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Abstract  
 
We constrain, in detail, fluctuations of two former ice caps in NW Scotland with 
multibeam seabed surveys, geomorphological mapping and cosmogenic 10Be isotope 
analyses. We map a continuous sequence of 40 recessional moraines stretching from 
~10 km offshore to the Wester Ross mountains. Surface-exposure ages from boulders 
on moraine ridges in Assynt and the Summer Isles region show that substantial, 
dynamic, ice caps existed in NW Scotland between 13–14 ka BP. We interpret this as 
strong evidence that large active glaciers probably survived throughout the Lateglacial 
Interstadial, and that during the Older Dryas period (c.14 ka BP) ice caps in NW 
Scotland were thicker and considerably more extensive than in the subsequent 
Younger Dryas Stadial. By inference, we suggest that Lateglacial ice-cap oscillations 
in Scotland reflect the complex interplay between changing temperature and 
precipitation regimes during this climatically unstable period (~15–11 ka BP).  
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Many workers have examined the nature of the climate in Britain during the last 

glacial-interglacial transition (c. 15–11 ka BP), yet crucial uncertainties still remain. 

Traditionally, glacial deposits and landforms from the mountains and glens of western 

Scotland have been ascribed to the Younger Dryas (YD) chronozone (12.9–11.7 ka 

BP; Greenland Stadial 1 (GS-1) (Lowe et al., 2008)), locally known in Britain as the 

Loch Lomond Stadial (e.g. Sissons, 1977, 1979; Ballantyne, 1989, 2007; Bennett and 

Boulton, 1993; Benn and Lukas, 2006; Golledge, 2007). Examples of earlier, 

unequivocal, glacial advances or oscillations in Scotland are rare in the literature – the 

most notable being the Wester Ross Readvance, along the NW seaboard of mainland 

Scotland c. 16 ka BP (Robinson and Ballantyne, 1979; Everest et al., 2006). During 

the intervening Lateglacial Interstadial (GI-1) (14.7–12.9 ka BP) many authors have 

argued, based on scattered pollen sites and basal radiocarbon dates, that Britain was 

extensively, if not completely, ice free (e.g. Sissons, 1967; Bowen et al., 1986; Lowe 

et al., 1994). Whether or not glaciers in Scotland disappeared completely before re-

growing in the YD is a long-debated point. Although many workers have argued 

convincingly for the existence of small glaciers in favourable locations during the 

Lateglacial Interstadial (e.g. Sugden, 1980; Sutherland, 1984; Ballantyne and 

Sutherland, 1987; Clapperton, 1997), the idea of ‘ice-survival’ remains untested. 

 

Recently, cosmogenic-exposure ages on glacially transported boulders and ice-worn 

bedrock have yielded dates that sit uneasily with models of complete Scottish 

deglaciation by the onset of GI-1. Everest and Kubik (2006), Stone and Ballantyne 

(2006) and Golledge et al. (2007) have all reported uncorrected 10Be exposure ages 

that fall within the period ~13–15 ka BP. The question remains, therefore: Did 

significant ice volumes persist into the Lateglacial Interstadial? And did any glaciers 

in Scotland remain active throughout this period and into the Younger Dryas?    

 

In this short article we present new geomorphological and cosmogenic-isotope 

evidence from NW Scotland demonstrating that two substantial ice caps did indeed 

exist and remained active during the Lateglacial Interstadial.      
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The seaboard of the NW Scottish Highlands is a classic fjord landscape with a deeply 

indented, glacially sculpted, coastline. The geology of the area is dominated by 

Neoproterozoic Torridonian sandstone, psammite and Archaean gneiss. For the 

purpose of this study the Summer Isles region includes all the land and seafloor 

between the headlands of Gairloch in the south and Rubha Còigeach in the north; 

centred on Loch Broom and Little Loch Broom (Figure 1). The Assynt Mountains 

delimit the northeast boundary of the area, and the Beinn Dearg massif delimits the 

southeast. The landscape is dissected by numerous well-developed troughs that 

continue offshore as bathymetric deeps (Figure 1). During the last ice-sheet glaciation 

the Summer Isles region was crossed by a major tributary of The Minch palaeo-ice 

stream (Bradwell et al., 2007). The glacial geology and an overview of the bedrock 

geology of the area has been described in more detail by Stoker et al. (2006) and 

Bradwell et al. (2008).   

