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ABSTRACT 
 
The GHG Inventory for the U.K. currently uses a simple carbon-flow model, CFLOW, to calculate 
the emissions and removals associated with forest planting since 1920. Here we aim to determine 
whether a more complex process-based model, BASFOR, could be used instead of CFLOW. The 
use of a more complex approach allows accounting for spatial heterogeneity in soils and weather, 
but places extra demands on uncertainty quantification. We show how Bayesian methods can be 
used to address this problem. 
 
 
INTRODUCTION 
 
Quantifying a GHG Inventory is a problem of incomplete information. No amount of data 

collection will provide us with a full inventory, so additional calculations and assumptions are 

required. In the case of LULUCF in the U.K., process-based models are used to quantify net CO2 

emissions associated with afforestation, reforestation and deforestation, based on forestry data and 

soil type information. The model currently used for forests planted after 1920 is CFLOW. This is a 

simple compartmental flow model for the carbon cycle which uses measured wood productivity as 

input and calculates the flows of carbon to tree parts and soil, with different turnover rates for the 

various compartments. We are investigating the scope for replacing CFLOW with a more complex 

process-based model, BASFOR, that can better take into account the spatial distribution of climate 

and soil properties across the U.K. However, the use of the models is hampered by incomplete 

knowledge of input variables as well as model parameters. This causes uncertainty in the model 

outputs which needs to be quantified and reported in the Inventory. A highly effective means of 

quantifying uncertainty in inputs, parameters and outputs of process-based models is Bayesian 

Calibration (BC; Van Oijen et. al. 2005). The key strength of the method is that it not only 

propagates uncertainty in inputs and parameters to model outputs, but also uses data on output 

variables to reduce the uncertainty in inputs and parameters. Here we shall demonstrate the 
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application of BC to BASFOR, and show predictions of carbon sequestration including their 

uncertainty. 

 

 

METHODS 

 

Model BASFOR 

The BASic FORest simulator, BASFOR, is a process-based forest model that simulates carbon and 

nitrogen cycling in trees, soil organic matter and litter (Van Oijen et al., 2005). It simulates the 

response of trees and soil to radiation, temperature, precipitation, humidity, wind speed, 

atmospheric CO2 and N-deposition, and thinning regime. The model has 11 state variables, 

representing carbon and nitrogen pools in trees and soil, and 32 parameters controlling the rate of 

physiological processes and morphological characteristics. The model is deterministic and is solved 

by Euler integration with a time step of one day. 

 

Weather data 

Weather data were taken from the UKCIP climate scenarios (Hulme & Jenkins, 1998). For future 

weather, only the “Medium-high” scenario was used. The data are given for a regular spatial grid of 

655 cells of 20 by 20 km each. Current spatial gradients for temperature and precipitation are 

dominated by latitudinal and longitudinal effects, respectively. Future warming is expected to show 

a decreasing pattern from the South-East to the North-West. 

 

Atmospheric CO2 

Atmospheric CO2 concentration has increased from 300 ppm in 1920 to current levels of around 

380 ppm, with an average for the period 1920-2000 of 325 ppm. For the average CO2 level in the 

period 2000-2080, the Bern model (Joos et al., 1996) predicts a value of  480 ppm. 
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N-deposition 

Early 20th century levels of N-deposition were low across Europe (< 3 kg N ha-1 yr-1) (Galloway, 

1985). Data and calculations by the Co-operative Programme for Monitoring and Evaluation of the 

Long-Range Transmission of Air Pollutants in Europe (EMEP) show increasing N-deposition 

values during most of the 20th century with maxima reached around 1990. The 1999 Gothenburg 

Protocol to Abate Acidification, Eutrophication and Ground-level Ozone sets emission ceilings for 

2010 for NOx, ammonia and other pollutants. Hence we assumed continued reductions of N-

deposition until the year 2010, with deposition remaining constant thereafter. These temporal 

patterns were spatially disaggregated using the 2004 UK deposition map (R.I. Smith, pers. comm.). 

