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Statistical modelling of flood risk at ungauged sites

By ThomasR. Kjeldsen, David A. Jonesand Adrian C. Bayliss

Centre for Ecology & Hydrology, Wallingford, Oxforise

Abstract

The use of multivariable regression models whichvigi® linkage between a particular hydrological
variable and a set of physical catchment descgpton long established practice in applied hydyplo
This paper focuses on the modelling and predictidhemedian annual maximum index flood at gauged
and ungauged sites through the use of regressideltimy and on data transfer from gauged to ungduge
catchments as outlined in the Flood Estimation Haoki{FEH). Through an extension of the commonly
used regression model to include, in addition tssrcorrelation of sampling errors, non-zero cross
correlation of model errors, it is possible to blith a more formal relationship between the regjoes
model and the use of data transfer from a gaugedofdl catchment to an ungauged catchment. By
explicitly considering the correlation between tegression model errors, a revised data transfamnse
has been developed, which was found to perfornebettterms of predictive error than the establishe
FEH scheme and the case where only the regressidelnsoused. In fact, the automated version of the
original FEH data transfer scheme used in thisystuals found to give estimates of the index floothwi
higher prediction variance than estimates obtairgag regression only.

1. Introduction

The Flood Estimation Handbook (FEH) published by 1H999) is used as the standard for flood
frequency analysis in the UK. The statistical mettior flood risk assessment outlined in the FEH is
based on the index flood method, where, for an uggd catchment, the index flood is estimated thnoug
a multivariable linear regression model linking theéex flood, defined in the FEH as the logarithithe
median annual maximum flood (QMED), to a set of lsatent descriptors. The FEH guidelines then
emphasise the importance of data transfer frombyegaiuged catchments (donor catchments) to enhance
the initial regression estimate. However, littlédzunce was previously available to practitioneragsist

in the selection of donor catchments. This papesgmis a revised regression model for estimatidheof
index flood at ungauged sites combined with a nforenalised framework for data transfer, as an
alternative to the procedure used in the FEH metlogglo The regression model is formulated to
represent a covariance structure, including bofarapling error component resulting from the limited
sample sizes and a model error component arisorg the inability of a simple linear regression nmode
to accurately represent the complex dynamics of catchments. By introducing a specific model
component accounting for the correlation betweenrtiodel errors, it is possible to derive an optimal
data transfer scheme from a gauged donor catchmantungauged site of interest. The results predent
in this paper are based on analysis of annual maxireeries of peak flow and the associated FEH
catchment descriptors for 602 catchments includedthie web-based dataset produced by the
Environment Agency led HiFlows-UK project (www.ersiment-agency.gov.uk/hiflowsuk).

2. Regression of theindex flood on catchment descriptors

Consider a vector of sample (log-transformed) medianual floodsy;, where individual sites are
denoted with a subscript i. Each sample value isidened an estimate of the underlying true poparati
value of the median, i.e.

Iy, ] =1n[¢ ] +¢, (2.1)
where &, is the sampling error of the log-transformed med@énnual flood with a mean value of

E{£|}=O and a covariance structure which will be specifigigtr. The notion of a true valué, , is
defined here as a hypothetical median of an irfisample of annual maximum flood peaks from a



catchment in a stationary condition. Next, consitieractual model, where it is assumed that threeltg
-transformed index flood can be estimated as aticembination of a set of catchment descriptotsan
site specific model error
In[&]=x/B+7 (2.2)

where B is a vector of true regression model parameigis,a vector of catchment descriptors ands
the regression modelling error with the statistfmalperties