 

We used multibeam Geoswath imagery, boomer seismic profiles, colour stereoscopic 

aerial photographs and NEXTMap digital surface models, combined with detailed 

geological field surveys to map the onshore and offshore glacial geomorphology of 

the Summer Isles region of NW Scotland. As part of a wider geochronological 

investigation, we sampled 10 glacially transported boulders on 3 moraine systems for 

surface-exposure dating using 10Be in quartz (Figures 1, 2). Site 1 is a large steep-

sided moraine running for 800 m along the side of Sail Mhor, the northwest spur of 

An Teallach (Figure 1). This lateral moraine formed at the margin of a large ice mass 

that once filled Little Loch Broom to a height of at least 200 m asl. Three Torridonian 

sandstone boulders and one Eriboll sandstone (quartzite) boulder were sampled for 

cosmogenic analysis from the crest of the moraine (Figure 2a). Site 2 is a small yet 

pronounced moraine ridge surrounded by a wide expanse of boulder-strewn ground 

adjacent to the western flank of Ben More Coigach, near Achiltibuie (Figure 1). This 

latero-frontal moraine complex occurs at a similar height (200 m asl) to the Sail Mhor 

moraine. Three Torridonian sandstone boulders were sampled from the crest of the 

moraine ridge (Figure 2b). Site 3 is a small moraine ridge, part of a larger assemblage 

of morainic mounds and ridges in the Loanan Valley in Assynt (Figure 1). These 

moraines are recessional features deposited by a former ice cap sourced on the Assynt 

mountains to the east (Bradwell, 2006). Three large Eriboll sandstone (quartzite) 
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boulders were sampled for cosmogenic analysis from a single ridge crest (Figure 2c). 

Samples were processed at the University of Glasgow’s Centre for Geosciences 

cosmogenic isotope laboratory using methods adapted from Kohl and Nishiizumi 

(1992), Ditchburn and Whitehead (1994) and Child et al. (2000). Beryllium ratios 

were determined at the Scottish Universities Environmental Research Centre 

(SUERC) AMS facility.   

 

Figure 1 here [Whole page landscape; colour] 

 

Results  

New multibeam bathymetry has revealed a continuous sequence of 40 seafloor 

moraines spanning ~40 km from The Minch to inner Loch Broom. These large well-

preserved moraines are up to 10 km in length, 10-20 m high and most display  

spacings of ~100-1000 m (Figures 1, 2d, 2f) (Stoker et al., 2006). Many of the ridges 

have intricate plan morphologies and asymmetric cross profiles typical of recessional 

push moraines (cf. Boulton, 1986). Some of these seafloor ridges cut straight across 

topography as De Geer moraines, formed at a grounded marine-terminating ice 

margin (Figure 2e). Several of these seafloor moraines can be traced onshore, for 

example at the mouths of Loch Ewe and Little Loch Broom and on the western flank 

of Ben More Coigach (Figure 1).  

 

Minimum 10Be exposure ages for 8 of the glacially transported boulders on three of 

these moraine systems overlap at 1 sigma and range from 12.9–14.1 ka BP (Table 1; 

Figure 3). All 8 of these dates fall within the Lateglacial Interstadial (GI-1), as defined 

by the Greenland Ice Core Chronology 2005 (Lowe et al., 2008). The mean of the 

overlapping exposure ages from each of the Sail Mhor, Achiltibuie and Loanan Valley 

moraines are: 13.5, 13.6 and 13.5 ka respectively. Two exposure ages from the Sail 

Mhor moraine are anomalously young outliers (10.0 and 6.8 ka BP). We attribute 

these outlying samples to boulder instability (overturning) or possibly Holocene 

rockfall. The eight overlapping, tightly clustered, minimum exposure ages strongly 

suggest glacial deposition c. 14 ka BP, during GI-1.   

   

Table 1 here  
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Reconstruction of glacial events 

Previously published cosmogenic-exposure ages in the Summer Isles region of NW 

Scotland have helped to bracket the rate and timing of Lateglacial deglaciation. Three 

glacially transported boulders on a well-defined ice-sheet moraine crossing the 

Gairloch peninsula (Figure 1) yielded exposure ages suggesting deposition c. 16 ka 

BP (Everest et al., 2006). Three bedrock samples from the plucked surfaces within the 

large east-facing corrie on An Teallach yielded 10Be isotope accumulations consistent 

with exposure at the end of the YD (~11.5 ±0.5 ka) (Stone et al., 1998). Our ten new 
10Be exposure ages from three moraine systems provide refined temporal constraints 

on intervening glacier oscillations in this part of NW Scotland. 

