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Abstract 16 

 17 

Siderophore type chelates were detected in nutrient enriched, incubated seawater collected 18 

from different biogeographical regions of the Atlantic Ocean. Seawater was enriched with 19 

glucose and ammonium, glycine (as a source of carbon and nitrogen) or chitin and ammonium 20 

at different concentrations and incubated for up to 3 – 4 days in the dark. Siderophore type 21 

chelates were detected using high performance liquid chromatography coupled to inductively 22 

coupled plasma mass spectrometry (HPLC-ICP-MS) after complexation with Ga. Samples 23 

were subsequently analysed by HPLC - electrospray ionisation mass spectrometry (HPLC-24 

ESI-MS) in order to confirm the identity of the known siderophores, and to obtain the pseudo-25 

molecular ions of unknown siderophore type chelates. A total of 22 different siderophore type 26 

chelates were resolved in the HPLC-ICP-MS chromatograms. Ten different siderophore type 27 

chelates were identified by HPLC-ESI-MS, 3 of which had not previously been identified in 28 

nutrient enriched seawater incubations. The concentration and diversity of siderophore type 29 



 2 

chelates was highest in seawater amended with glucose. The concentrations and diversity of 1 

siderophore type chelates also varied with biogeographical area in the Atlantic Ocean, with 2 

the North Atlantic Sub-tropical Gyre yielding highest concentrations in incubations, and the 3 

South Atlantic Sub-tropical Gyre and Western Tropical Atlantic yielding the highest diversity.  4 

 5 
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 7 

Introduction 8 

Siderophores are metal-binding chelates produced by prokaryotes as part of a highly specific 9 

Fe uptake mechanism (Vraspir and Butler, 2009). Siderophores are considered important in 10 

the bacterial acquisition of Fe in seawater and consequently influence Fe biogeochemistry in 11 

the ocean (Hopkinson and Morel, 2009; Mawji et al., 2008a; Vraspir and Butler, 2009). In 12 

addition to Fe uptake, siderophores are reported to have additional roles such as the 13 

acquisition of other metals (Duckworth et al., 2009a; Duckworth et al., 2009b), antimicrobial 14 

activity (Girijavallabhan and Miller, 2004) and quorum sensing (Amin et al., 2007). 15 

Siderophores are chemically diverse, utilizing hydroxamate, catecholate and carboxylate 16 

groups to chelate Fe. Bacteria and Archea produce a range of different types of siderophores 17 

(e.g. Homann et al., 2009; Neilands, 1995; Winkelmann, 2007). Recently characterised 18 

groups of siderophores produced by marine Bacteria and Fungi (e.g. Holinsworth and Martin, 19 

2009; Homann et al., 2009; Vraspir and Butler, 2009) occur as siderophore suites containing a 20 

peptide head group and a fatty acid tail (Homann et al., 2009). The peptide head group 21 

chelates the Fe while the fatty acid tail increases the hydrophobicity of the siderophore and is 22 

thought to prevent loss from the cell via diffusion (Volker and Wolf-Gladrow, 1999; Vraspir 23 

and Butler, 2009). Our current knowledge of marine siderophores is largely based on 24 

microorganisms that can be grown successfully in the laboratory as this allows for the 25 

production of sufficient quantities of siderophores for complete characterisation (Homann et 26 

al., 2009; Vraspir and Butler, 2009). In this study enrichment of seawater samples with 27 

different sources of carbon was examined with the aim of increasing our knowledge of novel 28 

and uncharacterised siderophore type chelates produced by marine bacterioplankton. The 29 

study was carried out in different biogeographical regions of the Atlantic Ocean to allow the 30 

assessment of spatial variations in the production of siderophore type chelates.  Glucose, 31 
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glycine and chitin were selected as carbon (and nitrogen) sources with different availabilities. 1 

Glucose is the most abundant dissolved free natural sugar and is preferentially utilised by 2 

oceanic prokaryotes relative to other free sugars (Carlson et al., 2002). Opportunistic gamma 3 

proteobacteria such as Alteromonas sp. and Vibrio sp. are known to respond well to 4 

enrichments with glucose (Carlson et al., 2002), and siderophores (ferrioxamines and 5 

amphibactins) produced by marine Vibrio sp. (Martinez et al., 2003; Martinez et al., 2001) 6 

have been readily identified in glucose enriched seawater incubations (Gledhill et al., 2004; 7 

Mawji et al., 2008a). Glycine was used as a supply of both nitrogen and carbon in incubation 8 

experiments. Amino acids such as glycine are taken up by many bacteria, and (Zubkov et al., 9 

2008) showed that amino acid uptake rates were higher than glucose uptake rates in Atlantic 10 

gyre waters. In addition, amino acids have been suggested as the preferred form of nitrogen 11 

for oligotrophic prokaryotes (Mary et al., 2008). Furthermore, it has recently been shown that 12 

glycine is required for growth by SAR11 alpha proteobacteria (Tripp et al., 2009). Chitin is an 13 

insoluble biopolymer composed of linear chains of linked N-acetyl-D-glucosamine residues 14 

and consists of approximately 47% carbon by weight. Chitin is abundant as a structural 15 

component of cell walls and a constituent of shells and exoskeletons. Chitin was used as a 16 

representative of high molecular weight organic matter, which requires enzymatic cleavage 17 

before uptake.  18 

High performance liquid chromatography – inductively coupled plasma – mass spectrometry 19 

(HPLC-ICP-MS) and high performance liquid chromatography – electrospray ionisation – 20 

mass spectrometry (HPLC-ESI-MS) were used to detect siderophore type chelates in 21 

seawater. HPLC-ICP-MS offers superior detection limits compared to HPLC-ESI-MS due to 22 

the absence of interferences from other co-eluting organic compounds. In addition, detection 23 

with ICP-MS allows quantification of siderophore type chelates, according to their metal 24 

content. However, identification and characterisation of siderophore type chelates is not 25 

possible with ICP-MS because ICP is a hard ionisation technique which destroys the organic 26 

part of the molecule. In addition, although HPLC allows the siderophore type chelates to be 27 

separated prior to ICP-MS detection it is possible for more than one siderophore type chelate 28 

to co-elute from the chromatographic column. This particularly occurs in natural samples, 29 

where siderophore type chelates can have similar molecular weights and chemical 30 

characteristics and where there may be many different siderophore type chelates. In contrast, 31 