E{n}=0 i=j

co /7i,/7j}:azr i #j

o

(2.3)

where the model error correlatian, will be estimated from a maximum-likelihood prooeel outlined

below. By combining equation (2.1) and equatior2)2the sample estimate of the index flood can be
expressed in terms of the true regression modehaacrror components representing the sampling and
modelling error, respectively

infy,]=x'B+n, +& (2.4)
The covariance matrix of the sampling errors isodedh X, , the corresponding covariance matrix of the
modelling errors is denotell, and the two errors are assumed mutually indepeénttés assumed that

the elements along the diagonal of the modellimgrezovarianceX, are identical ¢) and that the
associated correlation matrR,  has unit diagonal elements. The two error temagganerated from two

very different processes. The sampling covariasaeused by similarity of the flood generating fiin
events striking two catchments located close to amather, whereas correlation of the model errers i
caused by the inability of a simple regression tymelel to adequately represent the relationshiydset
catchment descriptors and the index flood at diffesites. The covariance matrix of the total erisithe
sum of the sampling and model error components

x, +%, =02(R, +X,/0?)=07G (2.5)

whereG is a composite matrix which plays a particulaerai the computations. Each element in the
sampling error covarianc&, is estimated based on considerations of the asjmptariance of the

sampling median and defined as
agifn =]

S TVaB S, i

n; (2.6)
nn,

where S is the scale parameter of the Generalised Log{&icO) distribution standardised to unit

median and estimated using the L-moment ratiofiaas by Kjeldsen and Jones (2006). Herelenotes
the number of years where both series have datée wtandn; denote the total number of years for the
two series separately. Note that the conventioogdtion for the GLO distribution and the regression
model both use “beta” but with two distinct mearsingn addition, estimation of the off-diagonal
elements requires estimates of the correlationfictezit between the log-transformed median annual
maximum flood for each siter which can be estimated directly from the datatebugh

£jij !
bootstrapping. Based on 1000 bootstrap replicatidjeddsen and Jones (2007a) used all pairs ofrdsco
with more than 39 overlapping years to estimate dbielation between the log-transformed median
annual maximum peak flow values and related itgoggaphical distance between catchment centroids
using a weighted sum of two exponential distribngioas shown in Figure 1



1 q rg jj = 0.2791%exp(-0.0039*d;)+(1-0.2791)*exp(-0.0632%dyy)
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FIGURE 1. Correlation between sampling errors gftiansformed median annual maximum flood as a
function of distance between catchment centroids.

Similarly to the correlation between sample valokthe log-transformed median illustrated in Figlre
the non-diagonal elements in the model error caticel matrix, R, , are described as a weighted sum of

two exponential distributions as
r., =¢exp-¢.d, )+ 1-¢)exp-¢,d,) (2.7)

wherey , ¢, and ¢, are model parameters adglis the geographical distance [km] between catchimen

centroids. It is important to note that the modsigmeters are not necessarily equal to those oselef
correlation between the sample values shown inrEigu Justification for equation (2.7) can be foumd
Kjeldsen and Jones (2007a) but the interpretatidhat the regression residuals from nearby catotsme
have a tendency to be more positively correlatedniarby pairs of gauges, i.e. a simple regression
model fails to encompass some local factors cdmmtgoflood response. It seems reasonable to assume
that a simple regression model cannot fully repreize complexity of real catchments. Howeversit i
important to include this known behaviour of thedaberror explicitly into the modelling frameworé t
ensure statistically correct estimates. The relatigp in equation (2.7) plays an important role whe
transferring information from donor sites to ungadgites as we shall demonstrate later.

The regression model errar;, and the additional three parameters in equatibi) (describing the

model error correlation are estimated using theimam-likelihood method. Assuming an initial set of
regression model parameterg, the four model error parameters are estimatedninimising the

negative of the log-likelihood function
1 1 1
~In[L] :Eln[det(a”zG)]+E(y ~XB)" (02G)*(y - XB) (2.8)

For any trial value of the four parameters, amaste of the composite matr is used for obtaining an
updated estimate of the regression model parameserg the well-known generalised least square (GLS
estimator

p=(x"GX)*'x"Gy (2.9)

wherey is a vector of sample values of the log-transfarmeedian. The resulting regression model
parameters as well as the parameters of the mowelarrelation model are shown in Table 1.



