
Phil. Trans. R. Soc. B

doi:10.1098/rstb.2007.0028
Towards quantifying uncertainty in predictions
of Amazon ‘dieback’

Published online
Chris Huntingford1,*, Rosie A. Fisher2, Lina Mercado1, Ben B. B. Booth3,

Stephen Sitch4, Phil P. Harris1, Peter M. Cox5, Chris D. Jones3,

Richard A. Betts3, Yadvinder Malhi6, Glen R. Harris3, Mat Collins3

and Paul Moorcroft7
One con
fate of t

*Autho
1Centre for Ecology and Hydrology, Benson Lane, Wallingford, Oxon OX10 8BB, UK
2Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK

3Met Office Hadley Centre, FitzRoy Road, Exeter, Devon EX1 3PB, UK
4Met Office Hadley Centre, JCHMR, Benson Lane, Wallingford, Oxon OX10 8BB, UK

5School of Engineering, Computer Science and Mathematics, Harrison Building, North Park Road,
University of Exeter, Exeter EX4 4QF, UK

6Oxford University Centre for the Environment, University of Oxford, South Parks Road,
Oxford OX1 3QY, UK

7Department of Organismic and Evolutionary Biology, Harvard University, HUH,
22 Divinity Avenue, Cambridge, MA 02138, USA

Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle
model and forced by a ‘business-as-usual’ emissions scenario, predict a rapid loss of Amazonian
rainforest from the middle of this century onwards. The robustness of this projection to both
uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated.
We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the
parameters specified in the atmosphere component of HadCM3 and their associated influence on
predicted surface climate. We then enhance the land surface description and (ii) implement a
multilayer canopy light interception model and compare with the simple ‘big-leaf’ approach used in
the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating
vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-
structured approximation of an individual-based model (ecosystem demography).

We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by
perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of
the refined light interception model leads to an increase in simulated gross plant carbon uptake for
the present day, but, with altered respiration, the net effect is a decrease in net primary productivity.
However, this does not significantly affect the carbon loss from vegetation and soil as a consequence
of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the
more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback.
The potential for human-induced climate change to trigger the loss of Amazon rainforest appears
robust within the context of the uncertainties explored in this paper. Some further uncertainties
should be explored, particularly with respect to the representation of rooting depth.
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1. INTRODUCTION
When forced by a ‘business-as-usual’ (IS92a) emis-

sions scenario, a version of the Hadley Centre general

circulation model (GCM) (Gordon et al. 2000)

extended to model the global carbon cycle (including

a dynamic global vegetation model (DGVM)) predicts

that climate change could cause a major loss of the

Amazon rainforest (Cox et al. 2000). Besides acting as a

positive feedback on climate, whereby additional
tribution of 27 to a Theme Issue ‘Climate change and the
he Amazon’.
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carbon dioxide is released back into the atmosphere,

the loss of the rainforest in itself would clearly be a

significant environmental matter. Cox et al. (2004)

suggest that the main driver of such ‘dieback’ could,

qualitatively, be related to GCM projections of

persistent ‘El Niño-like’ oceanic conditions, triggering

major rainfall reductions over the Amazon Basin.

Further analysis by Harris et al. ( 2008) demonstrates

that the changes in rainfall may be more complex and

that the modelled GCM drying is also forced by

predicted changes in the gradient of Atlantic sea

surface temperatures between the Northern and

Southern Hemispheres. Cox et al. (in preparation)

analyse the Amazonian drought of 2005, and provide
This journal is q 2008 The Royal Society
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evidence that, for that particular year, the north–south
gradient of Atlantic sea surface temperatures was
anomalously high. The particular format and timing
of the drought are consistent with modelled emerging
signals by HadCM3.

