Glomus claroideum 0 0 0 0 0 3 0 4 0 0 7
Glomus constrictum 0 0 0 5 0 0 0 5 0 0 10
Glomus etunicatum 0 0 0 0 1 1 0 0 0 0 2
Glomus fasciculatum 0 0 0 0 0 0 0 0 2 2 4
Glomus sinuosum 0 0 0 0 0 0 0 1 0 0 1
Glomus sp. 0 0 0 6 0 0 0 0 0 3 9
Scutellospora calospora 0 0 0 0 0 4 0 0 2 0 6
Scutellospora pellucida 0 0 0 3 1 0 0 0 0 0 4
    
Total Identified spores 4 7 52 37 9 11 59 30 8 11 
Unidentified 5 3 37 66 5 11 0 8 3 17 

 

Among the five soil samples new and old Ugandan soils showed the highest (1.67) and lowest 

(0.76) species diversity respectively and similarly species richness (Table 6). In terms of evenness, 

Madagascar population scored higher than the rest with a value of 0.96, and least was new soil 

from Kenya with 0.7.  

Table 6: Shannon-Weiner’s diversity, abundance, richness and spore density estimates 

Site   Shannon-
Weiner’s 

Diversity Index 

Species 
Richness 

(S) 

Total 
Abundance D: 1-D: 1/D: Evenness Spore 

density 

Uganda Old 0.56 2.00 4.00 0.63 0.38 1.60 0.81  
 Old 0.96 3.00 7.00 0.43 0.57 2.33 0.87 3.8 
 New 1.26 6.00 52.00 0.40 0.60 2.51 0.70  
 New 2.08 9.00 37.00 0.13 0.87 7.48 0.95 38.4 
Kenya Old 1.46 5.00 9.00 0.26 0.74 3.86 0.91  
 Old 1.47 5.00 11.00 0.26 0.74 3.90 0.91 7.2 
 New 0.99 5.00 59.00 0.53 0.47 1.89 0.61  
 New 1.41 6.00 30.00 0.32 0.68 3.17 0.79 19.4 
Madagascar Old 1.32 4.00 8.00 0.28 0.72 3.56 0.95  
 Old 1.34 4.00 11.00 0.27 0.73 3.67 0.97 7.8 
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4.2.4 Representation of Genera 

Arbuscular mycorrhizas are known to have seven genera, but of these five were represented in all 

the three sites (Table 7). 

 

Table 7: Genera of the identified Species 

Genus Species 

Acaulospora Acaulospora morrowiae, A. mellea, A.paulinae, A.scribiculata, A. spinosa,A. Koskei, A. denticulata, A. spp 

Glomus Glomus aggregatum, G.spp, G. constricum, G.. etunicatum, G. claroidem, G. sinuosum, G.fascitulatum,  

Gigaspora Gigaspora sp, G. gigantea, G. Albida 

Scutellospora Scutellospora pellucida, S. calospora 

Entrophospora E. strain chlamydospore, E. infrequescence  

 

The five genera that were represented were Acaulospora, Glomus, Gigaspora, Scutellospora and 

Entrophosphora. These were represented as follows 
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Figure 9: Representation of fungal genera in all the samples 

 

Whereas all the five genera were represented in Uganda and Kenya, Madagascan soil represented 

only three genera (Figure 10) 
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Figure 10: Representation of genera per soil sample 

 

4.3 Dependency of host species on AM 

4.3.1 Results of height measurement 

The inocula and seed had significant effects on the heights of seedlings (0.001≤p≤ 0.002) over 

the first five weeks of height measurement. Despite the observed reduction in spore count, there 

were no observable effects on seedling performance of soil storage. But in general, non-

mycorrhizal plants had lesser growth rate compared with those with the inoculated ones. 