 

The coherent, incremental pattern of moraines in the Summer Isles region is strongly 

suggestive of dynamic oscillatory ice-front retreat after the Wester Ross Readvance 

and before the YD. 10Be exposure ages on the Sail Mhor and Achiltibuie moraines 

constrain the time of retreat of a large glacier that terminated amongst the Summer 

Isles c. 14 ka BP (i.e. GI-1d). This coherent palaeo-ice margin deposited a moraine 

that runs almost unbroken for 10 km on the seafloor from Gruinard Bay to Tanera 

Mor, and is part of a continuous moraine sequence charting the recession of an ice-

margin that once stretched from Rubha Reidh to Rubha Coigeach (Figures 1, 2d). The 

moraine morphology and simple stratigraphy within this sequence suggests that the 

ice margin underwent punctuated stepwise retreat from the open waters of The Minch 

to the fjords of Loch Broom and Little Loch Broom. (Figures 1, 2f) 

 

The continued eastward retreat of the Summer Isles ice lobe during GI-1 probably 

resulted in glaciers separating across topographic divides. Further recession and 

thinning led to a more topographically confined ice mass with outlet glaciers 

occupying the main valleys: e.g. the Loch Broom trough, Glen Achall, and the 

Dundonnell Valley (Figure 1). By the YD ice volumes had significantly decreased – 

possibly in response to precipitation starvation or increased seasonality – with glaciers 

existing only in the large north- and east-facing corries on An Teallach, and as 

separate mountain icefields on the high ground around Ben More Assynt and Beinn 

Dearg (Sissons, 1977; Bradwell, 2006; Finlayson and Bradwell, 2007). Final 
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deglaciation in NW Scotland occurred rapidly at the onset of the Holocene c. 11.7 ka 

BP. 

 

Figure 3 here [half page b/w] 

 

Discussion 

Complete deglaciation of NW Scotland during the Lateglacial Interstadial seems 

implausible for the following reasons. Well-preserved moraines on the seafloor off 

Rubha Coigeach and Rubha Reidh (Figure 1), at present-day water depths of up to 

100 m, suggest punctuated retreat of a thick coherent ice margin shortly after the 

Wester Ross Readvance. We find no geomorphological evidence for rapid areal 

collapse or stagnation of the ice front at the onset of the Lateglacial Interstadial (GI-

1e; c. 15 ka BP). The pattern and morphology of the moraine sequence strongly 

suggests oscillatory retreat of a large ice mass over a substantial period of time. 

Complete deglaciation of NW Scotland during the brief thermal maximum (GI-1e) 

followed by a major readvance to the Summer Isles in the Older Dryas (GI-1d) would 

have required extremely rapid horizontal ice-sheet retreat of ~40 km in as little as one 

or two centuries followed by ice-cap regrowth and a readvance of c. 30 km in the 

following 200-300 yrs (i.e. by ~14 ka BP). This version of events would require quite 

remarkable glacier turnover rates, beyond those currently experienced by even the 

most dynamic glaciers on Earth (e.g. Paterson, 1994; Dyurgerov, 2002). Furthermore, 

fossil chironomids from Borrobol, Sutherland, indicate that the thermal maximum 

between 14.5–15 ka BP was probably very short-lived or subdued in northern 

Scotland (Mayle et al., 1999). The presence of large glaciers in warm maritime 

climates today, notably in southern Iceland, Patagonia and New Zealand, clearly 

illustrate that significant ice masses can survive relatively unharmed during periods of 

unfavourable warmth, especially if winter precipitation is high or if they possess long 

response times (e.g. Oerlemans, 1989; Pfeffer et al., 1998). In fact, we suggest that 

increased glacier melt in warmer air temperatures may have been offset by increased 

precipitation and changes in seasonality in NW Scotland during the Lateglacial 

Interstadial. This phenomenon can result in glacial equilibrium being maintained or 

even glacier advance – as seen recently in several high-turnover glacier regions (e.g. 

