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Abstract  

Holothurians dominate the abyssal megabenthos. They are key consumers and 

bioturbators of surficial sediment. Compounds essential for holothurian reproduction, 

such as carotenoids, are in short supply in the deep ocean. Holothurians cannot 

synthesise carotenoids de novo; the compounds are supplied with the flux of 

phytodetritus. Therefore, the supply of these compounds may play an important role 

in regulating processes on the seafloor. This study examines the link between the diet 

of abyssal holothurians and their ovarian carotenoid biochemistry. Phytodetritus, 

surficial sediment, holothurian gut content and ovaries were sampled in June 2004 and 

in July 2005 at the Porcupine Abyssal Plain (PAP), NE Atlantic. Gut content 

chlorophyll a concentration showed that Amperima rosea, Peniagone diaphana and 

Oneirophanta mutabilis fed selectively on fresh organic matter, although when this is 

scarce, O. mutabilis was outcompeted and fed on more refractory material. All three 
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species display consistent ovarian carotenoid profiles and have relatively high 

carotenoid concentrations in their ovaries. Psychropotes longicauda, Paroriza 

prouhoi, Pseudostichopus aemulatus, P. villosus and Molpadia blakei fed less 

selectively and exhibited low ovarian carotenoid concentrations with inconsistent 

profiles. The results suggest that abyssal holothurian ovarian biochemistry is a 

complex function of OM supply, holothurian feeding guild and reproductive 

adaptation. Changes in upper ocean biogeochemistry, altering the composition of 

organic matter reaching the deep-sea floor, may favour certain holothurian species, as 

suggested by the interspecific differences in holothurian ovarian biochemistry. This 

may lead to large community changes as seen at the PAP, which can alter the 

reworking rates of sediment, probably affecting carbon burial. The study also 

demonstrated that using the presence of biomarkers in gut contents to infer feeding 

selectivity should be used with caution. Only biomarkers in gut contents that are not 

present in the tissues of the holothurians (e.g chlorophyll a) should be used to 

determine their feeding selectivity. 
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1. Introduction 

 

Holothurians dominate the abyssal sea floor in terms of abundance and biomass 

(Billett, 1991). They are key consumers of organic matter (OM) and bioturbators of 

surficial sediment (Turnewitsch et al., 2000). Shifts in the dominance of holothurian 

species can have a significant affect on the reworking of OM. During a population 
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bloom of the holothurians Amperima rosea and Ellipinion molle at the Porcupine 

Abyssal Plain (PAP) (the ‘Amperima Event’) in the NE Atlantic between 1996 to 

1999 (Billett et al., this volume; Billett et al., 2001), it was estimated that the sediment 

surface was re-worked by the benthic animals in less than six weeks, compared with a 

period of two and a half years prior to the holothurian bloom (Bett et al., 2001). 

Recently it has been shown that OM reaching the sea floor at the PAP may vary by up 

to an order of magnitude from year to year (Lampitt et al., this volume). Inter-annual 

variability in the quantity and quality of the flux may drive deep-sea benthic 

community shifts such as the ‘Amperima Event’ (Ginger et al., 2001; Kiriakoulakis et 

al., 2001; Hudson et al., 2003; Wigham et al., 2003a; Neto et al., 2006). Therefore, it 

is important to investigate how changes in both the amount and the composition of 

OM might affect deep-sea communities. 

 

Phytopigments, which include carotenoids, chlorophyll and the degradation products 

of chlorophyll, have been used to indicate the degree of freshness of OM (Thiel et al., 

1989) and to determine which phytoplankton species contribute to the export flux 

(Repeta & Gagosian, 1987). Carotenoids can only be synthesised de novo by plants 

and some bacteria and fungi (Olson & Owens, 1998). Some carotenoids are 

characteristic of specific algal groups (Jeffrey et al., 1997). Phytopigments have been 

used as biomarkers to determine the feeding ecology of deep-sea organisms (Billett et 

al., 1988; Duineveld et al., 1997; Witbaard et al., 2001; Hudson et al., 2003; Wigham 

et al., 2003a; Howell et al., 2004). Significant differences in the concentrations of 

pigments in the gut contents of abyssal and bathyal holothurians have been related to 

their feeding modes and the seasonal change in OM reaching the deep-sea floor 

(Billett et al., 1988; Hudson et al., 2003; Wigham et al., 2003a).  

 

Carotenoids are required for deep-sea holothurian reproduction, but are in short 

supply in the abyssal ocean (Hudson et al., 2003; Wigham et al., 2003a). These 

compounds are assimilated from the phytodetritus that arrives at the sea floor from the 

overlying water column. Carotenoids stabilise proteins and membranes, and 

deactivate reactive chemical species such as free radicals that can damage DNA and 

unsaturated lipids in cells (Krinsky, 1994; Britton, 1995; Matsuno, 2001). Maternally-

derived carotenoids in eggs protect the developing embryo from elevated reactive 

oxygen species released by the metabolism of fatty acids used for nourishment 
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(Blount et al., 2000; Blount, 2004; Lotocka et al., 2004). Feeding experiments with 

shallow-water echinoderms have shown that carotenoids can enhance the colour of the 

roe to increase commercial viability, but more importantly, increase fecundity, larval 

maturation and survival (George & Young, 1998; George et al., 2001; George & 

Lawrence, 2002).  

 

In the present study, phytopigments in the phytodetritus and sediment from the PAP 

were determined over two consecutive years and compared with holothurian gut 

contents and ovaries collected at the same time. The present study had two principal 

objectives:  

 

1. To examine the link between the diet and ovarian biochemistry of deep-sea 

holothurians. Do changes in the quantity and composition of carotenoids available to 

abyssal holothurians affect their ovarian carotenoid biochemistry? If so, does the 

extent of this influence differ between species? 