It is important to understand the uncertainties
related to the Cox et al. (2000) prediction of dieback.
These can arise through uncertainty in both simulated
regional climate change and the modelled land surface
response. We use perturbed physics ensembles of
HadCM3 (part of the ‘quantifying uncertainty in
model predictions’ (QUMPs) initiative) to explore
uncertainties in the predicted climate drivers affecting
future Amazon rainforest stability. The ensembles
extend the Murphy et al. (2004) work to fully transient
simulations of historical and future climate (using the
SRES A1B scenario; Nakićenović & Swart 2000;
Collins et al. 2006; Murphy et al. 2007). Two
uncertainties in the structure of the land surface
model are considered, where enhanced ecological
realism addresses potential weaknesses in the original
modelling system. First, we introduce a more advanced
representation of canopy light interception containing
an explicit description of interception for different
canopy levels (Sellers 1985), giving a multilayer
approach to scaling from leaf- to canopy-level photo-
synthesis. Second, we consider the contribution of the
representation of vegetation dynamics to the dieback
response, by replacing the TRIFFID DGVM with the
ecosystem demography (ED) model (Moorcroft et al.
2001). ED is a size- and age-structured approximation
of an individual-based gap model (Friend et al. 1997),
modified to allow the gap model vegetation dynamics
to be employed at large spatial scales. The ED
individual-based model with its enhanced biophysical
representation of vegetation is a logical step on from the
TRIFFID model; the latter has a more empirical
representation of vegetation competition and
interaction. As both models are driven with the same
canopy photosynthesis and surface exchange scheme,
the contribution of modelled vegetation dynamics to
dieback is isolated from that of plant physiology.
2. ANALYSIS
GCM simulations of century-scale climate change
typically take three months to complete, even with
supercomputing facilities. They are highly sophis-
ticated numerical models of the climate, but these
two aspects make it difficult to explore new numerical
depictions of Earth system processes, such as the land
surface response. Hence, a spectrum of modelling tools
is required where complexity is retained in the
processes of interest, but other components of the
Earth system are approximated. The Integrated Model
Of Global Effects of climatic aNomalies model
(IMOGEN) strives to achieve this, combining the
‘GCM analogue model’ to emulate surface climate
(Huntingford & Cox 2000) but with the full GCM land
surface model. IMOGEN is described in Huntingford
et al. (2004), where it was applied to the early analysis
of potential Amazonian dieback.

In the standard IMOGEN system, CO2 emissions
are prescribed and the model simulates terrestrial
Phil. Trans. R. Soc. B
carbon fluxes from the land surface scheme and
oceanic fluxes using the impulse response function of
Joos et al. (1996), generating atmospheric CO2

concentrations. Here, we analyse ED model pro-
jections for the Amazon Basin, noting that ED was
originally developed with plant functional types
(PFTs) specific to Amazonia (Moorcroft et al. 2001).
ED is not yet fully tested for temperate and boreal
regions, preventing predictions of the global land–
atmosphere net carbon exchange and hence atmos-
pheric CO2 content for prescribed emissions of CO2.
Instead, IMOGEN is run with prescribed CO2

concentrations identical to those derived by the Hadley
Centre GCM contribution to the Coupled Carbon
Cycle Climate Model Intercomparison Project
(C4MIP; Friedlingstein et al. 2006). Although the
ability of the land surface to affect atmospheric CO2

concentrations through large-scale biogeochemical
feedbacks is lost, the vegetation change in Amazonia
was responsible for only 10% of the total biosphere–
atmosphere positive feedback predicted by Cox et al.
(2000, 2004).

Huntingford & Cox (2000) demonstrate that, to a
reasonable level of accuracy, surface climate (by both
geographical position and season) as depicted by
HadCM3 transient simulations exhibits linearity in
global mean temperature over land. We recalculate
such propagating patterns based on each member of
the QUMP perturbed physics ensemble, and hence the
IMOGEN system explores how Amazon dieback is
sensitive to different predictions of surface climate. The
IMOGEN system is also used to consider how altered
representations of light interception and vegetation
dynamics influence the rainforest response to simulated
drying and raised temperatures.

For the IMOGEN simulations we perform, the
trajectory of climatic forcing is similar to that of the
QUMP simulations themselves (so the GCM ‘analogue
model’ component of IMOGEN could have been
overridden with direct climatological predictions from
the QUMP ensemble). However, the existence of
propagating patterns of climatological change allows
extrapolation of existing GCM simulations to a range
of different emission profiles. Hence, the system
presented below is now available for future simulations
corresponding to a diverse range of future pathways in
atmospheric greenhouse gas concentrations, including
uncertainty bounds based on the QUMP simulations.