HPLC-ESI-MS allows molecular masses of prospective siderophore type chelates to be 32 

identified and enables further characterisation of compound structure on collision induced 33 
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dissociation (CID) (Gledhill et al., 2004; Mawji et al., 2008a; Mawji et al., 2008b). Whilst co-1 

eluting compounds cannot be differentiated by ICP-MS, in principle they can be deconvoluted 2 

in the chromatogram by ESI-MS. Thus the two techniques offer complimentary information 3 

and potentially provide a powerful tool for the investigation of the production of siderophore 4 

type chelates in environmental samples. 5 

 6 

Methods 7 

Sample collection. 8 

Samples for the incubation experiments were collected in the period between October 15 and 9 

November 28 (2005) in four different biogeographical provinces of the Atlantic Ocean on-10 

board the RRS Discovery as part of the Atlantic Meridional Transect (AMT) cruise No. 17 11 

(Fig. 1). Samples were obtained at station 6 in the North Atlantic Subtropical Gyre (NAST), 12 

station 17 in the Tropical North Atlantic (NATL), station 31 in the Western Tropical Atlantic 13 

(WTRA) and stations 52 and 57 in the South Atlantic Subtropical Gyre (SATL) (Longhurst, 14 

1998). Seawater was collected in the mixed layer from a depth with a 55% light level relative 15 

to surface water irradiation. Sample collection was conducted using a CTD rosette frame 16 

(Seabird) fitted with 20 L Niskin (General Oceanics) samplers. Seawater was transferred to an 17 

acid washed 20 L polyethylene carboy (Nalgene) and subsequently to acid washed, 18 

autoclaved 1 L polycarbonate culture vessels (Nalgene).  19 

Incubation conditions 20 

The aliquots of unfiltered seawater (1000 ± 20ml) were enriched with carbon, nitrogen and 21 

phosphorus (Table 1) and incubated for 3-4 days in a growth chamber (Sanyo MLR 315, 22 

Loughborough, UK) in the dark at ambient seawater temperature. Iron and other trace metal 23 

contaminants were removed from nutrient stock solutions using chelex-100 (Sigma), and the 24 

nutrient solutions (except for chitin, which is insoluble) were sterilised by filtration (0.2 µm 25 

pore size) prior to addition. Chitin was added directly as particles. Unenriched seawater was 26 

used as a control at sea. Potential siderophore production from bacterial contamination when 27 

using chitin was subsequently examined in the laboratory by the same techniques employed 28 

for the incubations at sea except for the use of autoclaved seawater (collected on AMT17). As 29 

chitin could not be chelexed, it is possible that addition of chitin also resulted in Fe 30 
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contamination. Incubations were prepared in a Class 100 laminar flow hood. Bacterial growth 1 

was monitored daily using absorption measurements at a wavelength of 600 nm. Samples for 2 

flow cytometry were also collected every 24 hours.  3 

Sample Analysis 4 

Enumeration of bacteria 5 

Samples for flow cytometry analysis of the microbial community were preserved with 6 

paraformaldehyde (1% w/v final concentration, Sigma), frozen in liquid nitrogen and 7 

subsequently stored at -80 °C. Prior to analysis in the laboratory, the samples were incubated 8 

with SYBR green I according to the method of Heywood et al. (2006). The flow cytometric 9 

analysis was optimised for enumeration of heterotrophic prokaryotes (hereafter referred to as 10 

bacteria) with high nucleic acid and low nucleic acid content. A single analysis was 11 

performed on each sample as analytical errors for flow cytometry are normally in the region 12 

of 1–2 % (R. Holland, pers. comm.). Average growth rates were calculated as ln(cell 13 

concentration)- ln(intitial cell concentration)/(duration of experiment). 14 

Identification and quantification of siderophore type chelates 15 

All sample handling was carried out in a Class 100 laminar flow hood. Chemicals used were 16 

purchased from Fisher (UK) unless otherwise stated. High purity water (Milli-Q, Millipore) 17 

and LCMS grade solvents (Rheidel de Haan) were used throughout.  18 

After the 3-4 days incubation period, bacterial cells were removed by filtration (0.2 µm 19 

cellulose acetate, Sartobran, Sartorius) and the supernatant reserved for the analysis of 20 

siderophore type chelates (Gledhill et al., 2004; Mawji et al., 2008a). Siderophore type 21 

chelates were preconcentrated onto pre-washed (5 mL methanol, 5 mL Milli Q water) 22 

polystyrene-divinylbenzene solid phase extraction (SPE) cartridges (Isolute ENV+, 200 mg x 23 

3 mL). Cartridges loaded with sample were rinsed with 11.2 mM ammonium carbonate (5 24 

mL) and frozen (-20 °C) until further processing and analysis in the laboratory. Cartridges 25 

were defrosted and eluted with 5 mL of 81:14:5:1 (v/v/v/v) acetonitrile: propan-2-ol: water: 26 

formic acid. The eluent was blown down under nitrogen to aproximately 100 µL and then 27 

made up to 500 µL with 0.1 % (v/v) formic acid (Sigma).  28 

Siderophore type chelates were detected and identified by a combination of HPLC-ICP-MS 29 

and HPLC-ESI-MS according to the scheme shown in figure 2. Elemental mass spectrometry 30 

was performed first as it provides information with respect to likely retention times of 31 
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siderophore type chelates, which is useful when examining HPLC-ESI-MS chromatograms. 1 

Chromatography was performed using a polystyrene divinyl benzene stationary phase (100 × 2 

2.1 mm 3 µm, Hamilton, Reno, NA, USA). For detection by ESI-MS, samples were analysed 3 

both before and after addition of Ga (Gledhill et al., 2004), while for detection by ICP-MS, 4 

only samples with added Ga were analysed. Gallium (Ga(NO3)3 10,000 ppm ICP-MS 5 

standard, VWR)  was added to a 100 µL sub-sample at a concentration of 14 mM and the sub-6 

sample allowed to equilibrate overnight at room temperature.  7 

Siderophore type chelates in the incubations were detected using HPLC-ICP-MS (Thermo 8 