Coefficient Parameter Standard error t-value Pevalu

Intercept 2.1170 0.1172 18.06 0.000
Ln[AREA] 0.8510 0.0114 74.35 0.000
SAAR™ -1.8734 0.0968 -19.35 0.000
Ln[FARL] 3.4450 0.2654 12.98 0.000
BFIHOST -3.0800 0.1158 -26.60 0.000

0; =0.1286 df=598 =0.945
¢ =04598 ¢, =0.0200 ¢, =0.4785

TABLE 1. Results of regression analysis

The resulting regression model used for predidiiregindex flood in ungauged catchments is given as

1000

y, = 8.3062AREA**°0.153 o) FARL**5'0,0460%"°"* (2.10)

where the catchment descript®dBEA, SAAR, FARL andBFIHOST represent catchment area (krand
catchment average values of annual average ralligll-1990 (mm), flood attenuation due to upstream
reservoirs and lakes, and the hydrological propemif catchment soils, respectively. The descispaoe
available for any UK catchment larger than 0.5 kand are further described by Bayliss (1999). The
model error variance reported in Table 1 is equalfse=1.431 which is 7.5% less than the
corresponding value dée = 1.549 reported for the corresponding QMED madehe FEH (IH, 1999),
where the factorial standard errése] is defined asfse = exp(a”). The choice of catchment descriptors

in Table 1 and the particular transformations usext has been based on other analysis, which &re no
described here but included examining the modelduass by plotting them against catchment
descriptors. Note that the model presented in Tatdad equation (2.10) is provided as an exampke of
model estimated from the dataset rather than &tditdbstitute for the QMED equation presented @ th
FEH.

3. Using donor adjustment

When conducting a flood frequency analysis at agauged site, the FEH strongly recommends
transferring data from catchments judged to be digdically similar to the subject site and for wnic
annual maximum flood data are available. Howeveg comprehensive assessment of the FEH statistical
method, Morris (2003) found inappropriate adjustmehthe regression model estimate using donor
catchments to be a major source of potential elfrora separate study, Kjeldsen and Jones (2007b)
analysed the benefits of using data transfer fromod sites from the perspective of reducing préatict
variance at the site of interest. The results okthiby Kjeldsen and Jones (2007b) enabled a more
analytical approach than that of Morris (2003) &darried out and the resulting improved data feasins
scheme is presented below.

3.1 TheFEH donor adjustment
Once a suitable donor site has been identifiedinthex flood at the site of interest is estimated a

yg ,obs

g,cds

ys,adj = ys,cds (31)

where the subscrip refers to the ungauged subject site gritie gauged donor site, the subscaopd
refers to catchment descriptor estimates at thgeghand subject sitesbs the observed value at the
gauged site anddj the adjusted value at the subject site. While #uigistment assumes the residuals
from the regression equation at both the subjedt the donor site exhibit the same behaviour, the
recommended procedure makes no use of the distersaet model for the model error correlation that is
included in the FEH model (IH, 1999). The linkagetvbeen the model error correlation and the
prediction variance of liyf.4] was derived by Kjeldsen and Jones (2007b) toppecximately

varfinly, , |-in[¢.} = 2020-r, )+ .., (3.2)



where r,  is the correlation of the model errors of the sabjand donor catchment derived from
equation (2.7) andy, ,, is the sampling variance of the log-transformediiae at the donor site. In most
caseso; >>g, . and therefore, unless the donor and subject catctsmare located very closely

together, the prediction variance arising from do@or transfer quickly increases to twice that ivle@
using the regression model only. In fact, from egua(3.2), it is clear that unless, > Othe donor

transfer is not preferable with the FEH data transfethod. Based on equation (2.7) and the parasnete
in Table 1 this corresponds to a maximum distamte/éen catchment centroids of about 4 km.

3.2 A new data transfer scheme

A major advance of the FEH statistical method dewedl as part of this project is the ability to itiign
and estimate a separate model for the model eoroelations (Kjeldsen and Jones, 2007a). Kjeldseh a
Jones (2007b) showed that knowledge of the modet eprrelation can be use to define an alternative
data transfer scheme of the form

Yous |
ys.adj = ys.cds[ - ] (33)
g,cds
where the new parameter is estimated by minimising the prediction varianéén[ys.q] given as
val{ln[ysvadj ]— In[ésl} =0 +a* (a”2 +0,4 )— 2a0r, (3.4)

- . . . . .
where g, is the model error variance, ., is the sampling variance of g and r, _ is the model error

correlation between the subjexand the donog sites calculated using the model specified in Bqoa
(2.7), i.e. based on the geographical distance dmtwthe subject and the donor site. The resulting
estimator ofa is
0.2
a=r, —1—. (3.5)
K 0’; +gfvgg

As mentioned before, the sampling error oydh[ g, ., ) is generally much smaller than the model error

€,99
variance and, thus, for most practical purposes, ¢h parameter in equation (3.5) reduces to
a =r,  which is given by equation (2.7) with the modelgraeters shown in Table 1.