(a) Perturbed physics simulations

Climatological driving data required by IMOGEN are
created based on 16 perturbed physics transient
HadCM3 simulations. These simulations translate
uncertainties first explored in Murphy et al. (2004)
and extended by Webb et al. (2006) into transient
climate responses over the historical period and future
(to the year 2100, using the SRES A1B scenario) by
incorporating a dynamical ocean component. The
16-member ensemble samples uncertainties in cloud
and atmospheric processes, land surface and sea ice
parametrizations. The methodology for these
simulations is described in Collins et al. (2006),
although our analysis uses a subsequently refined set
of 16 perturbed physics simulations with reduced



8

6

4

ra
in

 f
al

l (
m

m
 d

–1
)

so
il 

ca
rb

on
 (

kg
 C

 m
–2

)

ve
ge

ta
tio

n 
ca

rb
on

 (
kg

 C
 m

–2
)

2

0

8

6

4

2

0

1015

10

5

0

310

315
(a) (b)

(c) (d )

305

te
m

pe
ra

tu
re

 (
K

)
300

295

1850 1900 1950 2000 2050 2100
year

1850 1900 1950 2000 2050 2100
year

Figure 1. Changes in (a) mean temperature and (b) rainfall for the Amazon region (see fig. 1 of Huntingford et al. (2004) for
precise region) from a perturbed physics ensemble of HadCM3 forced with historical and SRES A1B changes in greenhouse
gases and other forcing agents. The changes in both (c) vegetation and (d ) soil carbon for the Amazon region are derived from
the IMOGEN modelling system.
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biases in sea temperatures in the Atlantic and Arctic
oceans (Murphy et al. 2007). A limitation of this
approach is that the model uncertainty is explored
within a single model framework and major structural
perturbations to the model physics are not sampled.
However, a comparison between this ensemble and the
multi-model ensemble predictions used by the Inter-
governmental Panel on Climate Change (IPCC)
Fourth Assessment shows a similar spread in the
regional surface temperature response (Meehl et al.
2007, fig. 10.30), suggesting that the QUMP ensemble
explores a comparable range of uncertainty. Murphy
et al. (2007) present an extended discussion on the
limitations and merits of both the perturbed physics
and multi-model ensemble approaches for quantifying
modelling uncertainty.

A pre-industrial climatology is derived from the
control state from each of the perturbed physics
simulations, corresponding to a ‘perpetual 1860s
climate’. Monthly mean changes in near-surface
climate variables are derived for each gridbox from
the transient simulations, in an identical way to that
of Huntingford & Cox (2000), thereby giving the
analogue model components for the ensemble of
IMOGEN simulations. IMOGEN calculates the
surface fluxes of heat, vapour and carbon dioxide
using v. 2.2 of the Met Office Surface Exchange
Scheme (MOSES; Cox et al. 1998, 1999 for MOSES

v. 2.1, and extension to v. 2.2, Essery et al. 2003),
coupled to the TRIFFID DGVM (Cox 2001), hence
generating a land surface model similar to that of the
Phil. Trans. R. Soc. B
Cox et al. (2000) GCM simulation. A caveat is that
the new IMOGEN simulations based on the
perturbed physics ensembles do not include the
influence of dieback on regional surface climate;
such local biophysical feedbacks can be important
(see Gash & Nobre 1997; Nepstad et al. 1999; Betts
et al. 2004). Other potential biogeochemical feed-
backs (which are not yet in GCMs either) such as
changes in emissions of dust (in the event of a
complete loss of vegetation) and isoprenes are also
neglected (Sanderson et al. 2003; Woodward et al.
2005; Betts et al. 2008).

Projections of change in temperature and rainfall for
the Amazon Basin by the perturbed physics ensemble
of transient simulations are presented in figure 1a,b.
Calculated influence on vegetation and soil carbon
using the IMOGEN modelling system is also shown in
figure 1c,d. Although the initial vegetation and soil
carbon states differ for the 16 perturbed physics
climatologies, the temporal dynamic is robust. The
TRIFFID DGVM driven with all the 16 climatologies
simulates large-scale forest dieback across Amazonia,
predominantly associated with drought-induced
reductions in plant productivity. There are also major
reductions in soil carbon (the slight reversal in some
simulations of soil carbon content is where dieback is
sufficiently fast that litter input to the soil ‘overtakes’
increased soil respiration losses due to raised tempera-
tures). This suggests that predicted Amazonian dieback
is robust to multiple parameter perturbations in
HadCM3.
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Figure 2. Changes in Amazonian (a) vegetation and (b) soil carbon (for the same region as used in figure 1) using an IMOGEN
initial climatology and climate change patterns derived from the original Cox et al. (2000) simulation. The black curve
corresponds to the standard ‘big-leaf ’ version of the land surface scheme and the blue curve the review ‘two-stream’ approach to
light interception.
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(b) Impact of a multilayer canopy light