Elemental PQ2) interfaced via a desolvating nebuliser (MCN 6000, Cetac Technologies) to 9 

binary HPLC pumps (Shimadzu LC10ADvp) which were controlled by a system controller 10 

(Shimadzu SCL10Avp). Gallium (Ga
69

) rather than Fe was used to quantify siderophore type 11 

chelates because of its lower background contamination and reduced interferences in ICP-MS 12 

analysis (Moberg et al., 2004). Chromatographic conditions were as described previously 13 

(Mawji et al., 2008a). Briefly, the mobile phase consisted of (A) 95 % water: 5 % methanol: 14 

0.1 % formic acid (v:v:v) and (B) 100 % methanol: 0.1 % formic acid (v:v). The flow rate 15 

was 150 µl min
-1

. An isocratic step of 100 % A for 15 min was followed by a standard 16 

gradient of 100% A to 100 % B over 20 min and another isocratic step at 100 % B for 5 min.  17 

The system returned to the starting conditions over 5 min and the HPLC column was re-18 

equilibrated with 100 % A for 10 min. Samples and standards (5 µL) were manually injected 19 

onto the column using a metal-free injector (Rheodyne 9725i). The injector was suction 20 

loaded in order to avoid contact between the sample and the glass syringe. Mixed standards 21 

(1.5 nM to 1.5 µM) of ferrioxamine B, ferrichrome (Sigma, Poole, UK) and 22 

triacetylfusarinine C (EMC Microcollection, Tubingen, Germany) were used to calibrate the 23 

instrument on a daily basis. Reproducibility for the standards was <10%. Instrument drift was 24 

checked with a Ga standard after every third sample. A post-sample injection of 5 µL 0.5 M 25 

nitric acid and a 15 min isocratic step at 5 % methanol, 95 % water and 0.1 % formic acid 26 

(v:v:v) were employed at the beginning of the chromatographic run in order to allow the high 27 

concentrations of free Ga to be washed out of the system. Omission of this step resulted in 28 

high background Ga counts during the ICP-MS analysis. The eluant line of the HPLC pump 29 

was connected to the ICP-MS after the 15 min isocratic step.  30 

Identification of siderophore type chelates (where possible) and further characterization of 31 

siderophore type chelates was carried out using HPLC-ESI-MS with a Triple Quadrupole 32 
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Mass Spectrometer (ThermoQuest Finnigan TSQ 7000) equipped with electrospray ionization 1 

interface (Mawji et al., 2008a). The source and capillary voltage were set at +4.5 kV and 0-50 2 

V (autotune), respectively with a capillary temperature of 250 °C. Nitrogen sheath gas flow 3 

rate was 80 (arbitrary units) and auxiliary gas flow rate 40 (arbitrary units). The positive ion 4 

scan range was fixed at m/z 400-1800 throughout and data was processed with Xcalibur 1.0 5 

software. Chromatographic separation was performed using a binary HPLC pump 6 

(ThermoQuest Finnigan TSP P4000). The conditions were the same as for analysis by HPLC-7 

ICP-MS except that the flow rate was 200 µl min
-1

 and the post sample injection of 0.5 M 8 

nitric acid and 15 min isocratic step at 100% A were omitted. Collision induced dissociation 9 

(CID) (Gledhill et al., 2004; Mawji et al., 2008b) was used to confirm the identity of known 10 

siderophores. The instrument was set up for data dependant acquisition of CID spectra where 11 

the most abundant ion in each total ion mass spectra undergoes fragmentation. An activation 12 

amplitude of 35 % and an activation time of 30.0 ms were used for CID.  13 

HPLC-ESI-MS is a soft ionisation mass spectrometry technique that can be used for the 14 

identification and partial characterisation of siderophores e.g. (Berner et al., 1991; Mawji et 15 

al., 2008a; Mawji et al., 2008b; McCormack et al., 2003; Vraspir and Butler, 2009). HPLC-16 

ESI-MS has been successfully applied to the detection and identification of siderophore type 17 

chelates in seawater incubations and ambient seawater samples (Mawji et al., 2008a; 18 

McCormack et al., 2003). Collision induced dissociation of pseudo-molecular ions formed in 19 

HPLC-ESI-MS has the advantage of potentially providing structural information. However, in 20 

the chromatograms of crude (particulate or dissolved) extracts there are many interfering 21 

compounds, and therefore Ga is added as pseudo molecular ions containing Ga have a 22 

distinctive isotopic ratio. Gallium is complexed by hydroxamate siderophores, allowing their 23 

identification even in complex matrices (Mawji et al., 2008a; McCormack et al., 2003).  24 

However, it is nonetheless theoretically possible for other organic compounds to produce an 25 

isotopic ratio similar to the Ga complexes. Thus unamended samples were also analysed and 26 

examined for major ions that have a mass/charge ratio corresponding to the Fe or apo (metal 27 

free) complex with a similar retention time to that of the putative Ga complex. M/z ratios are 28 

thus reported only for peaks which satisfy the following criteria:  29 

1) Major ions in the mass spectra have two isotopes which differ by m/z = 2 and have a 30 

relative abundance close to that of Ga 69 and 71 (3:2) 31 



 8 

2) A peak for the molecular ion also occurs at approximately the same retention time in 1 

the sample containing no Ga, that is m/z 13 units less than the most abundant isotope 2 

in the + Ga sample (equivalent to the difference in mass between Fe
56

 and Ga
69

), or 3 

m/z 66 units less (representing the uncomplexed siderophore type chelate)  4 

3) No molecular ions for the putative Ga complex at the relevant retention time are 5 

observed in the unamended sample. 6 

In order to compensate for the different chromatographic conditions and HPLC pumps used in 7 

HPLC-ICP-MS and HPLC-ESI-MS analysis, retention times are expressed relative to the 8 

retention time of ferrioxamine B (FOB), according to the equation   9 

tr = (ti-t0)/(tFOB-t0),  10 

where tr is the relative retention time of peak i, ti is the retention time of peak i, t0 is the void 11 

volume of the chromatographic system and tFOB is the retention time of FOB.    12 