 

Soils 

Data on soil nitrogen, carbon and plant available water content were taken from the global soils 

database produced by the Data and Information Services of the International Geosphere-Biosphere 

Programme (IGBP-DIS, Global Soil Data Task 2000). 

 

Tree data from sites Dodd Wood and Rheola 

Forest Research U.K. provided data on tree growth and soil characteristics from two Sitka spruce 

stands, for use in model calibration (R. Matthews & P. Taylor, pers. comm.). The sites were Dodd 

Wood (54.64 °N, 3.17 °W, alt. 381 m., indurated brown earth sandy soil) and Rheola (51.74 °N, 

3.68 °W, alt. 220 m., brown earth soil). Trees were planted in 1927 and 1935, respectively, and 

management followed a 5-year thinning cycle on both sites. 

 

Bayesian calibration and uncertainty quantification 

The parameters of the BASFOR model were quantified by means of Bayesian calibration, using the 

Forest Research data for Dodd Wood and Rheola. The procedure began with quantifying the 
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uncertainty about the parameter values in the form of a prior probability distribution, based on 

literature data on conifer growth. The Forest Research data on model output variables were used to 

update the parameter distribution by application of Bayes’ Theorem [p(θ|D) ∝ p(D|θ) p(θ), where θ 

is the parameter vector and D is the data]. This yielded a posterior, calibrated probability 

distribution for the parameters. The predictive uncertainty of the model was then quantified by 

running the model with different parameter settings, sampled from the posterior distribution (n=5), 

using Markov Chain Monte Carlo (MCMC) simulation (Van Oijen et al. (2005)). One limitation of 

the present study was that only the uncertainty in model parameters was quantified. Uncertainty in 

model drivers (climate, soils) was not quantified, nor was the uncertainty relating to the structure of 

the BASFOR model itself assessed. 

 

 

RESULTS 

 

Bayesian calibration and uncertainty quantification 

Table 1 lists the major parameters of BASFOR, with their prior uncertainty before application of 

data from UK forests, and their posterior uncertainty after Bayesian Calibration. For most 

parameters, prior uncertainty was large, i.e. lower and upper limits were far apart. Figure 1 (black 

dotted lines) shows for four model output variables (tree and soil carbon, height and total produced 

wood volume) how the prior parameter uncertainty effected uncertainty in model outputs at the 

Dodd Wood site. For example, the uncertainty interval (2 standard deviations wide) for tree carbon 

at the end of the eighty-year rotation ranged from below 40 to above 80 ton carbon ha-1. Table 1 and 

Figure 1 also show to what extent uncertainties were reduced by the Bayesian calibration using the 

data from the Dodd Wood and Rheola sites, described above. The marginal posterior probability 

distributions were much narrower than the prior distributions, as can be seen from the small 

coefficients of variation. The data from Dodd Wood were not equally informative for all 
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parameters, with CVs for three parameters – initial leaf and stem carbon content and N/C ratio of 

wood – exceeding 20%. However, Figure 1, red unbroken lines, shows that overall parameter 

uncertainty had been reduced enough to significantly reduce output uncertainty for the four selected 

variables. 

 

C-sequestration 1920-2000 

The calibrated model was applied to calculate UK-wide C-sequestration between 1920 and 2000 for 

a standardized conifer rotation with a 5-yearly thinning interval (Figure 2). C-sequestration was 

defined as the average annual total accumulation of carbon in soil, standing biomass and wood 

removed at thinnings. Calculated sequestration rates were highest in the South-West of the country, 

which combines moderately high temperature and precipitation. The far North is identified by the 

model as an area of net C-source rather than a sink (Figure 2). The spatial pattern of C-sequestration 

was not closely related to the spatial distribution of atmospheric N-deposition and soil nitrogen. The 

propagation of parameter uncertainty to uncertainty about C-sequestration rates was calculated by 

taking five samples from the posterior parameter probability distribution (Table 1) and calculating 

the standard deviation for the five different results. Figure 3 shows the resulting map of 

sequestration uncertainty. The spatial pattern of sequestration uncertainty differs strongly from that 

of sequestration itself (Figure 2), indicating that the coefficient of variation varies between different 

growing conditions. 