 

 2. To examine the contamination of holothurian gut contents, by the leaching of 

compounds from the gut wall. It is important to determine whether the occurrence of 

specific biomarkers in deep-sea holothurian gut contents is evidence of selective 

feeding, or the result of contamination through gut wall cell lysis.  
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2. Materials and methods 

 

2.1 Study site and sample collection 

 

Samples were collected at the PAP (48o50’N 16o30’W; ~4850 m water depth, ~270 

km southwest of Ireland) in the northeast Atlantic Ocean (Billett & Rice, 2001) 

(Figure 1). Holothurians were collected using an otter trawl (OTSB; Rice et al., 1990) 

during two cruises in June 2004 (RRS Charles Darwin cruise 158) and July 2005 

(RRS Discovery cruise 296; Table 1). Eight different species were sampled. 

Amperima rosea was found rarely in the trawls recovered in July 2005. None of the 

specimens were in good condition and it was not possible to analyse this species in 

2005. Immediately after recovery of the trawl, selected intact holothurians were 

transferred to pre-chilled water (4°C) and taken to a constant temperature lab (4°C) 

for dissection. Holothurians were dissected individually. Dissection tools were 

washed between specimens to eliminate cross contamination. Animals with burst guts 

were rejected (this was often the case for Molpadia blakei). Gut contents of specimens 

were obtained using the method of Ginger et al. (2001). Ovarian samples were also 

taken from each specimen. The samples were transferred to separate cryogenic micro 

tubes and frozen immediately (-80oC).  

 

Sediment samples were collected with either a Barnett-Watson multiple corer (Barnett 

et al., 1984; June 2004) or Bowers-Connelly mega-corer (Gage & Bett, 2005; July 

2005) (Table 1). On recovery, the cores were taken to a constant temperature 

laboratory (4°C) for sectioning. Phytodetritus was present in depressions at the 

sediment surface on all four cores collected in June 2004 (only three of those cores 

were used for 0 to 5mm sediment sections) and on all three cores in July 2005. This 

was carefully removed by pipette and frozen (-80°C) separately from the top 5 mm of 

sediment. In addition, a deeper section of sediment (5 to 10 mm) was taken for 

analysis from the cores sampled in July 2005. 

 

2.2 Lipid analysis 

 

The gut contents and muscle tissue of two abyssal holothurian species (Amperima 

rosea and Psychropotes longicauda) with contrasting gut structures were analysed to 
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determine if the gut contents were contaminated with carotenoids derived from lysis 

of the gut wall cells. Sample preparation and analysis of tissue lipids followed the 

methods described by Neto et al. (2006). Gut content lipids were extracted in 

dichloromethane (DCM): methanol; 9:1 v/v by sonification (30 mins, x3). Known 

amounts of two internal standards (5α(H)-cholestane, 2.008 µg and 5β(H)-cholanic 

acid, 3.015 µg, in DCM) were added before extraction. The extract was transferred to 

a pre-weighed vial, and the solvents were removed under a stream of N2. The extract 

was re-dissolved in DCM and dried by passing through a column of anhydrous 

sodium sulphate. The sample was then methylated using the method of Chambaz and 

Horning (1969) and silylated by treatment with bis-trimethylsilyltrifluoroacetamide 

(60°C; 2 h). Derivatised fractions were dissolved in DCM and analysed using a 

ThermoQuest CE gas chromatograph (Trace 2000 series) coupled with 

ThermoFinnigan TSQ-7000 mass spectrometer. The GC was fitted with an on-column 

injector and a capillary column (DB5-MS; 60 m x 0.25 mm i.d., 0.10 μm film 

thickness, J&W). The oven was held initially at 60°C for 1 min, then heated from 

60°C to 180°C at 12°C min-1 and from 180°C to 315°C at 2.5°C min-1, and held for 10 

min at 315°C. Helium was used as carrier gas at a constant flow (1.6 mL min-1, with 

vacuum compensation). A stream of air was used to cool the injector prior to, and for 

1 min after each injection. Typical operating conditions for the mass spectrometer 

(MS) were: electron energy at 70eV, scanning from 50 to 600 Thomsons, scan time of 

1s, ion source temperature at 230°C, interface temperature at 320°C. Xcalibur 

Software (Version 1.0) was used to acquire and process the data. Fatty acids and 

sterols were identified by comparison of their relative retention times and mass 

spectra with those of authentic standards and/or by comparison with the literature. 

Concentrations of individual compounds were determined by comparison of their 

peak areas with those of the internal standards and were corrected after calculation of 

their relative response factors (Kiriakoulakis et al., 2004).  

 

2.3 Pigment extraction and High Performance Liquid Chromatography (HPLC) 

analysis 

 

Frozen phytodetritus, sediment, gut contents and ovarian tissue samples were 

lyophilised and weighed. Pigments were extracted in 3 mL (gut content and ovary) or 
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6 mL (sediment) 90% HPLC grade acetone/water. Samples were ultrasonicated for 30 

seconds then centrifuged for 10 mins at 3000 rpm. The extract was passed through a 

(0.2 µm) Nyalo membrane filter (Gelman) prior to analysis.  

 

Samples were transferred to amber vials and loaded into the chilled (0oC) HPLC 

autosampler tray. Aliquots of sample (500 µL) were mixed with 1M ammonium 

acetate (500 µL) and 100 µL of this mixture injected onto the HPLC column. Pigment 

samples were separated using ion paired reverse phase HPLC according to the method 

of Barlow et al. (1993) for 2004 samples or of Barlow et al. (1997) for 2005 samples, 

which improved the resolution of the carotenoids diadinoxanthin, alloxanthin, 

diatoxanthin and zeaxanthin, which elute closely on the chromatogram (aiding rapid 

peak identification). 