 

Seedlings growing in Madagascan and Kenyan soils showed highest and lowest performance 

respectively all through the period of height measurement.  Whereas the mean height of the 

inoculated plants was in real terms higher than the control experiment, the significance of the 

differences varied over the course of growth. In the first six weeks, the mean height of seedlings 

growing in Madagascan soils was significantly higher than that for Kenya, Uganda and control, 

the latter three not being different. For instance in the first week of measurement (3rd week of 

growth), the mean height of seedlings in Madagascan soil (7.56cm) was significantly higher than 

the mean heights for Uganda (6.11cm), Kenya (6.32cm) and control (6.79) which were not 

significantly different from each other (L.S.D, 5%=0.533). At the fourth measurement, the mean 
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height in Madagascan soils (9.1cm) was higher than the mean of seedlings in Ugandan, Kenyan 

and control soils that is 7.56cm, 7.29cm and 7.48cm respectively (5%, LSD=0.908).  

 

The mean height of Tavete (one site in Kenya) seedlings was however, consistently significantly 

higher than the seedlings from the other site (Kedowa) (figure 11). In the first week of 

measurement, the former had a mean height of 7.5cm while the latter had a mean height 5.57cm. 

The difference between Tavete (M=9.04cm) and Kedowa (M=6.39cm) seedlings was still 

prominent in the fourth week (5% LSD=0.605). The blocks had no significant effect on heights. 

 

Figure 11: Effect of provenance on response to inocula.  
Tavete seedlings (circled green) were more vigorous that Kedowa seedlings (red circle)  

 

Considering the mean increments, the effect of seed and soil was evident (p<0.001), while the 

effects of soil were inconsistent. However, the mean increment for Tavete seedlings remained 

consistently higher than of Kedowa. For example considering the first mean increment (MI), that 

for seedlings growing in Madagascan (MI=0.781) and Ugandan (MI=0.859) soils were not 

significantly different. Both were however higher and different from those raised on Kenya soils 

(MI=0.325) and control plots (MI=0.250) which did not significantly differ from each other 

(L.S.D =0.1663). The Tavete seed lot also showed a significantly higher overall increment 

(MI=0.704) than the Kedowa seed lot (MI=0.429), the differences specifically evident in Uganda 

and Madagascan soils (L.S.D, 5%=0.1663). The effect of seed source on height for both seed 
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lots is well illustrated in figure 12. Storage did not have any significant effect on mean height or 

increment of the seedlings. 

 

 

Figure 12: Mean height of Tavete and Kedowa seed-lots 

 

4.3.2 Correlations 

There were no correlations between the number of spores or species diversity with either height 

or diameter (Table 8).  
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Table 8: Correlation coefficients and corresponding P-values between different 
parameters, h is mean height in each week of measurement 
Variables Coefficient of correlation P-Value 

Spore diversity *h1 0.615 0.193 
Spore diversity *h2 0.500 0.313 
Spore diversity *h3 0.595 0.213 
Spore diversity *h4 0.477 0.338 
Spore diversity *h5 0.519 0.291 
Spore diversity *h6 0.477 0.338 
Total number of spores*h1 0.449 0.372 
Total number of spores *h2 0.191 0.718 
Total number of spores *h3 0.558 0.250 
Total number of spores *h4 0.409 0.421 
Total number of spores *h5 0.505 0.307 
Total number of spores *h6 0.409 0.421 
Total number of live spores *h1 0.620 0.189 
Total number of live spores *h2 0.403 0.428 
Total number of live spores *h3 0.613 0.195 
Total number of live spores *h4 0.477 0.339 
Total number of live spores *h5 0.538 0.270 
Total number of live spores *h6 0.477 0.339 
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CHAPTER FIVE 

DISCUSSION  

5.1 Genetic structure of A. gummifera 

5.1.1 Levels of genetic variation within and between A. gummifera populations 

The amount of variation detected in this study (14 haplotypes) demonstrates the effectiveness of 

the PCR-RFLP methodology in detecting polymorphism in the chloroplast genome of Albizia 

gummifera. Most of the observed polymorphism seemed to be due to small insertions or deletions 

(indels) of between 5 and 20 base pairs. Only nine mutations were detected partly because of the 

higher frequency of indels as compared with point mutations in the chloroplast genome and 

partly because this method is more likely to detect indels than point mutations (Raspé et al. 2000). 