 

C-sequestration 2000-2080  

The same calculations of C-sequestration were repeated for the environmental conditions expected 

for the period 2000-2080. Figure 4 shows the spatial distribution of expected changes in 

sequestration, relative to 1920-2000. The changes are not closely related to the magnitude of 

expected changes in temperature, as the spatial patterns differ. However, some degree of warming is 
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expected across the whole country, causing C-sequestration to change mainly in the higher, colder 

regions of Wales, North-England and Scotland. 

 

Analysis in terms of environmental change factors: climate, CO2, N-deposition 

The preceding UK-wide assessments of the effects of environmental change on expected C-

sequestration rates in conifer forests did not separate out the effects of the different environmental 

factors subject to change. For the purpose of such analysis, we ran additional simulations for the 

Dodd Wood site with a range of temperatures, atmospheric CO2 concentrations and N-deposition 

rates, in a full-factorial set-up. Average temperature was varied from 6.8 to 9.9 °C (which amounts 

to expanding the UKCIP-estimates for the site for 1920-2000 and 2000-2080 with one degree on 

either side of the range), atmospheric CO2 was varied from 320 to 480 ppm (corresponding to 

changes estimated by the Bern model using the IS92a emissions scenario for 1920-2000 and 2000-

2080), and N-deposition was varied from 0 to double the 1920-2000 average value of 8.0 kg N ha-1 

y-1. Table 2 summarizes the results of application of the model for these environmental conditions. 

The first data column of the table lists the average values of yield class and annual C-sequestration 

rate across the considered set of environmental conditions, with standard deviations indicating the 

uncertainty arising from both the variation in environmental conditions as well as the parametric 

uncertainty determined before. The final three data columns of Table 2 give the average effect on 

yield class and sequestration of changes in temperature, CO2 and N-deposition, with uncertainties. 

On the examined site, Dodd Wood, changes in each of the three environmental factors has an effect 

on the output variables, but with the strongest effect (relative to its expected degree of change) for 

CO2. The analysis further suggests that C-sequestration rates are likely to increase to similar extent 

in soils and in tree biomass. 

 

 

DISCUSSION AND CONCLUSIONS 
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This study has tried out methods that may be used to improve the construction of the UK GHG 

inventory. The process-based forest model BASFOR was parameterised efficiently using Bayesian 

calibration, allowing for uncertainty quantification when using the model to calculate UK-wide 

conifer forest C-sequestration and yield class. However, the procedure likely suffered from low 

quality of some data, in particular those on soils. 

 

Uncertainties 

Throughout our study we found relatively little sensitivity of UK forest C-sequestration rates and 

yield class to soil nitrogen content and atmospheric N-deposition, as opposed to the calculated 

sensitivities to changes in temperature and atmospheric CO2 concentration. This finding may be an 

artefact from the use of the IGBP-DIS dataset with its possibly overestimated values of nitrogen 

contents of UK soils, leading to apparent nitrogen saturation (Van Oijen & Jandl, 2004). 

 

The impacts of changes in environmental factors 

The use of a process-based model for calculating C-sequestration, rather than the semi-empirical 

model CFLOW currently used in the U.K. GHG Inventory, allowed us to analyse the contributions 

of changes in temperature, CO2 and N-deposition to changes in sequestration. However, this 

analysis should be seen as a proof of concept for the methodology rather than as a high-probability 

identification of a key environmental variable – given the likely poor quality of the soils data and 

because the factor analysis should first be repeated for the whole of the UK. The spatial pattern of 

uncertainties, both expressed in absolute terms and as coefficients of variation showed distinct 

spatial trends across the country, so not only the calculation of main effects, but also uncertainty 

quantification needs to be calculated country-wide. 