 

The HPLC was controlled by the ChromQuest software system. It consisted of either 

a Perkin Elmer C18 column (Barlow et al., 1993) or Perkin Elmer C8 column (Barlow 

et al., 1997), Thermoseparation HPLC system with an online vacuum degasser, a dual 

solvent pump (P2000), autosampler (AS3000), a UV photodiode array detector 

(UV6000), and a Spectra System fluorescence detector (FL3000). Chlorophylls and 

carotenoids were detected by absorbance at 440 nm; pheopigments were monitored 

with the fluorescence detector using excitation and emission wavelengths of 410 and 

670 nm, respectively. Pigments were identified by comparison of relative retention 

times with pigment standards. Supporting identification was gained by comparison of 

spectral data with known standards as well as by reference to the Jeffrey et al. (1997). 

 

2.4 Quantification of pigments 

 

Pigment concentrations (µg g-1 dry weight sediment/tissue sample) were calculated as 

follows: 

 

C = ((Ap Vex 1000) / (Rf W B Vinj)) /100 

 

 

Where Ap  is the peak area detected at 440nm, Vex is the extract volume in ml, Rf  is 

the response factor, W is the dry weight of sediment in grams, B is the buffer dilution 
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factor (0.5) and Vinj is the volume of extract injected (µl).  Response factors for each 

of the pigments were calculated by plotting concentrations of the standards against 

peak area. Reproducibility of the analytical technique was better than ±10% and the 

analytical precision < ±5%. 

 

2.5 Statistical analysis and comparison of pigment profiles 

 

The contribution of holothurian-derived ∆7 sterols to holothurian gut contents was 

compared statistically to the muscle tissue (t-test) to assess the degree of 

contamination of the gut contents through lysis of gut wall cells. Gut content 

chlorophyll a concentration (µg gDW-1) was analysed for between year differences. If 

variables had a normal distribution and a homogenous variance, ANOVA was applied 

to determine if there was any within year statistical variation in species gut 

chlorophyll a concentration. Ovarian carotenoid concentrations were analysed for 

between year differences. Statistical analyses of pigment concentrations were 

implemented with Minitab software (Version 12.21). Data were tested for their 

distribution using the Ryan-Joiner test. The means of normally distributed data were 

compared using the t-test; the Mann-Whitney test was applied to non-normally 

distributed data to compare their medians. Carotenoid concentrations in the ovaries of 

the holothurians were transformed to their percentage contributions to the total 

carotenoid concentration in each sample, in order to diagnose differences in pigment 

biochemistry between species. This approach removed differences that might be 

related to the pigment load in each specimen. Direct between species and between 

year carotenoid percentage contribution comparisons were made using ANOSIM and 

multivariate statistical analysis on square-root transformed data. The PRIMER 6 

software package (Clarke & Warwick, 1994) was used. 

 

3. Results 

 

3.1 Contamination of holothurian gut contents through lysis of gut wall cells 

 

Amperima rosea and Psychropotes longicauda gut content samples were both 

contaminated with holothurian-derived lipids, namely C23:1 and C24:1 and ∆7 sterol, 

choles-7-en-3β-ol (Ginger et al., 2000; Ginger et al., 2001). The contribution of 
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choles-7-en-3β-ol to A. rosea gut content samples was not statistically different from 

its contribution to the muscle tissue (t(6) = 0.3, P>0.05). The contribution of choles-7-

en-3β-ol to the gut contents of P. longicauda is significantly lower (t(25) = 10.13, 

P<0.05) than in the muscle tissue.  

 

3.2 Phytopigments in the phytodetritus and sediment  

 

Ten pigments were identified in the phytodetritus and sediments sampled in June 

2004, and twelve in July 2005 (Figure 2). The phytodetritus had consistently higher 

concentrations of phytopigments compared to the top 5 mm and 5 to 10 mm sections 

of the sediment. Phaeophorbide a was the dominant pigment in the phytodetritus in 

both years. In June 2004, chlorophyll c2, diatoxanthin and β-carotene were present in 

the phytodetritus, but were absent in surficial sediment samples (0 to 5 mm). 

Diatoxanthin and zeaxanthin were present in the phytodetritus but not the sediment in 

2005 (Figure 2). Chlorophyll c2 was present in the phytodetritus in June 2004 but not 

July 2005. Violaxanthin, 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin were present in the phytodetritus and surficial sediment in 

2005 but absent in June 2004. In the phytodetritus, fucoxanthin (t(5) = 9.17, P<0.05), 

alloxanthin (t(5) = 3.85, P<0.05), diatoxanthin (t(5) = 4.99, P<0.05), zeaxanthin (t(5) 

= 24.84, P<0.05), chlorophyll a (t(5) = 12.64, P<0.05) and ß-carotene (t(5) = 6.21, 

P<0.05) were all found in significantly greater concentrations in 2004 samples.  

 

Nine pigments co-occurred in the top 5 mm sediment from 2004 and 2005. All were 

found in higher concentrations in 2004 (Figure 2). Fucoxanthin (t(4) = 6.6, P<0.05) 

and chlorophyll a (t(4) = 7.28, P<0.05) were found in significantly greater 

concentrations in the sediment sampled in 2004. Chlorophyll a, an indicator of the 

contribution of fresh organic matter, was present in concentrations of 25 and 3 x 

greater in the phytodetritus than in the surficial sediment in June 2004 and July 2005, 

respectively. The ratio of chlorophyll a to phaeophorbide can be used as an indicator 

of freshness of phytodetrital material; a higher ratio indicates a greater degree of 

freshness (Thiel et al., 1989). The phytodetritus in 2004 had a chlorophyll a: 

phaeophorbide a ratio of 0.67 (S.D ± 0.15) compared to 0.29 (S.D. ± 0.49) in 2005. 

There was no significant difference (t(5) = 1.84, P>0.05) in the chlorophyll a to 

phaeophorbide a ratio between the years because of the high variability in 2005. 
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3.3 Chlorophyll a in holothurian gut contents 

 

All species had higher concentrations of chlorophyll a (µg gDW-1) in their gut 

contents than in either the sediment or phytodetritus (Figure 2 and 3), with the 

exception of M. blakei. Chlorophyll a was absent in the gut contents of M. blakei. 