  13 

Results and Discussion 14 

In this study results are reported and discussed for the production of siderophore type 15 

compounds in nutrient enriched incubations conducted across the Atlantic Ocean. The study 16 

builds on previous work on the production of siderophore type chelates in nutrient enriched 17 

seawater (Gledhill et al., 2004; Haygood et al., 1993; Mawji et al., 2008a) through the use of 18 

different carbon sources and preconcentration of larger sample sizes (1 L as opposed to 500 19 

mL used in previous studies; Gledhill et al., 2004; Mawji et al., 2008a). The aim of the study 20 

was to widen the number of siderophore type chelates detectable by the combined application 21 

of HPLC-ICP-MS and HPLC-ESI-MS. Siderophore type chelate production in glucose 22 

incubations is compared with production in glycine and chitin incubations. Glycine and chitin 23 

are more refractory organic substrates than glucose, and potentially more representative of the 24 

type of organic matter present in seawater. However, it should be highlighted that other 25 

aspects of the methodology will also influence the type of siderophore detected. The method 26 

depends strongly on the complexation of the siderophore type chelate with Ga. Gallium 27 

exchange is carried out at low pH (~2) to ensure that gallium remains in solution for the 16 hr 28 

equilibration period. Although this has the advantage of ensuring that only strong Ga 29 

complexes are detected and thus increases the likelihood that these complexes are 30 

siderophores, the addition of Ga could result in the loss of siderophore type chelates that are 31 
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unstable or insoluble at low pH (e.g. catecholate siderophores: Harris et al., 1979a; Loomis 1 

and Raymond, 1991). Preconcentration is undertaken at the pH of the sample (~8), so 2 

siderophores that are hydrophilic at pH 8 (e.g. negatively charged siderophores such as ferric 3 

aerobactin: Harris et al., 1979b) might not be efficiently retained by the SEP column. Indeed, 4 

preliminary analysis of both ferric enterobactin and ferric aerobactin has indicated that neither 5 

of these types of siderophores will be detectable using the current methodolody (Gledhill, 6 

unpublished data). This study thus focuses on the detection of hydroxamate siderophore type 7 

compounds and how this varies with carbon source. 8 

Growth of bacteria in nutrient enriched Atlantic seawater incubations.  9 

Initial (day 0) numbers of bacteria in the incubations varied between 0.16 × 10
6
 mL

-1
 and 0.4 10 

× 10
6
 mL

-1 
(Table 2). Bacteria counts (Table 2) showed similar geographical trends to 11 

previous studies (see e.g. Heywood et al., 2006; Mawji et al., 2008a). Densities were highest 12 

in the equatorial region, lowest in the South Atlantic Gyre and intermediate in the remaining 13 

regions. Growth rates and final bacterial densities varied with carbon source and 14 

concentration (Table 2). For glucose and chitin amended incubations, the average growth 15 

rates were 0.85 ± 0.15 and 0.8 ± 0.25 day
-1

 respectively, while growth rates for glycine were 16 

lower at 0.5 ± 0.2 day
-1

. Final densities of bacteria showed a similar trend with averages of 1.1 17 

± 0.5 × 10
7
 mL

-1
 and 1.1 ± 0.9 × 10

7
 mL

-1
 for glucose and chitin and 3.4 ± 3 × 10

6
 mL

-1
 for 18 

glycine. The addition of chitin, a complex polysaccharide, resulted in very similar growth 19 

rates and final bacteria densities to glucose, a highly available carbon source. On the other 20 

hand glycine, an amino acid, produced the lowest growth rates and final bacteria densities of 21 

the three carbon sources. For glucose amended incubations, growth rates were similar in the 22 

different geographical provinces of the Atlantic Ocean, but final heterotrophic bacteria 23 

concentrations were lower in the SATL (Table 2). Greater variability in growth rate and final 24 

heterotrophic bacteria concentrations were observed for both chitin and glycine, with lowest 25 

values of both observed at station 52 in the SATL. The concentrations of carbon added in 26 

these experiments were very high in order to ensure successful detection of as many 27 

siderophores as possible. Despite this, consistent differences were observed between 28 

incubations, particularly between glycine and the other carbon sources. The community 29 

structure was not examined, however, with such high concentrations of carbon the bacterial 30 

communities at the end of the experiment would not have been representative of the original 31 

communities (Carlson et al., 2002). Manipulations of oceanic bacterial communities often 32 
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result in community composition changes even when trace concentrations of available carbon 1 

sources are added (Carlson et al., 2002; Fuchs et al., 2000). The flow cytometry data showed 2 

that the communities shifted towards dominance by high nucleic acid bacteria during the 3 

incubations (results not shown) however without further data on community structure it is not 4 

possible to interpret this data more fully. 5 

Concentration and diversity of siderophore type chelates detected in nutrient enriched 6 

Atlantic seawater incubations.  7 

Example Ga
69

 chromatograms obtained from HPLC-ICP-MS analysis of the 8 

incubation extracts and controls are presented in figure 3. The number of siderophore type 9 

chelate peaks (labelled a-v) detected by ICP-MS from different incubations varied both with 10 

carbon source and geographical location (Table 2, Fig 4), but not with the concentration of 11 

added carbon, possibly indicating that added carbon concentrations were too high to limit 12 

siderophore production. Siderophore type chelates were not detected in control incubations. 13 

At least 2 siderophore type chelates were identified in every incubation sample. The highest 14 

numbers of siderophore type chelates were for glucose (12-14) at stations 31 in the WTRA, 15 

and stations 41 and 52 in the SATL (Fig. 3). High numbers of siderophore type chelates (10-16 

12) were also observed in chitin incubations at stations 41 and 52. For glycine amended 17 

incubations, the number of siderophore type chelates was lower (3–8) and showed less 18 

variability between stations. The lower number of siderophore type chelates in glycine 19 

incubations was likely to be linked to the lower final bacteria concentrations and lower 20 

growth rates observed in glycine incubations.  21 

Concentrations of siderophore type chelates were not corrected for preconcentration effects as 22 

recoveries of the non-ferrioxamine siderophore type chelates from ENV+ SPE cartridges have 23 

not been determined. Total siderophore type chelate concentrations for glucose incubations 24 

varied between 0.2 and 69 nM. The latter concentration was an order of magnitude higher 25 

than that of any other station or any other carbon source, and was observed on addition of the 26 

highest concentration of glucose (9 mM) at station 6 in the NAST. The high concentrations of 27 

siderophore type chelates in the glucose amended incubations at stations 6 and 17 were 28 

mainly due to increases in the concentrations of siderophore type chelates i and j. In 29 

particular, siderophore type chelate j dominated glucose incubations at station 6, 17, 41 and 30 