Indeed the only point mutations that may be detected are those that lead to the appearance or 

the disappearance of a restriction site.  

 

Of the three populations, Ugandan samples exhibited the highest genetic diversity, followed by 

Madagascar and then Kenya. The observed values can be well explained by the degradation 

histories of the study sites. Empirical evidence suggests that population changes associated with 

habitat degradation lead to an erosion of genetic variation due to increased random genetic drift, 

elevated inbreeding, and reduced gene flow, where fragment/population size and isolation fall 

below critical levels (Young et al., 1996; Cavers, 2003; Davies, 2006).  

 

However, the severity of genetic bottleneck is determined by the severity of habitat loss, that is 

to say, the severity and duration of a reduction in population size.  Facts from this study are; first 

of all, the study sites were significantly degraded. While in Uganda the forest from which the 

samples were collected may seem to be disturbed, there were still a number of mature trees (trees 

in the upper stratum) from which leaves were picked. These, though few, probably have 
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persistently maintained a larger proportion of genetic variation of the founding populations to 

explain the highest genetic diversity.  

 

Paradoxically, the site in Madagascar was degraded by slash and burn agriculture. The relatively 

lower diversity suggests that the trees from which the leaves were collected were re-colonizing. 

As theory predicts (Mckay et al., 2005), these colonizers may have suffered different kinds of 

bottlenecks and founder effects with a consequent reduction in genetic diversity. Similarly, the 

degradation in Kedowa Forest site gives a plausible explanation for the observed values.    

 

Despite the differences in diversity, Kenyan and Ugandan populations are very similar, although 

Kenyan population had lower diversity. This indicates that Kenyan population in contrast to 

Madagascan population has had a very recent degradation that has been detrimental to its genetic 

diversity. According to Dawson and Powell (1999), afromontane habitats-typical of Kedowa 

forest are supposed to have high diversity since they act as island of genetic diversity. A report by 

UNEP (2006) shows an extensive recent degradation in Mau forests. According to UNEP 

(2006), that recent 2001 forest excision, as well as the illegal, irregular and unplanned settlements 

affected 54.3 % and 27.3 % of the total area of the Eastern Mau Forest Reserve and South West 

Mau Forest Reserve (where Kedowa site is located) respectively. This is in line with our 

observations as the population from which our sample is derived represents a heavily modified 

forest edge community, and as such it is likely that the A. gummifera population here has 

experienced substantial impact from human activity. 

 

As reported by Green and Sussman (1990) documented that the fiercest degradation that ever hit 

the Vohimana site was in 1985 where the rate of degradation of the rain forests was estimated by 

Landsat images to have been more than 66%. It could probably be due to the recent 

conservation that the forest has had chance to regenerate some of their diversity to account for 
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the relatively higher genetic diversity than Kenya. Besides, these forests have inherently less in 

common with Uganda or Kenya, such that degradation does not congruently affect much of the 

former’s diversity. 

  

Nonetheless, the total variation (hTOT =0.886) in the species is high in relation to those observed 

in other out crossing species (Cavers et al., 2003; Navarro et al., 2005) and in some species in the 

same region (Dawson and Powell, 1999). And just as many studies have revealed in several tree 

species (Cavers et al., 2003; Trindade, 2001), variation within populations is greater than among 

populations. The high values of variability within populations and the low levels of genetic 

variation among populations suggest the existence of reproduction model without inbreeding 

and panmixia. Such a model shows high heterozygosity within a population and low genetic 

variability between populations because of a high gene flow due to lack of geographical barriers 

just as the results of the research (ΦPT = 0.249, p<0.01). Although cpDNA data may not directly 

show the level of heterozygosity or inbreeding, the PhiPT value reveals that the overall 

differentiation between the populations is relatively low given the substantial distances between 

populations.  