Chlorophyll a was absent in ten of the fourteen samples of A. rosea gut contents. The 

average gut content chlorophyll a concentration was 1.19 µg gDW-1 when all A. rosea 

samples were included. The average concentration of A. rosea specimens that 

contained chlorophyll a was 4.16 µg gDW-1; this is greater than the average 

chlorophyll a gut content concentration of the other species sampled (Figure 3).  

 

Chlorophyll a concentrations in the gut contents of O. mutabilis and Psychropotes 

longicauda were significantly greater in 2004 than in 2005 (t(12) = 3.58, P<0.05; t(11) 

= 2.19, P<0.05, respectively). There was no significant between year difference in 

chlorophyll a gut content concentration in Paroriza prouhoi (t(5) = 0, P>0.05). All 

species sampled in 2005 (excluding M. blakei) showed no significant difference (F4,25 

= 1.42, P>0.05) in their average gut content chlorophyll a concentration.  

 

3.4 Species comparisons of ovarian carotenoid biochemistry – June 2004 

 

The concentrations (µg gDW-1) of ovarian carotenoids varied considerably between 

species. For example, A. rosea had pigment concentrations an order of magnitude 

greater than O. mutabilis and Peniagone diaphana, and two orders of magnitude 

greater than Psychropotes longicauda and Paroriza prouhoi (Figure 4). Variability of 

the pigment concentrations in the ovary was high. Echinenone and zeaxanthin were 

found in high concentrations in the ovary (contributing >22% and >26% to the total 

respectively) of A. rosea (Figure 4). β-carotene was found in the greatest 

concentration in the ovary (contributing >56% to the total) of O. mutabilis (Figure 4).  

 

Multi Dimensional Scaling (MDS) ordination of the square root transformed pigment 

percentage contributions of the ovary samples shows some species clustering (Figure 

5a). Amperima rosea shows the tightest species-specific clustering, indicating the 

specimens had a very consistent biochemical profile. The spread of O. mutabilis ovary 
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samples from the centre to the top right reflected the relative contribution of β-

carotene to the total pigment load (Figure 5a); other carotenoids showed little 

variation in concentration (Figure 4). The contribution of ß-carotene to the total 

pigment load in the ovarian samples ranged from 30% to 70%. Paroriza prouhoi 

ovarian samples are spread from top right to centre because of the presence or absence 

of alloxanthin and the increasing contribution of diadinoxanthin (Figure 5a). 

 

3.5 Species comparisons of ovarian carotenoid biochemistry – July 2005 

 

Oneirophanta mutabilis had the highest concentration of carotenoids (µg gDW-1) in 

its ovarian samples in comparison to the other holothurians sampled in July 2005 

(Figure 4). 19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin were 

present in the ovaries of all species sampled, with the exception of 19’-

hexanoyloxyfucoxanthin, which was not found in the ovaries of M. blakei and 

Pseudostichopus aemulatus (Figure 4). Both 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin were found in relatively lower concentrations compared to 

the other carotenoids present in the ovaries of O. mutabilis.  

 

Species specific clustering was observed for O. mutabilis, Psychropotes longicauda 

and Paroriza prouhoi on the MDS ordination plot of ovarian samples. The clusters of 

these three species are also very close to each other (Figure 5b). Molpadia blakei 

shows species specific clustering with the exception of one sample, which contained 

no 19’-butanoyloxyfucoxanthin. Pseudostichopus villosus shows ovarian species 

specific clustering for four samples, but not for three other samples. P. aemulatus 

shows some species specific clustering for two samples but one sample, containing 

only β-carotene, is situated to the bottom right of the plot. 

 

3.6 Temporal comparison of ovarian pigment biochemistry 

 

Oneirophanta mutabilis, Psychropotes longicauda and Paroriza prouhoi were 

collected in both June 2004 and in July 2005. Average concentrations of carotenoids 

in the ovaries of Psychropotes longicauda were greater in 2004 with the exception of 

19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin (absent from samples 

taken in 2004) (Figure 4). Average concentrations of carotenoids in O. mutabilis 
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ovaries were similar between years with the exception of ß-carotene, which was 

higher in 2004. Paroriza prouhoi 2005 ovarian samples contained higher average 

concentrations of all carotenoids, with the exception of zeaxanthin, canthaxanthin and 

echinenone, which were higher in 2004 (Figure 4).  

 

MDS ordination of the pigment percentage contribution in the ovaries of the three 

species sampled in both years show close clustering between years for O. mutabilis 

samples; the slight between year separation was caused by the small percentage 

(together less than 5%) contribution of 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin in the samples taken in 2005 (Figure 6). The spread of O. 

mutabilis samples on the MDS plot is attributed to the varying contribution of β-

carotene. ANOSIM analysis indicated O. mutabilis samples showed no difference in 

composition between the years, but the R-statistic was not significant (ANOSIM R = -

0.143, P>0.05) because of the variability of the PAP 2004 samples. This was caused 

by the different percentage contribution of β-carotene (ranging from 30 to 80%). 

Psychropotes longicauda and Paroriza prouhoi samples were significantly different 

in their ovarian pigment biochemistry between years (ANOSIM R = 0.891 

(Psychropotes longicauda) R = 0.877 (Paroriza prouhoi), P<0.05). Differences 

between the years for Psychropotes longicauda and Paroriza prouhoi can be 

attributed to the high percentage contribution of 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin and the decreased percentage contribution and concentration 

of zeaxanthin in their ovaries (Figure 4). 

 

 

4. Discussion 

 

The importance of the composition as well as the amount of the OM reaching the 

deep-sea floor, and its influence on the benthic community, are becoming apparent 

(Billett et al., this volume; Billett et al., 2001; Smith et al., 2001; Wigham et al., 

2003a; Hudson et al., 2004; Ruhl & Smith, 2004; Neto et al., 2006). The timing and 

make-up of the phytoplankton bloom, zooplankton interactions (repackaging and 

recycling) and the physical dynamics of the water column can all affect the quality 

and quantity of the seasonal POM flux to the sea floor (Turner, 2002). Upper ocean 

phyto- and pico-plankton community structure changes temporally over the PAP 
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(Gibb et al., 2000; Zubkov et al., 2000), which in turn affects the quantity and 

composition of carotenoids in the flux of OM (Smythe-Wright et al., this volume).  