52.  There was a general trend of lower siderophore type chelate concentrations in the SATL, 31 

and in incubations with lower glucose concentrations. For the glucose incubations, a 32 
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significant relationship (r
2
 = 0.42, n = 15, p < 0.01) was observed between –log[siderophore] 1 

and final heterotrophic bacteria density (Fig. 5). The positive correlation between siderophore 2 

type chelate concentrations in glucose incubations and final bacterial densities implies that the 3 

siderophore type chelate producing bacteria in these incubations formed a significant fraction 4 

of the total bacterial population, although as mentioned above, this is unlikely to be a 5 

reflection of the original community composition. For chitin, total siderophore type chelate 6 

concentrations were lower, varying between 0.1 and 0.6 nM. The highest siderophore type 7 

chelate concentration in incubations with added chitin was observed in the NAST and again a 8 

general trend of lower siderophore type chelate concentrations was observed in the SATL. 9 

The concentration of added chitin did not influence the siderophore type chelate concentration 10 

and in these incubations there was no relationship between siderophore type chelate 11 

concentration and final heterotrophic bacteria concentrations.  Siderophore type chelate 12 

concentrations produced in glycine incubations were similar to those produced in chitin 13 

incubations, ranging between 0.1 and 0.6 nM. In contrast to glucose and chitin, total 14 

siderophore type chelate concentrations in glycine incubations did not vary consistently 15 

across the different regions of the Atlantic Ocean. There was no major difference in 16 

siderophore type chelate concentrations when different glycine concentrations were used and, 17 

as for chitin, there was no relationship between siderophore type chelate concentration and 18 

final heterotrophic bacterial densities (Fig. 5). Carbon source clearly influenced the 19 

concentration and diversity of siderophore type chelates produced in these incubations, with 20 

glucose representing the best source of carbon for siderophore type chelate production of 21 

those tested in this study. The somewhat erratic relationship between carbon concentrations 22 

and siderophore production indicates that other factors may also influence siderophore 23 

production. For example, it is possible that a lack of readily available nitrogen source also 24 

influenced siderophore type chelate production in the glycine incubations, and that Fe 25 

contamination may have influenced siderophore production in the chitin incubations. 26 

Environmental factors that control siderophore production in marine bacteria have received 27 

little attention to date and much is inferred from laboratory studies of bacterial monocultures. 28 

These studies have largely focused on characterizing siderophores and their transport 29 

mechanisms e.g.(Crosa et al., 2004; Vraspir and Butler, 2009), while potential environmental 30 

controls on siderophore production, including the presence of competitor organisms, 31 

concentrations of nutrients and even Fe to carbon ratios, have received much less attention 32 

(Winkelmann, 2004; Winkelmann, 2007).  33 
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HPLC-ICP-MS chromatograms showed that geographical sampling location had an 1 

important influence on siderophore type chelate production, with higher diversity of 2 

siderophore type chelates produced in the South Atlantic. This trend was consistently 3 

observed in incubations with all three sources of carbon examined. Furthermore, the character 4 

of siderophore type chelates produced in the incubations showed a contrast between the North 5 

and South Atlantic (Fig. 2), with siderophore type chelates of a more hydrophobic nature (Fig 6 

2. peaks o – v) being more abundant in the South Atlantic, while hydrophilic siderophore type 7 

chelates were dominant in the North Atlantic. However, in contrast to the result reported here, 8 

where increased siderophore diversity was observed in incubations carried out in SATL 9 

waters, a study on AMT-16, carried out in May - June of the same year (2005), showed a 10 

slight decrease in siderophore type chelate diversity in incubations carried out in SATL 11 

waters compared to other regions of the Atlantic Ocean (Mawji et al., 2008a). Thus the 12 

diversity of siderophore type chelates produced in nutrient enriched seawater incubations 13 

appears to vary both temporally and spatially. This study showed that the concentration of 14 

siderophore type chelates produced in the incubations (although not quantified absolutely) 15 

also varied across the Atlantic Ocean, with higher concentrations produced in the North 16 

Atlantic. In these incubation studies, where C, N and P are added in excess, another possible 17 

influence on the concentration of siderophore type chelates produced is the concentration of 18 

Fe in the incubations. Siderophore transport mechanisms are known to be induced under Fe 19 

limitation (Winkelmann, 2004). However, once induced, siderophore production is thought to 20 

continue even under Fe replete conditions, with the production likely to be tightly coupled to 21 

uptake, thereby reducing excess Fe free siderophore levels in the environment (Neilands, 22 

1995; Winkelmann, 2007) and linking the siderophore concentration to the Fe concentration. 23 

Surface concentrations of Fe observed across the AMT17 transect (Moore et al., 2009) 24 

averaged 0.5 nM in the WTRA, NATL and NAST, and decreased to 0.03 nM in the SATL 25 

(Moore et al., 2009), consistent with the hypothesis that concentrations of Fe in the sampled 26 

waters could have influenced the siderophore type chelate concentrations produced in the 27 

incubations.  28 

 29 

Identification of siderophore type chelates in nutrient enriched Atlantic seawater incubations.  30 

Results from HPLC-ESI-MS analysis of samples are given in Table 3. Relative retention 31 

times of peaks detected by HPLC-ICP-MS and HPLC-ESI-MS were compared and used to 32 
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assign identities to HPLC-ICP-MS peaks (Table 3), however the different chromatographic 1 

conditions used for each technique, combined with the total number of peaks observed made 2 

it difficult to assign individual identities to peaks in HPLC-ICP-MS chromatograms with 3 

absolute certainty. The abundance of the siderophore type chelates detected by HPLC-ESI-4 