interception model

The MOSES land surface scheme used by Cox et al.
(2000) assumes the functioning of the plant canopy
scales as a ‘big-leaf ’ and follows Beer’s law. We
introduce a more realistic depiction of light levels
within a canopy (Jogireddy et al. 2006; Mercado et al.
2007), calculate its effect on stomatal conductance and
thus control on photosynthesis and evaporation, and
determine the impact on modelled vegetation and soil
carbon for the Amazon rainforest during the twenty-
first century. We include an explicit scaling-up from
leaf-to-canopy, using a multilayer canopy radiation
interception algorithm based on an analytical two-
stream model (Sellers 1985). For such a multilayer
approach, absorption and scattering losses of incident
radiation, for both direct and diffuse radiation, are
calculated at different levels in the canopy. These
include contributions from the visible and near-
infrared wavebands, from which the absorbed photo-
synthetically active radiation (PAR) is derived. Using
the calculated absorbed PAR at each layer of the
canopy, leaf photosynthesis, leaf respiration and
stomatal conductance are calculated and summed to
provide canopy values. The parametrization of the
vertical profile of leaf nitrogen through the canopy has
also been modified to follow observations from a site in
central Amazonia (Mercado et al. 2007). The observed
vertical profile of nitrogen is less steep than that
predicted under the original Beer’s law (this implies
higher total canopy nitrogen when observed profiles are
used). The improved light interception model has been
successfully tested against eddy correlation measure-
ments for a rainforest site in Manaus (Mercado et al.
2007); there the authors found the main improvement
of introducing the ‘two-stream/multilayer’ description
was to allow a more realistic modelling of the response
of photosynthesis to light, and the associated impact on
the diurnal cycle of modelled carbon and water fluxes.
The MOSES-modelled photosynthesis tends to saturate
quickly for increasing solar radiation, generating a ‘flat’
response in the middle of the day, whereas measure-
ments indicate photosynthetic response to varying light
levels for the entire diurnal period.

The introduced scheme simulates higher gross
primary production, but lower net primary production
Phil. Trans. R. Soc. B
(and thus lower plant and soil carbon pools relative to
the original big-leaf simulation; figure 2). This is as a
consequence of significantly higher plant respiration
costs associated with the higher canopy nitrogen
contents. Overall, this improved treatment of radiation
absorption yields little alteration (when using pre-
scribed patterns of climate change based on the
HadCM3 simulation of Cox et al. (2000)) to the
original dieback result obtained with the standard
MOSES model (figure 2). The dominant cause of
dieback remains to be the prescribed reduced rainfall
causing severe soil moisture stress, affecting both
simulations (figure 2) independent of the improved
description of photosynthetic behaviour.

(c) Introduction of the ED model

Cox et al. (2000) used the TRIFFID DGVM, based
on a large-scale competition between trees, shrubs
and grasses. The dominant cover is determined by
the balance between ability to ‘fix’ carbon by
photosynthesis and loss of carbon by litterfall. The
combination of both modelled warming and simul-
taneous rainfall decreases by HadCM3 means that
trees are projected to become unsustainable, and the
dominant vegetation type then becomes shrubs.
Towards the end of the twenty-first century, these
are superseded by first grasses and finally desert. The
TRIFFID model is described in Cox (2001) and the
behaviour of the dominant vegetation class and route
to dieback is given in Huntingford et al. (2000). We
replaced the TRIFFID DGVM with the ED model in
IMOGEN. The ED model (Moorcroft et al. 2001) is
unique among DGVMs using a size- and age-
structured approximation of a gap model, to allow
both operation at a large spatial scale and represen-
tation of vegetation dynamics, turnover, competition
and mortality in an ecologically realistic fashion. ED
is controlled by parameters that are more amenable
to ground measurements (a criticism of existing
DGVMs is that their parametrization of vegetation
dynamics, competition and species replacement is
often difficult to constrain with ecological data). The
parameters of the vegetation dynamics component
(including specific leaf area, wood density, leaf
lifespan, mortality rates, allocation patterns and
PFTs) were all derived from ground measurements
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Figure 3. Change in vegetation carbon predicted by the ED
model (as placed in the IMOGEN modelling structure) for
Amazonia (the same region as used in figure 1). The
simulation is for a control climate based on the CRU
climatology, with climate change anomalies based on
HadCM3.
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by Moorcroft et al. (2001), and with an emphasis on
the Amazon region. The model was verified against
vegetation composition data, showing that ED can
successfully predict vegetation growth, composition
and spatial distribution under contrasting conditions
within the Amazon region.