 

5.1.2 Levels of gene flow and genetic differentiation 

In theory, widely-distributed, extensively out-crossing species with effective pollen or seed 

dispersal mechanisms should have higher genetic similarity and low differentiation (Cavers et al., 

2005). Although the overall differentiation is quite low (ΦPT = 0.249, p<0.01), there is substantial 

haplotypic differentiation between the pairs of populations. Gene flow and differentiation are 

lowest and highest respectively between Kenya or Uganda and Madagascan populations. Like 

many studies have verified the isolation by distance theory (Wright, 1931; Cavers et al., 2005), 

populations that are neighboring each other are expected to have higher gene flow and hence 

less differentiation than populations which are distant. In addition, the magnitude and pattern of 
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genetic subdivision that was found among populations provides compelling evidence for the 

significance of barriers to gene flow.  The Eastern arm of the great East African rift is likely to 

act as a barrier between Uganda and Kenya, whilst the ocean separation between Madagascar and 

continental Africa is likely to form a substantial barrier for gene flow.  

 

According to Wolf et al. (1997), the chloroplast genome is more likely to exhibit substantial 

geographic structuring of populations due to its maternal inheritance (and hence limitation of 

gene flow to seed dispersal) and an inherently lower mutation rate in the chloroplast molecule. 

The results of this study verify this expectation. Certainly, the potential for contemporary gene 

flow between populations is highly restricted, given the fact that all the forests where the 

individuals were collected were degraded and the monitoring for seeds, which has been going on 

for more than a year, showed that most of the fruits aborted and hence not enough seed is 

produced to aid sufficient gene flow. Furthermore, the seeds themselves are orthodox and hence 

even when they disperse, they may easily die before having suitable conditions for germination. 

Actually many studies have revealed more gene flow by pollen than by seed with implications 

that cpDNA data will almost certainly show increased levels of population differentiation and 

diversity due to more limited dispersal ability. 

 

Since chloroplast DNA has slow rate of differentiation, geographic structuring of chloroplast 

variation is more likely to reflect very long term processes. Hence, the observed differences may 

not only be attributed to gene flow, selection or mutation but to long term migration differences. 

The differences in migration may be the most plausible explanation for populations like Uganda 

and Madagascar that have the highest gene flow, yet with the highest number of private 

haplotypes. Geological studies show that Madagascar was separated from mainland Africa 

roughly 100 Ma (Raven & Axelrod, 1974) or even earlier, but during the process of continental 

drift, a considerable number of families, genera and species dispersed intercontinentally. 
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However, in the process of Madagascar’s drift to the east, there must have been a considerable 

number of genera and genetic distributions that were split (Leroy, 1978) providing both 

Madagascar and Africa with a common stock of taxa, yet with some unique haplotypes.  

 

Though not many studies have compared distinctiveness of various species at molecular level, a 

number have illustrated a reduction in species diversity from particular genera between mainland 

Africa and Madagascar. For example, Meve and Liede (2002) showed that in genus 

Asclepiadoideae the total number of species in the old world were 1900, of which apparently 

1250 are in Africa and 125 in Madagascar. This implies that early earth movements must have 

had substantial effects on all diversity.  Despite the high gene flow between Uganda and 

Madagascar there are still few haplotypes that are shared between the two populations. As 

documented by Wright (1959), the gene flow between those populations is still very low to 

maintain a panmictic population. 

 

The presence of unique haplotypes yet in presence of gene flow may indicate that reproductive 

isolation has occurred between the populations given the different selection pressures that are 

available in the different sites. From a neo-Darwinian perspective, new species arise when natural 

selection acts on genetic variation at the population level, eventually leading to reproductive 

isolation because of alternative accumulated mutations (Mayr, 1982). Although it is not clear how 

much time ‘eventually’ represents whether speciation requires a complete shut-off of genetic 

exchange among diversifying lineages (Lawton-Rauh et al., 2007), the high genetic distance 

indicates that these populations are not acting as a single interbreeding population and as, such 

some haplotypes have remained distinct. Many studies have illustrated that speciation can readily 

occur in less than 150ya (Thoday and Gibson 1962; Dobzhansky and Pavlovsky, 1971). The 

genetic distances between Uganda and Kenya may even tend to grow wider given the low gene 

exchange that is currently being experienced. However, verification of the reproductive isolation 
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between our populations will require analysis using markers that sample the nuclear genome as 

well, since pollen may well be capable of dispersing trans-oceanically.  