Nesje et al., 1995; Johannesson and Sigurdsson, 2001; Chinn et al., 2005), and is 

especially pronounced in tidewater glaciers (Bentley et al., 2007). We surmise that 
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glaciers in NW Scotland may have survived between 15–13 ka BP owing to this 

complex interplay of climatic factors coupled with relatively long glacier-response 

times. Consequently, we find it highly improbable that ice caps in NW Scotland 

disappeared during the brief ~600-yr GI-1e period (14.7–14.1 ka BP) only for 

considerable ice masses to grow anew immediately after (GI-1d; 14.1–13.9 ka BP). A 

much simpler explanation, strongly supported by our new data, is that active glaciers 

persisted throughout the entire Lateglacial Interstadial (GI-1) and into the Younger 

Dryas (GS-1) in NW Scotland.  

 

In the light of our new chronological and geomorphological evidence, we believe that 

the two well-known Lateglacial age constraints at Cam Loch (Pennington et al., 1977) 

and Loch Droma (Kirk and Godwin, 1963) are probably unreliable. More specifically, 

we would agree with the initial assertions of Kirk and Godwin (1963) who suggested, 

based on their own pollen profile, that the Loch Droma conventional 14C date (12,550 

±240 14C a BP) was erroneously old. Furthermore, we would revise the accepted error 

estimate of c. 1000 years upwards (cf. Ballantyne and Sutherland, 1987). The core 

retrieved from Cam Loch (Figure 1) has radiocarbon reversals and discrepancies that 

cast serious doubt on the published age of the basal unit (12,956 ±240 14C a BP).  

These systematic errors can probably be attributed to the presence of calcareous rocks 

and reworked fossil carbon in the catchment of both lochs (cf. Sutherland, 1980) 

 

Our new cosmogenic-exposure ages confirm the existence of substantial ice caps in 

NW Scotland during the first half of GI-1. We equate this significant moraine-

building phase with the Older Dryas event seen widely elsewhere around the North 

Atlantic – most notably in western Norway, Iceland and offshore Greenland (e.g. 

Ingolfsson and Norddahl 1994; Bennike et al., 2002; Lohne et al., 2007 and 

references therein). Evidence is mounting to suggest that many glaciers and ice caps 

worldwide experienced significant glacier fluctuations at around this time (~14 ka BP) 

– most notably in the Pacific Northwest, Patagonia, New Zealand and the Peruvian 

Andes (e.g. Clark and Gillespie, 1997; McCulloch et al., 2005; Barrows et al., 2007; 

Kelly et al., 2007). We suggest that glaciers in northern Scotland were no different. In 

fact, we propose that dynamically oscillating glaciers may have been characteristic of 

the Lateglacial Interstadial in NW Europe – possibly as a consequence of rapidly 

changing temperature and precipitation regimes at the end of the last glaciation.  
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Conclusions 

1. We identify a suite of 40 well-preserved moraines, in the Summer Isles region 

of NW Scotland, that chart the punctuated retreat of a coherent ice margin 

from ~10 km offshore to the mountains of Wester Ross. Similar moraines 

relating to a neighbouring palaeo-ice cap are also identified in Assynt. 

2. Cosmogenic 10Be isotope analyses of boulders from two moraines in the 

Summer Isles region and one moraine in Assynt yield 8 overlapping zero-

erosion exposure ages of between 12.9 and 14.1 ka BP (i.e. all within 

Greenland Interstadial 1).  

3. These ice-cap oscillations are the first in the UK to be unequivocally ascribed 

to the Lateglacial Interstadial (GI-1). Our combined evidence shows that 

glaciers in northern Scotland were considerably larger in the Older Dryas 

period than during the subsequent Younger Dryas Stadial. By inference, we 

suggest that some ice masses in Scotland, as elsewhere in NW Europe, 

probably survived throughout the entire Lateglacial Interstadial into the 

Younger Dryas. 
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Figure captions 
 
Figure 1: Merged multibeam and hill-shaded NEXTMap surface models 
showing the topography and bathymetry of the Summer Isles region, NW Scotland. 
White solid lines are moraines mapped onshore and offshore; dashed white lines are 
inferred ice-front positions. WRR – Wester Ross Readvance; LLS – Loch Lomond 
Stadial (YD) limits. Previously dated Late Devensian sites are also shown. Inset map 
shows location of study area and other sites referred to in the text. Bathymetric data 
collected by BGS in July 2005 (see Stoker et al., 2006 for technical details). Colour 
bar shows bathymetric depths. NEXTMap data collected by Intermap Technologies, 
2005. 
 