 

The use of process-based models 
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The presence of nonlinear individual and interactive effects limits the usefulness of response factors 

as calculated in Table 2. For example, the yield class temperature response factor of 0.18 ± 0.05 (m3 

ha-1 y-1) (°C)-1 does not necessarily apply outside the Dodd Wood area. This has implications for the 

way in which we can use results from the process-based modelling to derive modifiers for the yield 

class values that are used as input for the carbon inventory calculations using CFLOW. The yield 

class modifiers likely need to be complex multivariate functions of the set of different 

environmental factors. However, we can calculate such functions if we redo the current factor 

analysis at a UK-wide scale and with improved input information. This needs to be accompanied by 

quantification of the uncertainties from incomplete knowledge of parameters, environmental drivers 

and model structure. 
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Table 1. Prior and posterior probability distributions for parameters of BASFOR. The prior is 
beta-distributed between specified lower and upper limits. The posterior, derived using data from 
Dodd Wood and Rheola, is not analytical and is characterized here by the mean values of the 
marginal parameter probability distribution and the coefficients of variation (CV = standard 
deviation / mean) (posterior correlation matrix not shown). 

Parameter vector Prior probability 
distribution 

Posterior 
probability 
distribution 

Symbol Unit Meaning Lower 
limit 

Upper 
limit Mean CV 

CB,0 (kg m-2) Initial value branch C 0.00005 0.005 0.0010 0.18 
CL,0 (kg m-2) Initial value leaf C 0.0001 0.01 0.0015 0.38 
CR,0 (kg m-2) Initial value root C 0.0001 0.01 0.0017 0.16 
CS,0 (kg m-2) Initial value stem C 0.00005 0.005 0.00090 0.34 
Β (-) CO2-response factor 0.4 0.6 0.52 0.06 

CO2,0 (ppm) CO2-response base level 320 380 362 0.02 
fB (-) Allocation to branches 0.25 0.30 0.29 0.02 

fL,max (-) Maximum allocation to leaves 0.27 0.37 0.29 0.03 
fS (-) Allocation to stem 0.25 0.3 0.28 0.01 
Γ (-) Respiration fraction 0.4 0.6 0.48 0.06 

kCA (m2) Crown area allometric normalisation constant 5 15 11 0.12 
kCA,exp (-) Crown area allometric exponent 0.3 0.45 0.36 0.07 

kh (m) Tree height allometric normalisation constant 4 12 7.5 0.07 
kh,exp (-) Tree height allometric exponent 0.2 0.3 0.26 0.04 

LAImax (m2 m-2 mm-1) Maximum LAI 4 10 6.3 0.06 
LUE0 (kg MJ-1) Light-Use Efficiency 0.001 0.003 0.0014 0.10 

NCL, max (kg kg-1) Maximum C/N ratio leaves 0.02 0.05 0.028 0.12 
NCR,con (kg kg-1) C/N ratio roots 0.02 0.04 0.023 0.06 
NCW,con (kg kg-1) C/N ratio woody parts 0.0005 0.002 0.00080 0.23 

SLA (m2 kg-1) Specific Leaf Area 5 40 6.0 0.05 
Topt (◦C) Temperature optimum 12 28 19 0.12 

TCL,max (d) Maximum survival time coefficient leaves 365 1460 1048 0.09 
δ (kg C m-3) Wood density 150 250 182 0.04 
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Table 2. Simulated change in average yield class and annual C-sequestration at the Dodd 
Wood site due to changes in temperature, CO2 and N-deposition. The standard deviations are 
due to uncertainty in parameterisation and to variation in interacting environmental factors, 
but not including soil characteristics. 
 Impact of environmental change 
Ecosystem variable Dodd Wood 

value 
Effect of 
temperature (per 
°C) 

Effect of [CO2] 
(per 100 ppm) 

Effect of N-
deposition (per 
10 kg N ha-1 y-1) 

Yield class (m3 ha-1 y-1) 7.91 ± 1.11 0.18 ± 0.05 1.32 ± 0.38 0.74 ± 0.26 
C-sequestration (t C ha-1 y-1) 3.99 ± 0.64 0.10 ± 0.03 0.76 ± 0.21 0.41 ± 0.14 
C-sequestration, soil (t C ha-1 y-1) 1.58 ± 0.31 0.05 ± 0.01 0.36 ± 0.10 0.18 ± 0.07 
C-sequestration, trees and products 
(t C ha-1 y-1) 

2.41 ± 0.34 0.05 ± 0.02 0.40 ± 0.12 0.23 ± 0.07 

 