MS was consistent with the concentrations determined by HPLC-ICP-MS despite suppression 5 

of the ESI-MS ionisation signal observed between a tr of between 2.11 and 2.75, caused by 6 

uncharacterised co-eluting compounds. For example, higher numbers of siderophore type 7 

chelates were detected at stations in the SATL by both HPLC-ESI-MS and HPLC-ICP-MS. It 8 

was notable that the majority of the siderophore type chelates detected in this study by HPLC-9 

ESI-MS (Table 3) were present at concentrations greater than approximately 200 nM in the 10 

concentrated extracts, which is equivalent to concentrations of > 100 pM as shown on Figure 11 

3. Thus very few siderophore type chelates were detectable in chitin and glycine incubations 12 

by HPLC-ESI-MS.  13 

Siderophores previously identified in nutrient enriched seawater incubations were identified 14 

in this study, including ferrioxamine B, G and E (m/z = 614, 672, 654; tr 1, 1.1 and 1.5 15 

respectively). Collision induced dissociation of these compounds (results not shown) 16 

produced MS
2
 spectra as observed previously (Mawji et al., 2008b). The relative retention 17 

times, co-occurrence in incubations and relatively high concentration in both ESI-MS and 18 

ICP-MS chromatograms allowed identification of peaks c,d and j in the ICP-MS 19 

chromatograms as ferrioxamine B, G and E, respectively. All three compounds were 20 

identified in glucose amended incubations, while only ferrioxamine G was identified in chitin 21 

and glycine incubations. It seems likely therefore that soluble ferrioxamine type siderophore 22 

production is linked to or stimulated by the presence of enhanced concentrations of a 23 

dissolved labile carbon source. The ferrioxamine type siderophores are known to be produced 24 

by marine Vibrio sp. (Martinez et al., 2001). Gamma proteobacteria such as vibrio sp. are also 25 

known to grow very well in glucose enrichment experiments (Fuchs et al., 2000). The high 26 

concentration of the ferrioxamines (peaks c,d and j) observed in glucose incubations is 27 

therefore consistent with enhanced growth of opportunistic γ proteobacteria in glucose 28 

incubations. It was thus interesting to note that these siderophores were not present at such 29 

high concentrations in chitin or glycine incubations. An unidentified siderophore type chelate 30 

(ferric complex m/z = 640) was observed at tr of 1.38, eluting immediately prior to 31 

ferrioxamine E (Fig. 6). The tr for this compound and its pseudo-molecular ion were identical 32 

to that observed for ferrioxamine D2 (Mawji et al., 2008b). However, the low signal in the 33 
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unamended samples for m/z 640 and a co-eluting compound (m/z 625 for the protonated 1 

adduct and m/z = 647 for sodium adduct, Fig. 6) meant that the identity of this compound in 2 

this study could not be confirmed by the CID experiments conducted during this study.  3 

Amphibactins with m/z = 883 (tr 2.27), 885 (amphibactin D; tr 2.33) and 911 (amphibactin E, 4 

tr 2.38) were detected in glucose incubations.  These amphibactins corresponded with peaks r-5 

t in HPLC-ICP-MS chromatograms, respectively. Collision induced dissociation of these 6 

compounds (results not shown) produced MS
2
 spectra as observed previously (Gledhill et al., 7 

2004).       8 

In addition to ferrioxamines and amphibactins, this study detected unreported and 9 

uncharacterised siderophore type chelates. Thus an unknown siderophore type chelate with 10 

m/z = 1044 (Fe complex), and m/z 1057 and 1059 (Ga complex) and a relative retention time 11 

of 1.64 was observed in the 9 mM glucose incubation at station 52 (Fig. 7). The relative 12 

retention time for this siderophore type chelate corresponded with peak l in the HPLC-ICP-13 

MS chromatograms. This peak was also present at a relatively high concentration in the 14 

HPLC-ICP-MS chromatogram of the same sample (station 52, Fig. 2). An unknown 15 

siderophore type chelate with a pseudo-molecular ion m/z = 675 (Fe complex) and m/z 688 16 

and 690 (Ga complex) (Fig. 8), eluted with a tr of 0.16 (Fig. 8), implying a chelate with 17 

hydrophilic characteristics. This siderophore type chelate was observed in 9 mM glucose 18 

incubations at station 52 and 57 in the SATL. The retention time tr of the compound did not 19 

correspond with any peak observed in the ICP-MS chromatograms. This may be due to the 20 

post-sample injection of 0.5 M nitric acid and inclusion of the 15 min isocratic step at 100 % 21 

A when detection by ICP-MS is used. This step was necessary to ensure complete removal of 22 

uncomplexed excess free Ga from the HPLC system prior to connection of the HPLC eluant 23 

to the ICP-MS detector. However, a post sample injection of 0.5 M nitric acid also has the 24 

potential to decrease the retention time, or cause the complete loss of hydrophilic siderophore 25 

type chelates from the column.  26 

 27 

Conclusion 28 

A total of 23 different siderophore type chelates were identified in nutrient enriched seawater 29 

incubations from the Atlantic Ocean by a combination of HPLC-ICP-MS and HPLC-ESI-MS. 30 

The concentration and diversity of siderophore type chelates produced varied across the 31 

Atlantic Ocean and was influenced by the source of carbon used in the incubation. Glucose, a 32 
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highly available carbon source, produced the highest concentrations and most diverse range of 1 

siderophore type chelates, while glycine and chitin, carbon sources more representative of 2 

naturally occurring organic material, produced lower siderophore type chelate concentrations 3 

and diversity. This finding highlights the importance of considering the composition of 4 

organic material and the influence of nutrients other than Fe on the production of siderophore 5 

type chelates, although it is difficult to fully expand on the implications of these findings 6 

without knowledge of the changes in bacterial community structure induced as a result of the 7 

different carbon enrichments. The concentration of carbon source was found to have little or 8 

no effect on siderophore concentrations or diversity. This was potentially due to a lack of 9 

carbon limitation as a result of the high concentrations of carbon added. Spatial variability in 10 

siderophore type chelate production was also observed, with highest siderophore type chelate 11 

concentrations and lowest diversity observed in nutrient enriched incubations conducted in 12 

water sampled from the North Atlantic, and lowest concentrations and highest diversity in 13 