 

Despite the long distance, the high gene flow between Uganda and Madagascan populations may 

have been as a result of one episodic gene transfer, for example, through human transfer of seed. 

However looking at  Asclepiadoideae flora (not at molecular level though) Meve and Liede 

(2002), concluded that, the Africa- Malagasy distributions are only inconspicuously influenced by 

these presumable introductions but most likely by some long distance dispersal events effected 

by anemochorous seeds, besides other historical geological forces. 

 

5.2 Diversity of mycorrhiza 

The diversity of AMF depends on the type of ecosystem, agricultural practices and soil 

conditions. Helgason et al. (1998) found higher AMF diversity in a woodland ecosystem in 

comparison to an arable land ecosystem. Soil disturbance can reduce the density of spores, 

length of mycelium and species richness of AMF and no tillage conditions stimulate the 

mycorrhizal activity (Boddington and Dodd, 2000; Dodd, 2000). A higher diversity of spores in 

Ugandan new soils than Kenya new soil implies better conditions for spore development in the 

former. Just like the trend is for observed genetic diversity of A. gummifera, the degradation in 

Kenya must have had an impact on the spore diversity.  The higher diversity of spores in old 

Kenya soil than the others must be relating to the conditions of the soil, for instance, the level of 

moisture, the handling process among others that the soils were exposed to before storage. 

 

Although analysis of spores may give a general view of diversity, it may not be very conclusive 

since not all AMF colonizing the plant roots are found as spores. Besides, not all spores are easy 

to identify when sieved directly from field soil, for instance some of the spores are ruptured. In 

addition, the variations in spore development may also sometimes be misleading. 
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5.2.1 Activity of mycorrhizal inoculum 

The differences in diversity between the stored and fresh soil is indicative of the effect of storage 

on the survival of microorganisms. Microbes are easily affected by aeration as well as storage 

conditions. Ugandan soils lost over 90% of the total spores, while Kenyan soils lost 

approximately 30% of the spores. This was probably due to the fact that the former contained 

more moisture than the latter. As reported by Mondal and Hyakumachi (2000), soil moisture 

accelerates the loss of microbes in stored soils. Although the loss may seem substantial, there 

was no evidence to support Mondal and Hyakumachi (2000)’s conclusion that  fungal propagules 

exposed to non-sterile soil for an extended period become exhausted, and lose viability and 

virulence since the results did not show any significant differences between seedlings grown in 

the stored and fresh soils.  

 

5.2.2 Dependency and responses of A. gummifera to inoculum 

The role of mycorrhiza plays in performance of the seedlings has been illustrated in Figure 12. 

Even though the performance of Kenyan seedlings would be expected to be highest in its own 

soils, the seedlings were seen to perform best in Madagascan soils, followed by Ugandan and 

finally Kenyan soils. The response to inoculum especially in the seedlings growing in Kenyan 

soils may be attributed to many factors discussed in the subsequent sections. 

 

5.2.2.1. Fungal species differences 

Functional diversity tests on different AMF have shown that different AM fungal species have 

different effects on plant performance and nutrient cycling. Particular AM fungal species, and 

not all the components of any AM fungal population, appear to play a role at a given stage of 

plant performance (Jeffries and Barea, 2001). This implies that whereas a soil may seem more 

diverse, not all those fungi may colonise in the host’s initial growing stages. This explains why 
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diversity may not correlate with growth. Even then, a host having the same species of fungi may 

also exhibit contrasting colonization behavior that is either Arum or Paris type. 