 

4.1 Phytopigments in the phytodetritus and sediment 

 

The present study supports previous observations that in many oceanic areas there is 

not a consistent food supply to the deep-sea benthos; compounds essential to the deep-

sea benthic community vary temporally in their amount and availability within years 

and between years (Santos et al., 1994; Danovaro et al., 2001; Kiriakoulakis et al., 

2001; Witbaard et al., 2001; Neto et al., 2006). 19’-butanoyloxyfucoxanthin, 19’-

hexanoyloxyfucoxanthin and violaxanthin were present in the phytodetritus and 

sediment in July 2005, but were absent in June 2004 (Figure 2a and b), suggesting 

different phytoplankton groups contributed to the flux of OM to the sea floor. 19’-

butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin are biomarkers of 

prymnesiophytes and some dinoflagellates; violaxanthin is considered a biomarker for 

eustigmatophytes (small pico-nano phytoplankton) (Jeffrey et al., 1997).  

 

Temporal variability in the freshness of the phytodetritus was also apparent; greater 

chlorophyll a concentration and chlorophyll a to phaeophorbide a ratios in the 

phytodetritus and sediment in June 2004 (ratio of 0.67) indicate the material at the sea 

floor was fresher than that sampled in July 2005 (ratio of 0.29). A similar chlorophyll 

a to phaeophorbide a ratio of 0.23 has been recorded at the PAP in July 1997 and a 

higher ratio of 1.33 was recorded in September 1996, after a large flux of relatively 

fresh phytodetritus (Witbaard et al., 2000). High flux events are linked to fresher OM 

reaching the seabed at the PAP (Salter, 2007). Interannual differences in the mass flux 

of material (3000 m sediment trap; Lampitt et al., this volume; Lampitt et al., 2001) 

may explain the differences in the chlorophyll concentrations and chlorophyll a to 

phaeophorbide ratios observed in the present study. The timing of the flux to the sea-

floor at the PAP was late May/early June in 2004 and early May in 2005 (Lampitt et 

al., this volume). Mass flux of material in June 2004 was between 150-200 mg m-2 d-1, 

over double that of 20-50 mg m-2 d-1 in June and July 2005 (Lampitt et al., this 

volume). Spatial variability in the freshness of the phytodetritus was also more 

pronounced in 2005 than in 2004, as indicated by the high variability (greater than the 

mean) in the chlorophyll a to phaeophorbide a ratio in 2005. 
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Sediment chlorophyll a concentrations have been recorded intermittently at the PAP. 

In samples collected between September 1996 to September 1998 (Witbaard et al., 

2001) chlorophyll concentrations in the top 1 mm of sediment ranged from 0.0086 to 

0.0326 µg gDW-1 (converted from ng cm-3 by Wigham, 2002). Hudson (2004) 

reported a chlorophyll a concentration of 0.12 µg gDW-1 in October 2002 in the top 1 

mm sediment. The present study observed concentrations of 0.052 µg gDW-1 ± 0.046 

(June 2004) and 0.028 µg gDW-1 ± 0.01 (July 2005) in the top 5 mm sediment. The 

lower sediment chlorophyll concentrations at the PAP in 1996, 1998 (Witbaard et al., 

2001), 2004 and 2005 (present study) in comparison to October 2002 (Hudson, 2004) 

and other abyssal sites (Riaux-Gobin et al., 1997; de Wilde et al., 1998; Lee et al., 

2000) may be attributed to reduced supply, but also to the benthic fauna. Bett et al. 

(2001) showed that megabenthic reworking rates can vary from weeks to years 

depending on the community structure. This, in turn, will affect the chlorophyll 

concentration in the sediment. 

 

4.2 Contamination of holothurian gut contents 

 

Comparisons between the gut contents and ovarian carotenoid profiles of deep-sea 

holothurians led Wigham et al. (2003a) and Hudson et al. (2003) to infer some species 

feed selectively on OM enriched in specific carotenoids required for their 

reproduction. This selectivity would presumably give them a competitive advantage 

when the supply of critical compounds was favourable. However, Ginger et al. (2001) 

reported that the gut contents of Oneirophanta mutabilis collected from the PAP were 

contaminated with holothurian-derived lipids. The authors suggested this 

contamination derived from unregulated lipolysis of phospholipid within the digestive 

tissue resulting from the death of organisms on recovery. Smith (2008) has shown 

carotenoids are present in the gut walls of abyssal holothurians in higher 

concentrations (µg gDW-1) relative to the ovaries. Carotenoid profiles of the gut 

contents and ovary of A. rosea are very similar (Wigham et al., 2003a); this species 

has a fragile gut, which makes it difficult to sample without contamination from the 

gut wall (pers. obs.). Psychropotes longicauda, in contrast, has a large compact gut, 

which facilitates easier sampling of the gut contents away from the gut wall. This 
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species has differing gut content and ovarian carotenoid profiles (Wigham et al., 

2003a). 

 

The abundance of the holothurian-derived ∆7 sterol choles-7-en-3β-ol, and fatty acids 

C23:1 and C24:1 in A. rosea gut contents suggests that high concentrations of 

carotenoids in the gut contents of A. rosea (Wigham et al., 2003a) are likely to have 

been derived from their gut walls following cell lysis during recovery of the animals 

from the sea floor. Contamination of gut contents was also supported by the presence 

of canthaxanthin in all species and by echinenone in some species (A. rosea, 

Peniagone diaphana and Paroriza prouhoi). These pigments were not found in the 

surficial sediment or phytodetritus, but were present in the gut wall (Figure 2; Smith, 

2008). Therefore, the use of biomarkers in gut contents, which are also present in the 

organisms tissues, to determine feeding selectivity in deep-sea organisms (Hudson et 

al., 2003; Wigham et al., 2003a; Howell et al., 2004) should be used with caution. 