In MOSES–TRIFFID, each sub-grid cell tile
contains a single PFT (there are five possible PFTs;
also possible are ice, lake, urban and soil/desert land
uses). ED, in contrast, defines the sub-grid cell tiles
according to a model of ecosystem disturbance
(caused by either mortality or fire). Each tile consists
of land area which has a common ‘age since last
disturbance’. Each tile is populated with multiple
‘cohorts’ of trees, which represent groups of individ-
uals with a common PFT and height class. Cohorts of
different PFTs may coexist vertically within each tile.
Competition for light between different PFTs is
simulated, a development which greatly enhances
the process representation of vegetation competition
and dynamics compared with other existing global
vegetation models. The age-structured model rep-
resents heterogeneity in the light environment within
a grid cell, and therefore it simulates the dominance
of fast-growing species with high-mortality rates in
high-light environments that have recently been
disturbed, and their successional replacement by
slow-growing low-mortality species through time.
The model can therefore estimate the regrowth of
biomass and leaf area after disturbance events such as
mortality. The ED model used in this analysis uses
five PFTs similar to that used in Moorcroft et al.
(2001); that is, C3 and C4 grasses, plus three types of
broadleaf tree: ‘early successional’; ‘mid-successional’;
and ‘late successional’.

The original MOSES gas exchange and photo-
synthesis model was retained (Essery et al. 2003), but
updated to allow multiple canopy layers. The sub-grid
cell tiling structure of the vegetated land surface was
changed to the age class-defined tiles used in the ED
model. ED has a monthly time step and provides the
Phil. Trans. R. Soc. B
tiling structure plus the height, PFT and leaf area
index of each cohort to the MOSES gas exchange model,
which in turn calculates net primary productivity
(NPP) for each cohort. These derived hourly values
of NPP are integrated and passed back to the ED model
after each modelled month to update vegetation growth
and mortality.

Figure 3 shows Amazon vegetation carbon simulated
by ED and forced with IMOGEN climate patterns
based on the HadCM3 simulation of Cox et al. (2000).
ED was unable to simulate forest until the initial
climatology (representative of pre-industrial times) was
replaced with the one based on the Climatic Research
Unit (CRU) climatology (New et al. 2000). It is known
that HadCM3 has a slight dry bias in its control climate
for Amazonia to which ED was responding. The ED
model simulates future reductions in Amazonian
vegetation in the twenty-first century in response to
climate change modelled by HadCM3. However, the
rate of dieback is significantly slower than with
TRIFFID, indicating possibly a greater forest resi-
lience. Spatial changes in Amazon terrestrial carbon are
given in figure 4.
3. DISCUSSION AND CONCLUSIONS
The impact of uncertainties in modelled climate
response on Amazon rainforest sustainability for
increasing concentrations of atmospheric greenhouse
gases has been investigated using a ‘perturbed physics
ensemble’. In the context of predictions by other
modelling centres, the HadCM3 ensemble spans the
range of global mean temperature responses in the AR4
multi-model ensemble (Collins et al. 2006), but
samples a smaller range of the precipitation uncertainty
in the Amazon region. Cox et al. (2004) suggest a
relationship between wet season precipitation and
trends in the future El Niño-Southern Oscillation
(ENSO) state. The ensemble members share to a
greater or lesser extent the tendency in the original
HadCM3 response towards an enhanced El Niño-like
state in the future (and hence wet season reduction of
rainfall). However, Collins et al. (2005) conclude that
across different GCMs, there is a roughly equal
likelihood between El Niño or La Niña trends among
the multi-model ensemble. Good et al. ( 2008)
illustrate further a linkage between shifts in the
Intertropical Convergence zone and the dry season
rainfall in this region. That the perturbed physics
ensemble does not capture the full range in future
rainfall responses is an important caveat that should be
addressed in future work. Nevertheless, the response of
climate drivers in the HadCM3 family of models
remains credible for the Amazon region and the
robustness of the dieback result to the uncertainty in
climate drivers for that GCM represents a substantial
step forward in predictions. IMOGEN, now calibrated
against the QUMP ensemble, is available to assess the
likelihood of dieback for a range of emissions
trajectories. These could include pathways to atmos-
pheric stabilization (e.g. those of Wigley et al. 1996) or
the emerging concept of climate ‘overshoot’ (e.g.
Huntingford & Lowe 2007), whereby a potentially
dangerous level of climate change is found to have been
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passed, followed by massive reductions in emissions in

an attempt to fall back below that level. For the

Amazon rainforest, this raises issues regarding hyster-

esis and recovery from any dieback.