 

5.2.2.2 Arum versus Paris colonisation 

Another proposition that may have brought about the differences in plant responses to growth is 

the difference in colonisation pattern of the mycorrhiza in the different soil treatments. Based on 

pattern of colonization, arbuscular mycorrhizas are divided into two types; the Arum type and 

Paris type. In the Arum type, intercellular hyphae grow in a longitudinal manner along the root 

and penetrate the cortical cells to form arbuscules. Arbuscules arise from these intercellular 

hyphae on short side branches, typically at right angles to the main root axis (Smith and Smith, 

1997). In the Paris type, intercellular hyphae are absent and the hyphae are entirely intracellular 

and irregularly coiled, some of them forming arbuscules that are not terminal but are localised in 

definite layers. The arbuscules are formed as intercalary structures and called arbusculate coils 

(Smith and Smith, 1997). Whereas the Arum-forming mycorrhizas are typical of fast-growing 

plants, they have been commonly isolated in other slower growing plants like the trees. 

Nevertheless, the Paris type morphology is the one more often seen in plants in natural 

ecosystems 

  

These colonization patterns may cause a difference in plant responses in that, in the Arum type, 

the fungus colonizes the plant rapidly implying faster mineral acquisition by the plants. This 

contrasts with the colonization in the Paris which is relatively slow as hyphae have to pass from 

cell to cell within the plant cortex. Although slower nutrient acquisition may be reflected in lower 

growth rates, this is true only in the early stages of plant growth. This is because whereas the 

arum type colonises very fast, the life span of the arbuscules which are the active sites of nutrient 

exchange are shorter as opposed to that in the Paris type.  
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Even though and probably, for the above reason the Arum type is more common in short lived 

plants like grasses, herbs or shrubs, this doesn’t rule out the possibility of this type of mycorrhiza 

being found in forest soils, especially in degraded areas which may be more dominated by herbs 

and shrubs. Actually, the results do not contradict this because the soils from Mabira Forest were 

collected from a colonizing forest, with many ground shrubs and herbs.  This soil must have had 

both the Arum type from the shrubs and the Paris type from the trees hence the intermediate 

growth in the early stages. The soils from Kedowa forest were collected from a strict nature 

reserve with limited undergrowth thus the seedlings are indicative of a slow colonizing Paris type 

pattern of mycorrhiza. The Vohimana site has also experienced recent slash and burn agriculture 

and therefore most likely to have the Arum type of mycorrhiza, explaining the fast growth of 

seedlings in the Madagascan soils.  Even if Ingleby (2007) like many other researchers believes 

that host identity is the sole determinant of the colonization pattern, with implications that a 

particular host cannot have two AMF patterns, a number of studies prove otherwise. For 

example studies carried out by Cavagnaro et al. (2001) on tomatoes and Kubota et al. (2005) on 

cucumber have shown that the fungal identity also can determine AM morphology.  

 

In addition to the above Smith and Smith (1997) even speculate that the Paris type of mycorrhiza 

may not only delay playing their expected role but some may tend be parasites in certain 

environmental conditions. Though parasitism in mycorrhiza has not been well studied, this 

speculation arose from the conclusion that some Paris type mycos do not form arbuscules; yet to 

date these have been the only widely agreed sites for nutrient exchange.  

 

 Since little or no specificity has been documented in AM, as also clearly evidenced from our 

study, a host plant conceivably gradually selects the AMF assemblage that can optimise its 

growth. This has been supported by various studies that have shown that different AMF species 

sporulated differentially with different plant species with which they were associated.  This 
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means that for Kenyan seeds growing in their own soil, there was no added fungal choices to 

select from which would probably enhance their growth like in the other soil types. 

  

5.2.2.3 No colonisation 

Seedlings growing in Kenyan soils barely showed an effect of mycorrhiza despite the higher 

spore abundance and diversity which leads to the speculation that there was little colonisation. 