This also applies to species such as Psychropotes longicauda, which have large, 

compact guts; the concentration of holothurian-derived choles-7-en-3β-ol may be 

significantly less than found in the muscle tissue, but the presence of this compound 

and the holothurian-derived C23:1 and C24:1 fatty acids in the gut contents discounts the 

use of certain compounds as biomarkers for feeding ecology. Selectivity – in terms of 

selecting ‘fresh’ material – can be inferred, however, from biomarkers in the gut 

contents that are not assimilated by the organisms (e.g. chlorophyll a). Furthermore, 

the variability in biomarker distributions in tissue samples is related to the feeding 

mode of the species, temporal variability biomarker of supply (Neto et al., 2006) and 

variability in the decay rate of each biomarker (i.e. those that persist in the sediment 

for longer will be available to the benthic fauna for longer). 

 

4.3 Holothurian feeding selectivity – chlorophyll a in gut contents 

 

Interspecific differences in gut content chlorophyll a concentrations (Figure 3) 

suggest some species were more capable of utilising fresh organic matter than others. 

The contrast between the absence and high concentration of chlorophyll a in A. rosea 

gut contents (Figure 3) suggests this species selectively feeds on the freshest material 

when it can find it. Between 1997-1998 at the PAP, when abundance of Amperima 

rosea was high, the species exhibited a high average tracking rate (area of seabed 
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moved over by each individual megabenthic organism) of 110 cm2 m-1 d-1, which was 

20 times greater than the other holothurians during the same period (Bett et al., 2001). 

Stable isotope and microscope analysis of A. rosea gut contents have shown that it 

selects for fresh material (Iken et al., 2001). Amperima rosea gut content chlorophyll 

a concentrations were 45.94 µg gDW-1 (S.D. ± 40.41) and 30.85 µg gDW-1 (S.D. ± 

3.63) in October 2000 and March 2002, respectively (Wigham et al., 2003a). These 

concentrations were lower in October 2002 (Hudson, 2004) and June 2004 (present 

study) with values of 3.45 µg gDW-1 (S.D. ± 3.23) and 1.18 (S.D. ± 2.01), 

respectively. The lower concentrations in more recent years (and the absence of 

chlorophyll a from some specimens in June 2004) may be a function of the amount of 

fresh phytodetritus at the sea floor at the PAP at the time of sampling. Although there 

is lack of comparable sediment chlorophyll a concentration data to show this, 

differences in the mass flux of OM to the seafloor between 2000 and 2005 are 

apparent. In particular, a relatively large flux of material in 2001 in comparison with 

2003-2005 (Lampitt et al., this volume), suggests OM flux was higher in the years A. 

rosea had enhanced gut chlorophyll a concentration. 

 

Peniagone diaphana and O. mutabilis also show greater selection for fresh material, 

compared with Psychropotes longicauda and Paroriza prouhoi in June 2004 (Figure 

3). These differences probably reflect their feeding modes. Oneirophanta mutabilis is 

“a picker”, using its digitate tentacles to transfer sediment to its mouth. It also has 

high rate of locomotion for a holothurian (Roberts et al., 2000). Peniagone diaphana 

is a benthopelagic holothurian but feeds at the sediment surface (Billett, 1991) on 

fresh OM (Iken et al., 2001). Psychropotes longicauda also feeds on the sediment 

surface, but its peltate tentacle structure (sweeping sediment into the mouth) suggests 

it is less selective (Roberts et al., 2000). This is supported by it having body tissue 

relatively enriched in the heavy isotope σ15N, suggesting it feeds on more refractory 

material (Iken et al., 2001). Paroriza prouhoi has similarly enriched isotopic σ15N 

values to that of Molpadia blakei (a known subsurface feeder (Tyler et al., 1987), with 

no detectable chlorophyll a in its gut; Figure 3). This indicates they feed on the same 

refractory material (Iken et al., 2001). Direct observations of Paroriza pallens have 

shown it moves very slowly through the sediment (Paul Tyler, pers. obs.). 
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Fresher and less patchy phytodetritus in 2004 may explain why Oneirophanta 

mutabilis and Psychropotes longicauda had greater chlorophyll a gut content 

concentrations in 2004 than in 2005. Oneirophanta mutabilis gut content chlorophyll 

a concentration was not significantly different to P. longicauda in 2005 suggesting 

they had similar encounter rates with fresh material, despite the greater selectivity by 

O. mutabilis. The concentration of chlorophyll a in the gut contents of O. mutabilis 

has previously been shown to correlate with that of the top 1 mm of sediment at PAP 

(Witbaard et al., 2001). The present study also supports the suggestion of Neto et al. 

(2006) that O. mutabilis feeds on the same material as P. longicauda when fresh 

organic matter is scarce. Concentrations of chlorophyll a in the gut contents of 

Paroriza prouhoi were not significantly different between years, suggesting it is not a 

selective feeder; Paroriza spp. gut contents have previously been shown not to vary 

seasonally (Khripounoff & Sibuet, 1980; Billett et al., 1988). Chlorophyll a 

concentration in the top 5 mm sediment was only slightly higher in 2004 than in 2005, 

but showed high variability; this may have led to the similar between-year P. prouhoi 

gut content chlorophyll a concentrations. Pseudostichopus aemulatus had slightly 

higher, but variable gut content chlorophyll a concentrations relative to its congener P. 

villosus and other holothurian species sampled in 2005, although this is not 

statistically significant. Pseudostichopus villosus has a feeding mode that ‘ploughs’ 

slowly through the sediment, probably ingesting sediments from 1-2cm depth (Billett, 

1991; Moore & Roberts, 1994). Therefore, P. villosus will exploit carotenoid-depleted 

sediment (Figure 2b). Pseudostichopus aemulatus, however, is smaller than P. 

villosus and has a different foraging behaviour, feeding on the superficial sediment 

rich in OM (Billett et al., 1988). The relatively low concentrations of chlorophyll a in 

the phytodetritus and sediment in 2005 would have led to a lower encounter rate with 

fresh material. 