incubations carried out in the South Atlantic. Seven of the siderophore type chelates were 14 

positively identified by HPLC-ESI-MS, two were identified as the linear hydroxamates 15 

ferrioxamine B and G, two were identified as cyclic hydroxamates ferrioxamine E and D2, 16 

and three were identified as amphibactins. Mass/charge ratios of two further, so far 17 

uncharacterised, siderophore type chelates were also obtained. The results indicate that there 18 

is potential for a wide variety of siderophore type chelates to be present in surface waters of 19 

the Atlantic Ocean. The study represents a first step in developing protocols to examine the 20 

influence of nutrient source and concentration on the production of siderophore type chelates 21 

in mixed bacterial populations. 22 

 23 
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Figure captions 1 

 2 

Fig. 1. Map of the Atlantic Ocean showing the locations from which the water was collected 3 

for the incubation experiments. 4 

Fig. 2. Schematic describing the analysis of siderophore type chelates in the incubation 5 

extracts. Aliquots of extracts are derivatised with Ga and first quantified by High 6 

Performance Liquid Chromatography – Inductively coupled – Mass spectrometry 7 

(HPLC-ICP-MS) then analysed by HPLC-ESI-MS to obtain the (M-3H
+
+Ga

3+
+H

+
) 8 

pseudo molecular ions. Finally the extract is analysed in an underivatised form by 9 

HPLC-ESI-MS, with data dependant collision induced dissociation (CID). The final 10 

step allows putative Ga compounds detected by HPLC-ESI-MS to be also identified as 11 

ferric chelates and for identities to be assigned from comparison of fragmentation 12 

patterns with those in the literature. 13 

Fig. 3. Example Ga
69

 chromatograms obtained by High Performance Liquid Chromatography 14 

– Inductively coupled – Mass spectrometry from analysis of extracts of incubations 15 

carried out at station 41 in the South Atlantic. (a) control incubation (b) 9 mM glucose 16 

incubation (c) 100 mg L
-1

chitin incubation and (d) 2 mM glycine incubation. Peaks are 17 

labelled according to table 3. Incubation and chromatography conditions are as 18 

described in the text. Note scale changes for the y axis.  19 

Fig. 4. Concentrations of individual siderophore type chelates (labelled a-v) extracted from 20 

nutrient enrichment incubations carried out on water sampled from the Atlantic Ocean. 21 

Concentrations were determined by HPLC-ICP-MS after Ga exchange. Data represent 22 

an average (plus or minus the standard deviation) for each glucose concentration used. 23 

For glycine and chitin incubations all treatments at each station were pooled as no 24 

relationship between the concentration of these carbon sources and siderophore type 25 

chelate production was observed (see text). The siderophore type chelate 26 

concentrations were not corrected for preconcentration effects as recoveries of the non 27 

ferrioxamine type siderophore type chelates from ENV+ SPE cartridges have not been 28 

determined. Note scale changes for the y axis.  29 

 30 

Fig. 5. Plots of final heterotrophic bacteria counts versus –log(total siderophore type chelate 31 

concentration) for the three types of carbon added to incubations. a) Glucose 32 

incubations (n=15) b) Glycine incubations (n = 10) and c) chitin incubations (n = 9). A 33 

positive correlation (p < 0.01) was observed between the heterotrophic bacterial 34 

concentrations and –log(siderophore concentration) in the glucose incubations (y = 35 

9.82 – 7.9 × 10
8
x, r

2
 = 0.42). See text for enrichment and incubation conditions. 36 

 37 

Fig. 6. a) Mass spectra for a Ga complexed siderophore type compound eluting at tR = 17.2 38 

min showing the two isotopes for the Ga complex (protonated adduct m/z 653.1, 39 

655.1, sodium adduct 675.1, 677.1) and b) mass spectra for the Ga free sample, 40 

showing the Fe complex (m/z 640.1, tR = 17.34) and interfering ions at m/z 625 and 41 

m/z 647 which prevented collision induced fragmentation of this ion. c) 42 

Chromatogram for masses m/z = 653, 655 (Ga derivatised sample) and (d) 43 

chromatogram for m/z 640 (underivatised sample) obtained from the total ion 44 
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chromatogram. The chromatograms were obtained from an incubation with 9 mM 1 

glucose added to water collected from station 6 in the NAST.  2 

          3 

Fig. 7. a) Mass spectra for the a Ga complexed siderophore type compound (protonated 4 

adduct m/z 1057, 1059, sodium adduct 1079, 1081) eluting at tR = 20.5 min and b) 5 

mass spectra for the Fe complex (protonated adduct m/z 1044).c) Chromatograms 6 

obtained from the total ion chromatogram for masses m/z 1057, 1059 for Ga 7 

complexed siderophore type chelate observed at a retention time relative to 8 

ferrioxamine B of 1.64. The chromatogram was obtained from an incubation with 9 9 

mM glucose added to water collected from station 52 in the SATL. 10 

 11 

Fig. 8 a) Mass spectra for a Ga complexed siderophore type compound eluting at tR = 3.34 12 

min (protonated adduct m/z 688.1, 690.1, sodium adduct 710.1, 712.1) and b) mass 13 

spectra for the Fe complex (m/z 675.1). c) Chromatograms obtained from the total ion 14 

chromatogram for masses m/z 687, 689 for Ga complexed siderophore type chelate 15 

observed at a retention time relative to ferrioxamine B of 0.18. The chromatogram was 16 

obtained from an incubation with 9 mM glucose added to water collected from station 17 

52 in the SATL. The peak at RT 18.64 min represents elution of another unrelated 18 

compound.   19 
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Table 1. Concentrations of carbon, nitrogen and phosphorus used in nutrient enrichment 1 

incubations in the Atlantic Ocean.  2 

 3 

Glucose (C6H12O6) Glycine (C2H5NO2) Chitin (C8H13NO5)n 

Glucose 

(µM) 

NH4
+
 

(µM) 

PO4
3-

 

(µM) 

Glycine (µM) PO4
3-

 (µM) Chitin 

(mg L
-1

) 

NH4
+
 

(µM) 

PO4
3-

 

(µM) 