Since there are a number of experiments that have suffered lack of colonization despite using 

spores sourced direct from the ecosystem site, it shows that this form of AM propagule (spores) 

is not the main inoculum source for that target plant. Besides, a number of plants have been 

shown to experience a rapid initiation of the AM colonization when more mycelia rather than 

spores are present in the soil. Therefore spore diversity may not necessarily translate into 

colonization. Various studies have demonstrated the ecological role of the AM mycelium as 

inoculum source especially particularly in arid and semiarid ecosystems typical of Kenya.  

 

Adding to the above, there is also amounting evidence that many species of symbiotic fungi 

especially members from Acualosporaceae and from Glomales have innate dormancy. This 

implies that when spores are exposed to favorable growth conditions, they have to go 

throughout a period of up to three months prior to becoming germinable. 

 

5.2.2.4 Bacteria communities in the soil 

Theory has it that in the rhizosphere, AMF interact with different kinds of bacteria. Different 

functional groups of bacteria such as N2-fixing bacteria, plant growth-promoting rhizobacteria, 

phosphate-solubilising bacteria and antagonists of plant pathogens have been reported to be 

associated with the rhizosphere of different plants colonised by AMF. These interactions can be 

found at all stages of the AMF life cycle, from spore formation and germination through root 

colonisation to external hyphae. The nature of these interactions may however be inhibitory or 
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stimulatory, competitive or mutualistic to each other or for the plant depending on 

environmental conditions.  While negative interactions include reduced spore germination and 

hyphal length in the extramatrical stage, decreased root colonisation and a decline in the 

metabolic activity of the internal mycelium, positive interactions on the other hand include 

enhanced spore germination, mycorrhizal development and function (Hildebrandt et al., 2002). 

Though few studies have shown the magnitude of the interactions in different plants, synergistic 

positive interactions have been reported between AMF and plant growth promoting bacteria 

such as nitrogen fixers, fluorescent pseudomonads and sporulating bacilli.  Since bacterial are 

more prone to disturbance then their reduced activity may also translate in reduced activity of 

the mycorrhiza, which may explain the limited response of the plants to inoculation in the 

experiment. 

 

5.2.2.5 Soil fertility 

The response of plants to mycorrhiza is also influenced by the fertility of the soil where the 

plants grow. Where soils are fertile plant response to mycos will not be as visible as where the 

soils are infertile indicating that probably the loam that was used in the experiment was very 

fertile, obscuring the effects of mycorrhiza. 

 

5.2.2.6 Plant genotype 

Although studies have also shown that the genotype of a plant species appears to determine the 

AM morphologies. The explanations for this are not yet documented. 

 

The results of no correlations coupled with the least inoculum response plus lowest genetic 

diversity may imply that, A. gummifera in Kedowa exist as very few scattered individuals or at least 

did at one time. This means that the individuals may have a tendency to lose genetic diversity 

through inbreeding and genetic drift. In sampling for mycorrhiza, (because a higher density of 
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other trees may be in the vicinity), it is more likely that other mycos sampled were not those 

associated with A. gummifera and could not colonise on its roots as fast.  In Mabira, since A. 

gummifera is found in mixed forest, then its roots and hence the rhizosphere are easy to identify.   
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

1. Populations of Albizia gummifera are characterized by high diversity with 

chloroplast markers, more variation being attributed to intra-population variation. 

The populations are also significantly differentiated.  

2. The fungal communities in all the study sites were equally diverse.  

3. There was no evidence of local adaptation of A. gummifera but the mycorrhiza 

contributes significantly to the growth of seedlings.  

4. There was so significant effect of soil storage on mycorrhiza activity though 

plants benefit from exposure.  

 

6.2 Recommendations 

6.2.1 For management 

The gene flow between the A. gummifera populations is less than 4 migrants these populations 

may have evolved at the ‘major’ genes. Breakdown in genetic cohesion implies that introduction 

of genotypes from outside can easily interfere with the process of evolution of locally adapted 

races, and so we need to be very cautious about introducing seed. Besides, gene flow, these 

populations are very distinct given the high number of unique haplotypes there in and may have 

had different migration routes, which makes them quite different. Therefore, as an obligation to 

maintain the genetic integrity of the restored populations, interchange of propagules would not 

be appropriate. 