 

4.4 Linking abyssal holothurian ovarian biochemistry with feeding guild, 

reproductive adaptation and food supply 

 

Large interspecific differences in the concentrations of carotenoids in holothurian 

ovaries may be attributed to their reproductive adaptation. Survival of post-larvae is 

an important factor in response to the seasonal flux of phytodetritus, contributing to 

population structure and density (Wigham et al., 2003b). Amperima rosea has the 
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highest carotenoid load of all the species sampled, followed by O. mutabilis and P. 

diaphana. To obtain the highest dietary concentration of carotenoids it would be 

beneficial to feed on the freshest organic matter – as supported by the high 

chlorophyll a concentration found in some A. rosea gut content samples. Experiments 

on shallow water echinoderms have shown that the larvae of adults fed carotenoids 

were larger throughout development, developed faster and had higher survival rates 

(Tsushima et al., 1997; George et al., 2001; George & Lawrence, 2002). Assimilating 

a high carotenoid load into its ovaries may give A. rosea an additional reproductive 

advantage. Carotenoids reduce the harmful effects of reactive oxygen species given 

off during the rapid metabolism of lipids in the egg, increasing larval survival. 

Amperima rosea reaches maturity at a small size and has a high fecundity (Wigham et 

al., 2003b). Therefore, A. rosea may produce many viable offspring during favourable 

conditions, leaving a large cohort either to exploit the remaining favourable OM, or to 

wait until the next favourable conditions occur. Population explosions of opportunistic 

species have been shown to affect other species. During the ‘Amperima Event’ P. 

diaphana almost disappeared and Psychropotes longicauda and O. mutabilis 

decreased in size (Billett et al., this volume; Billett et al., 2001). The fecundity of O. 

mutabilis also decreased at this time (Ramirez-Llodra et al., 2005). 

 

Qualitative comparisons of ovarian carotenoid profiles in deep-sea holothurians 

indicate intraspecies profiles are similar but interspecific profiles are different 

(Hudson et al., 2003; Wigham et al., 2003a; present study). Resource partitioning 

between species may explain interspecific differences in ovarian carotenoid 

biochemistry; many deep-sea holothurians show niche differentiation with species 

using different methods for exploiting food resources (Billett, 1991). Temporal 

variations in abyssal holothurian fatty acid composition have been related to the 

varying reproductive patterns of species (Hudson et al., 2004) and also in response to 

a changing supply of lipids, dependent on the feeding guild of the species (Neto et al., 

2006). 

 

Tight species-specific clustering of A. rosea ovarian samples shown on the June 2004 

MDS ordination plot (Figure 5a) reflects the similarity of the carotenoid profiles. This 

suggests selectivity and/or requirement for specific carotenoids, particularly 

zeaxanthin which constitutes >28% of the total tissue pigment load. The carotenoid 
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profiles of O. mutabilis and Peniagone diaphana were less consistent than in A. rosea. 

The contribution of only one or two carotenoids, (β-carotene in O. mutabilis, β-

carotene and echinenone in P. diaphana) caused the differences between the ovarian 

samples (Figure 5a). Psychropotes longicauda and Paroriza prouhoi showed less 

species specific clustering in the ovarian samples in 2004 because of inconsistent 

carotenoid profiles between samples (Figure 5a). A change in the relative 

contributions of more than one carotenoid accounted for the spread of samples on the 

MDS ordination plot (Figure 5a), suggesting Psychropotes longicauda and Paroriza 

prouhoi are not selective in their carotenoid biochemistry.  

 

The occurrence of 19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin in 

the phytodetritus, sediment and ovaries of abyssal holothurians sampled in 2005, and 

the lower zeaxanthin concentration in the phytodetritus and sediment in 2005 and its 

concurrent lower concentration in the ovaries of Psychropotes longicauda and 

Paroriza prouhoi, suggests the composition of OM does exert an influence on the 

abyssal holothurians biochemistry. The extent of this influence appears to differ 

between species. Between year comparisons show Psychropotes longicauda and 

Paroriza prouhoi appear not to discriminate between carotenoids during feeding and 

assimilation into body tissues. The feeding guild of these species may dictate this; 

selectivity for specific carotenoids does not occur, as the compounds in the sediment 

fractions on which they feed are not abundant and are temporally variable. In contrast, 

O. mutabilis shows greater temporal consistency in its ovarian carotenoid biochemical 

profile. The pigment profiles in the ovaries of this species are not different between 

years. The ability of O. mutabilis to exploit fresher OM, containing greater 

concentrations and types of carotenoids, may allow for compound specific selectivity. 

This inference is also supported by the consistent biochemical profile of A. rosea, 

which feeds on the freshest OM, and the inconsistent profiles of Pseudostichopus 

aemulatus and P. villosus, which feed on deeper sediments presumably assimilating 

carotenoids with less selectivity. Wigham et al. (2003a) suggested that the supply of 

certain carotenoids may favour particular species. This was based on the occurrence 

of specific carotenoids in both the gut contents and ovaries, which would infer 

selective feeding, e.g. zeaxanthin in A. rosea. Although the present study shows that 

zeaxanthin in A. rosea gut content may arise from the lysis of the gut wall, the 

hypothesis of  Wigham et al. (2003a) still stands because of the consistent 
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biochemical profile in A. rosea ovarian tissues and its requirement for zeaxanthin in 

large concentrations. In addition, the enhanced supply or availability of β-carotene 

may favour O. mutabilis; β-carotene is consistently the dominant carotenoid in O. 

mutabilis ovarian tissue. 