The sensitivity of modelled Amazon dieback to the

description of the land surface model has been

explored. In parallel calculations (see Sitch et al.
in press), five DGVMs are coupled to IMOGEN

(again with patterns of climate change based on

HadCM3) and forced with four different SRES CO2

emission scenarios. The quantitative response of the

DGVMs to drought differs among models, with

TRIFFID and Hyland DGVMs most sensitive to

reduced rainfall and elevated temperatures across

Amazonia, whereas LPJ and Orchidee simulate mod-

erate forest dieback. Salazar et al. (2007) run the

CPTEC-PVM (Oyama & Nobre 2004) potential

vegetation model with future climatologies from 15

climate models and for two different SRES emission

scenarios (A2 and B1). Their results project a reduction

in forest coverage for all simulations despite large

uncertainties in both magnitude and sign of climate

model projections of future rainfall across Amazonia.

Salazar et al. (2007) highlight that for GCMs predicting

higher future rainfall amounts across the Amazon

Basin, elevated temperatures alone are sufficient to

cause conversion of forest to savannah ecosystems.

Hence, Amazon rainforest dieback may be less sensitive

to the choice of GCM pattern of changing rainfall than

hitherto expected. We have targeted two particular

aspects of Amazon’s response: first, the introduction of

a multilayer two-stream canopy light module, thus

improving the light response of photosynthesis and

diurnal cycles of carbon and water fluxes, and, second,

the adoption of ED, a DGVM that represents a first

step towards incorporating a greater process-based

understanding of vegetation dynamics, turnover,

competition and mortality. In all circumstances, we

find that dieback is still probable by the end of the

twenty-first century for the business-as-usual emission

profile selected.

Deforestation has a large impact on tropical forests

(Achard et al. 2002). The effects of both deforestation
Phil. Trans. R. Soc. B
and global warming are predicted to negatively impact

Amazonian forest extent (Cramer et al. 2004; Salazar

et al. 2007) and change both regional and global

climate (Sitch et al. 2005; Costa et al. 2007). To further

improve our ability to project the fate of Amazonian

forests, ecosystem models need to incorporate land use

and cover changes.

Amazonian ecosystem models need further verifica-

tion against carbon and water flux data. The majority of

flux tower and experimental studies in the region do

not detect any hydraulic limitation of evapotranspira-

tion or gross primary productivity in the dry season,

with many attributing this behaviour to the existence of

deep roots (Hodnett et al. 1995; Grace et al. 1996;

Araújo et al. 2002; Carswell et al. 2002; Saleska et al.
2003; da Rocha et al. 2004; Goulden et al. 2004; Fisher

et al. 2007; Nepstad et al. 2007). Two examples where

hydraulic limitation was measured are Malhi et al.
(1998; which was tested against the IMOGEN surface

model by Harris et al. (2004)) and a more recent

manipulation study (Fisher et al. 2007) finding that

when a 50% reduction in through-fall was imposed on

the forest, a large (up to 80%) reduction in forest

transpiration (by implication, photosynthesis) resulted

within a single year. These results suggest that the deep

roots do not entirely buffer the forest from the imposed

dry conditions and comparison of model predictions

against all these observations remains a high research

priority. It is probable that alterations of modelling

rooting depths and the responses of vegetation to high

temperatures (Salazar et al. 2007) are necessary to

correctly simulate contemporary and future patterns of

gas exchange. If the total rainfall falls below a threshold

defined by the total evaporative demand, the effect of

rainfall storage in the dry season becomes unimportant,

so the impact of deep roots will probably delay the

impact of any drying and dieback, but not be able to

prevent it entirely if this threshold is breached.

We have shown that the dieback result of Cox et al.
(2000) is robust within the structural constraints of

HadCM3 climatology across the existing atmosphere

parameter uncertainty. Large-scale forest dieback

across Amazonia is a robust projection with enhanced



Quantifying climate-driven Amazon ‘dieback’ C. Huntingford et al. 7
representations of canopy light interception and with a
more process-based DGVM, ED. The ED model was
parametrized independently of any GCM, hence
eliminating the risk of compensating biases between
the climate and land surface models. These results,
taken together with findings from other recent studies
using multiple DGVMs, climate models and pro-
jections of land use and cover change, suggest that
the Amazon rainforest must be considered to be highly
vulnerable to future global change induced by raised
concentrations of atmospheric greenhouse gases.
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