Figure 2: (a) Torridonian sandstone boulders sampled on the Sail Mhor moraine, 
Little Loch Broom. (b) Torridonian sandstone boulders sampled on the Achiltibuie 
Moraine. (c) Erribol sandstone (quartzite) boulder sampled on a moraine in the 
Loanan Valley (see Table 1). (d) Multibeam bathymetry of the seafloor in the vicinity 
of Tanera More, Eilean Dubh and Horse Island showing numerous well-developed 
recessional moraines with intricate morphologies. ‘ACH limit’ is equivalent to the 
Achiltibuie moraine onshore. Colour bar shows bathymetric depths for Figures 2d & 
2e. (e) Oblique perspective view of seafloor at the mouth of Little Loch Broom 
looking northeast, taken from X on Figure 1. De Geer moraine at depths of 40–100 m 
highlighted with white arrows. S – submarine slumps and failure scars. (f) Seismic 
profile across seafloor moraines offshore Tanera Mor (along line f on Figure 2d). 
Note the simple stratigraphy and asymmetric moraine morphology. SBM – Seabed 
multiple; BT – Bed tracking pulse. For technical details of seismic data collection see 
Stoker et al. (2006). 
 
Figure 3: Zero-erosion 10Be exposure ages from three moraines in NW Scotland 
plotted against NGRIP ice-core data from 8–16 ka BP. Ice-core stages and age model 
from INTIMATE group (Lowe et al., 2008). Grey shading indicates most probable 
moraine-building phase, centred around the Older Dryas (GI-1d).    
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Table 1. Cosmogenic nuclide data. 
 

Lab ID Lat. (N) Long. (E) Elevation 
(m) 

Thickness (cm) 
(scaling factor)* 

[10Be]  
(x 104 g-1)#

Adjusted 
Exposure 
Age (ka) §

ACH1 58.0127 -5.2914 255 5 (0.959) 8.79±0.50 13.8±1.4 (0.8) 

ACH2 58.0127 -5.2915 250 5 (0.959) 8.74±0.49 13.7±1.4 (0.8) 
ACH3 58.0133 -5.2925 240 5 (0.959) 8.40±0.54 13.3±1.4 (0.8) 
LLB1 57.8562 -5.3236 250 5 (0.959) 8.51±0.69 13.4±1.6 (1.1) 
LLB2 57.8570 -5.3261 235 5 (0.959) 6.48±0.37 10.3±1.1 (0.6) 
LLB3 57.8576 -5.3279 220 5 (0.959) 4.19±0.36 6.8±0.8 (0.6) 
LLB4 57.8604 -5.3338 200 5 (0.959) 8.20±0.64 13.5±1.6 (1.0) 
LV0601 58.1239 -4.9812 105 3 (0.975) 7.94±0.40 14.1±1.4 (0.7) 

LV0602 58.1239 -4.9812 105 3 (0.975) 7.27±0.40 12.9±1.3 (0.7) 

LV0603 58.1239 -4.9812 105 4 (0.967) 7.56±0.36 13.6±1.3 (0.6) 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

 
Topographic and geometric shielding factor was <0.5% for all samples  
* Calculated using 160 g cm-2 for the effective attenuation length for high energy spallation and a rock 

density of 2.7 g cm-3. 
# Data relative to NIST SRM 4325 taking 10Be/9Be = 3.06 x 10−11 (Middleton et al., 1993). Procedural 

10Be 
 blanks < 4.7 x 104 atoms (10Be/9Be < 4 x 10−15).  
§ Calculated using CRONUS-Earth 10Be-26Al exposure age calculator (Version 2) assuming zero 

erosion and adjusted for variations in palaeomagnetic field strength - the ‘Lm’ scaling scheme in the 
CRONUS-Earth exposure age calculator. The calculator and associated documentation including 
production rate parameters can be found at http://hess.ess.washington.edu/math. Uncertainties include 
production rate uncertainty and AMS measurement uncertainty. Uncertainties in brackets include 
analytical uncertainties only. 
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20 
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