 

5. Conclusions 

 

The composition and amount of OM reaching the PAP varies both temporally and 

spatially. This can affect the diet of some abyssal holothurian species, depending on 

their feeding guild. The ovarian carotenoid biochemistry of the abyssal holothurians is 

a complex function of the supply, feeding guild and reproductive adaptation of each 

species. Amperima rosea, Peniagone diaphana and Oneirophanta mutabilis display 

consistent ovarian carotenoid profiles and have higher concentrations of carotenoids 

in their ovaries than do other species. Favourable conditions may give these species a 

reproductive advantage, supplying specific carotenoids required for their reproduction. 

Enhanced carotenoid concentrations in these species may be a reproductive adaptation 

to increase larval survival.  

 

Contamination of gut contents by the lysis of gut wall tissue has been shown in two 

holothurians with differing gut structures. The use of biomarkers to infer the feeding 

ecology of deep-sea megafauna should be used with caution; the occurrence of 

holothurian-derived compounds in the gut contents should always be investigated. 

 

This study suggests that diet and reproduction in deep-sea holothurians are intimately 

linked. Recent climate change studies show plankton can be affected on global and 

longer temporal scales (Richardson & Schoeman, 2004). Changes in upper ocean 

biogeochemistry, altering the quality and quantity of organic matter reaching the 

deep-sea floor may control holothurian reproductive output and favour certain species. 

This can have a subsequent effect on the surrounding biota, as seen during the 

‘Amperima Event’ at the Porcupine Abyssal Plain (Billett et al., this volume; Billett et 

al., 2001), leading to changes in sediment reworking rates (Bett et al., 2001) and 

probably affecting carbon burial. 
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Station  Date Lat (N) Long (W) Depth Samples Collected 

56515#1 21/06/04 48°58.30’ 16°18.50’ 4845m Amperima rosea (n = 5), Oneirophanta mutabilis 
(n = 5), Peniagone diaphana (n = 4) 

56523#1 24/06/04 48°52.90’ 16°30.20’ 4844m 
Amperima rosea (n = 10), Oneirophanta mutabilis 
(n = 4), Psychropotes longicauda (n = 5) , 
Paroriza prouhoi (n = 5) 

15711#1 17/07/05 48°54.00’ 16°20.00’ 4840m 

Oneirophanta mutabilis (n = 4), Paroriza prouhoi 
(n = 4), Psychropotes longicauda (n = 2), 
Pseudostichopus aemulatus, Pseudostichopus 
villosus (n = 3), Molpadia blakei (n = 1) 

15717#1 19/07/05 48°46.60’ 16°29.80’ 4842m 
Oneirophanta mutabilis (n = 1), Molpadia blakei 
(n = 4), Psychropotes longicauda (n = 2), 
Pseudostichopus villosus (n = 4) 

56502 #1 19/06/04 48°51.20’ 16°29.20’ 4835m Sediment core and phytodetritus (n = 1) 
56508 #1 20/06/04 48°51.00’ 16°30.00’ 4838m Sediment core (n = 1) and phytodetritus (n = 2) 
56519 #1 22/06/04 48°51.00’ 16°29.90’ 4833m Sediment core and phytodetritus (n = 1) 
15720 #1 19/07/05 48°52.10’ 16°29.80’ 4838m Sediment cores and phytodetritus (n = 1) 
15724 #1 20/07/05 48°52.00’ 16°29.70’ 4836m Sediment cores and phytodetritus (n = 2) 

 
 

Table 1. Holothurian and sediment samples collected during RRS Charles Darwin 

cruise CD158, June 2004 and RRS Discovery cruise D296, July 2005 to the Porcupine 

Abyssal Plain, Northeast Atlantic. (Position at start of trawl (ship’s position) is given 

for trawling activity). 

 

 

 
 

Figure 1. Map of the Porcupine Abyssal Plain time-series observatory. 
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Figure 2. Phytopigments found in the phytodetritus, 0 to 0.5 cm and 0.5 to 1 cm of 

sediment from (a) June 2004 and (b) July 2005 (mean μg gDW-1 ± SD). Fucox = 

fucoxanthin; Diad = diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax 

= zeaxanthin; Chl a = chlorophyll a; β-carot = β-carotene; Phorbide = phaeophorbide; 

Phytin = phaeophytin; 19'but = 19'-butanoyloxyfucoxanthin; 19'-hex = 19'-

hexanoyloxyfucoxanthin; Violax = violaxanthin; Chl 2 = chlorophyll c2. (note 

different scales on y-axis). 
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Figure 3. Chlorophyll a concentration (mean μg gDW-1 ± SD) in the gut contents of 

holothurian species sampled at the PAP in June 2004 (light grey) and July 2005 (dark 

grey). (Amperima rosea mean gut chlorophyll a concentration based on all samples, 

including samples with empty guts, indicated by white histogram - see text). 
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Figure 4. Carotenoid concentrations (mean μg gDW-1 ± SD) in the ovaries of 

holothurians sampled at the PAP in June 2004 (light grey) and July 2005 (dark grey). 

Diad = diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; 
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Canthax = canthaxanthin; Echin = echinenone; β-carot = β-carotene. (note different 

scales on y-axis). 

 

 

 
 

Figure 5. MDS ordination of 37 individual holothurian ovary samples from PAP June 

2004 (a) and July 2005 (b), based on √-transformed pigment percentage contributions 

and Bray-Curtis similarities. Key: ▲= Amperima rosea; = Oneirophanta mutabilis; 

■ = Peniagone diaphana;  = Psychropotes longicauda;  Χ = Paroriza prouhoi; ● = 

Molpadia blakei; ○ = Pseudostichopus aemulatus;  = Pseudostichopus villosus. 
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Figure 6. MDS ordination of 23 individual holothurian ovary samples from PAP June 

2004 and July 2005, based on √-transformed pigment percentage contributions and 

Bray-Curtis similarities. Key: ▼ = Oneirophanta mutabilis June 2004; = 

Oneirophanta mutabilis July 2005;  = Psychropotes longicauda June 2004;  = 

Psychropotes longicauda July 2005; ● = Paroriza prouhoi June 2004; ○ = Paroriza 

prouhoi July 2005. 

 