9      20 10 20     10 1 20 10 

90 100 10 200 10    

9000 200 20 2000 20 100 200 20 

 4 
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Table 2. Initial bacteria concentrations, growth rate, final bacteria concentrations, total 1 

siderophore type chelate concentrations and number of siderophore type chelates detected by 2 

HPLC-ICP-MS analysis of preconcentrated incubated, nutrient enriched seawater collected 3 

from six stations in the Atlantic Ocean. The siderophore type chelate concentrations are not 4 

corrected for preconcentration effects as recoveries of the non ferrioxamine type siderophore 5 

type chelates from ENV+ SPE cartridges have not been determined. 6 

Station Position 

and depth 

of 

sampling 

Carbon 

Source  

Conc. of 

carbon 

added 

Initial 

bacteria  

(×10
5 
mL

-1) 

Growth 

rate (day
-1

) 

Final 

bacteria 

(×10
5 
mL

-1
) 

Total 

siderophore 

type 

chelate 

conc. (nM) 

Total No 

of sidero-

phores 

identified 

54 mM 0.91 160 69 ± 1.8 5  

540 µM 0.81 96 2.5 ± 0.9 6 

Glucose 

54 µM 0.74 69 1.3 6 

4 mM 0.51 21 0.2 7  

400 µM 0.79 85 0.1 3 

Glycine 

40 µM 0.06 2.2 0.2 2 

4 mM 
 

1 330 0.1 ± 0.09 6 

6 26.5° W 

37.34 °N 

(NAST), 

12 m 

Chitin 

40 µM
 

1.7 

 

0.68 51 0.2 3 

54 mM 0.95 140 2.9 ± 2.8 8 

540 µM 1 180 1.9 ± 1.1 7 

Glucose 

54 µM 0.75 65 7 ± 2 4 

4 mM 0.8 78 0.1 3 Glycine 

400 µM 0.7 5 0.6 3 

4 mM 0.82 87 0.6 ± 0.4 4 

17 36.35 °W 

23.14 °N 

(NATR), 

24 m 

Chitin 

40 µM
 

3.2  

0.71 56 0.4 ± 0.2 3 

 7 

 8 

 9 

 10 
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Table 2. continued 1 

Station Position 

and depth 

of 

sampling 

Carbon 

Source  

Conc. of 

carbon 

added 

Initial 

bacteria  

(×10
5 
mL

-1) 

Growth 

rate (day
-1

) 

Final 

bacteria 

(×10
5 
mL

-1
) 

Total 

siderophore 

type 

chelate 

conc. (nM) 

Total No 

of sidero-

phores 

identified 

54 mM 0.79 96 1.2 ± 0.7 14 31 27.36 °W 

4.95 °N 

(WTRA), 

8 m  

Glucose 

540 µM 

4 

0.83 110 0.4 ± 0.2 6 

54 mM 086 84 0.3 ± 0.3 7 

540 µM 0.6 29 0.2 ± 0.07 6 

Glucose 

54 µM 0.8 6 0.6 ± 0.1 13 

4 mM 0.41 14 0.1 6 Glycine 

400 µM 0.3 8.6 0.1 6 

4 mM 
 

1 160 0.4 ± 0.3 12 

41 25.01 °W 

15.5 °S 

(SATL), 

19 m 

Chitin 

40 µM
 

2.6 

0.94 120 0.3 ± 0.03 11 

Glucose 54 mM 0.9 54 2.5 ± 2.1 12 

Glycine 4 mM 0.4 7.5 0.3 3 

52 7.22 °W 

27.95 °S 

(SATL), 

14 m 

Chitin 4 mM
 

1.6 

0.73 30 0.3 10 

54 mM 1.3 130 0.9 7 

540 µM 0.81 68 0.2 ± 0.1 11 

Glucose 

54 µM 0.71 46 0.2 ± 0.02 8 

4 mM 0.72 48 0.3 8 Glycine 

400 µM 0.48 19 0.2 7 

4 mM 1 170 0.1 7 

57 4.44 °E 

32.53 °S 

(SATL), 

9 m 

Chitin 

40 µM
 

2.7 

0.5 19 0.3 ± 0.1 8 

 2 
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Table 3. Retention time - relative to ferrioxamine B - and mass to charge ratio for ferric and 1 

Ga siderophore type chelates identified by HPLC-ESI-MS. Identities are indicated where 2 

possible. FOB: ferrioxamine B, FOG: ferrioxamine G, FOE: ferrioxamine E, amph: 3 

uncharaterised amphibactin, amph D, E: amphibactins D and E respectively. Stations where 4 

the siderophore type chelates were detected are also indicated. Relative retention times and 5 

peak labels for peaks obtained by HPLC-ICP-MS are given for comparison.   6 

Peaks detected by ESI-MS  Peaks detected by ICP-MS 

Relative 

retention 

time 

m/z molecular 

ion unamended 

sample 

m/z molecular 

ion sample + 

Ga 

Stations where 

siderophore 

type chelate 

detected 

Relative 

retention time  

peak label 

0.18 675 688/690 52,57   

    0.70 a 

    0.92 b 

1.0 614 (FOB) 627/629 6,31,52 1.03 c 

1.10 672 (FOG) 685/687 6,17,31,52 1.13 d 

    1.19 e 

1.22 624 637/639 6 1.24 f 

    1.28 g 

    1.31 h 

1.38 640 653/655 6 1.38 i 

1.47 654 (FOE) 667/669 6,17,31,52,57 1.47 j 

    1.55 k 

1.64 1044 1057/1059 52 1.64 l 

 7 

 8 

 9 
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Table 3. continued. 1 

Peaks detected by ESI-MS  Peaks detected by ICP-MS 

Relative 

retention 

time 

m/z molecular 

ion unamended 

sample 

m/z molecular 

ion sample + 

Ga 

Stations where 

siderophore 

type chelate 

detected 

Relative 

retention time  

peak label 

    1.74 m 

    1.84 n 

    1.97 o 

    2.05 p 

    2.19 q 

2.27 883 (amph) 896/898 52,57 2.28 r 

2.33 885 (amph D)  898/900 52,57 2.37 s 

2.38 911 (amph E) 924/926 52 2.45 t 

    2.56 u 

    2.62 v 

 2 
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