4. Application

The effect of data transfer when predicting thesinflood for ungauged catchments has been invéstiga
based on estimates obtained for 602 catchments thientiFlows-UK dataset and using three different
approaches:

i) using only the regression model and predictmgindex flood based on catchment descriptong, onl

i) identifying the geographically closest catchmeunsing catchment centroids, out of the 601 other
gauged catchments and using the FEH data transfeegiure equation (3.1); and

iii) identifying the donor as in ii) but using tmew data transfer procedure in equation (3.3).

To assess the performance of each of the threeodwtthe root mean square error (RMSE) was derived
for each method as

i(‘n[ys,adj,i [-inly, If

RMSE == 4.1)
M -5

where the subscripts g, adj andobs are described in a previous section. The degrefesamlom are

M-5 =602 — 5 = 597 corresponding to the five pagtars in the regression model. Note that the use of
RMSE as defined above is somewhat flawed sincasitth make use of the sample median as the “target”
for the estimation rather than the true median.sTthis empirical measure of performance is affebttgd
the sampling error and by the correlation of thédee RMSE values obtained for each of the three



options are shown in Table 2, where it can be oeskthat, while the new data transfer method imgsov
the RMSE when compared to using regression ong/FEH data transfer scheme has, in fact, a higher
RMSE than regression only. The latter finding iradés that, on average, the FEH data transfer scheme
does not improve the prediction compared to udieg¢gression model only.

Method RMSE
Regression only 0.357
FEH data transfer 0.377
New data transfer 0.327

TABLE 2. RMSE for each of the three methods preaicthe index flood in ungauged catchments

To further investigate the structure of the RMSHigs, the 602 catchments were divided into 20 ggoup
according to the distance from a particular catafinaad its closest donor catchment. Each of the 20
groups span a distance of 1 km and within eachpmtioel RMSE was estimated as

RVSE, = \/Miz (nly.a J-tnly I (4.2)

i Q=1

whereM; is the number of catchment pairs in the i'th grobpr each of the three methods, the RMSE
was estimated for each of the 20 groups and thdtsgdotted on Figure 2.
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FIGURE 2. RMSE for 1 km intervals in distance beswsubject and donor catchments.

As observed on Figure 2, both the FEH and the mawster scheme have improved the predictions
compared to using regression only for very shostadices less than 3 km. In general, the new tmansfe
scheme is consistently performing better than blo¢hregression-only option and the FEH data transfe
scheme, whereas the FEH method often gives hightSHRvalues than the regression model on its own.
This is confirmed by the average RMSE values regbirnt Table 2.

5. Conclusion

The analytical framework presented in this paperesents a significant improvement in the abildy t
estimate the index flood (or any other hydrologieatiable) at both gauged and ungauged sites. By
estimating the correlation between the regressiodaherrors and successfully linking it to geogtiagh
distance between catchments, it is possible to raakmbjective assessment of the weight attachddtto
transferred from a neighbouring donor catchment.



The results obtained in the comparison of the pti@i ability of the different methods showed thzt
performance of the traditional FEH data transféresee (3.1) performs rather more poorly than expecte
In fact, on average, a smaller prediction error whtained using the regression model only than when
using the regression model with the FEH donor feansmiethod. The simple automated donor selection
method implemented in this study might have beepraved somewhat if the selection for each
catchment had been carried out manually, but tinelasion is not likely to have changed much, e t
FEH donor transfer scheme should be used with @adedoes not necessarily guarantee an improved
estimate. In comparison, the improved transfer mehedeveloped in this study is consistently
outperforming the regression model and the FEHsfearscheme. It is therefore recommended that this
scheme should be adopted for practical use.
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