 

However, if increasing genetic diversity in the ecosystem is one of the ultimate goals of 

FOREAIM project, then the Madagascan populations can also be used for restoration. Limited 

introduction of seed from other sources can produce new genotypes to be ‘tested’ by natural 
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selection. Consequently and regardless of the provenance of introduced seed, if it hybridizes with 

the native genotypes there will be an increase in genetic variance that is likely to increase the rate 

of evolution. However, precaution should be taken as to avoid the negative consequences of 

introductions such as out breeding depression.  

 

Lack of specificity to mycorrhiza would permit the use of the populations all though the target 

restoration sites with confidence.  Still, because seedlings showed an enhanced growth with 

mycorrhiza, then it is suggested that seedlings to be used for restoration can be inoculated in 

nursery to enhance their vigor in the nursery and hence survival in the field. However, the 

potential negative consequences of long distance transfer of germplasm material like cost, 

probably outweigh the benefits. 

 

6.2.2 For Research  

Populations having sufficient gene flow does not guarantee adaptive similarities since 

populations in the early stages of speciation may continue to have high levels of gene flow 

despite adaptive differences (Endler, 1977). Conversely, populations with low levels of gene flow 

and high genetic differentiation may not have adaptive differences and may never become 

reproductively isolated (i.e., full species). This implies that an analysis of neutral markers does not 

aid final decision making. Like Cavers et al. (2004) suggested, it is recommended that for more 

accurate decision making, thorough analysis of quantitative trait loci should be an important 

aspect.  

 

Even in presence of no adaptation, there are factors that are critical before any introductions, for 

instance, the influence of numbers of individuals and genetic variation represented in the 

founding population on colonization, establishment, growth, and evolutionary potential. 
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Evolution of populations requires genetic variation, and the larger the genetic variance, the 

greater the potential for adaptive evolutionary change (Falconer, 1981; Hartl and Clark, 1989).  

 

Because restoration usually begins with relatively small populations, the amount of genetic 

variation represented in the founding population can be critical. In small populations, stochastic 

changes in size can severely reduce the genetic variation within a population, thus increasing the 

opportunity for non-adaptive evolution by random genetic drift at the expense of adaptive 

change by natural selection (Ellstrand and Elam, 1993). Reduction in population size and genetic 

variance is expected to increase the opportunity for inbreeding and subsequent inbreeding 

depression.  Therefore, there is need to work out suitable founding populations before 

introduction of A.gummifera. 

 

In addition, though the physical and ecological forces that promote genetic differentiation may 

be understood in theory, the relative importance of contemporary versus historical 

biogeographical factors remains contentious. For better genetic management, it is worth 

differentiating between these. 

 

Besides, research into other basic biological and ecological processes that are taking place at the 

restoration site can enhance the long term viability and credibility of the practice of restoration. 

In addition to genetic diversity, understanding other factors that influence birth, growth, 

reproduction and death within plant populations will not only give insights on how genetic 

diversity changes with time, it will also implicate factors that affect success of organisms. This 

will take into account the influence of other inter-specific interactions (as well as mycorrhiza) on 

population establishment, colonization, growth, and community development. Interactions such 

as competition, herbivory, predation, parasitism, and mutualisms all play roles in the 

development and fate of restored sites. The ecological effects of non-native species on native 
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communities should also be looked at in case of introduction of especially the Madagascan 

populations. 

 

However, because of genetic drift, any one haplotype should not be assumed to be completely 

representative of variation among the whole genome. It is therefore important that the data are 

derived from an adequate number of markers or base pairs. 

 

Lastly, as inoculation experiments are followed up, other factors other than numbers of spores 

can be investigated for example the types of fungi that in reality colonise the roots other than 

assuming that all spores observed in the soil will colonise. Probably these may be better 

correlated with growth than total numbers.  
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