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Abstract 

Although electrical resistivity has been used by the oil industry for more than 50 years 

to locate oil resources, the use of this method for geotechnical purposes has been 

limited. This is largely due to the non-unique nature of the values, the intricate 

interpretative process and a degree of scepticism related to the potential usefulness of 

this method.   

 

Among the factors contributing to bulk electrical resistivity are water content and pore 

fluid chemistry. This paper introduces research that is currently underway into 

identifying whether non-intrusive electrical resistivity tomography (ERT) can be used to 

identify areas of significant soil moisture changes in UK infrastructure embankments. 

Many of these embankments are over 100 years old and constructed using over-

consolidated clays.  

 

Cyclic changes in soil moisture are indicative of failure mechanisms in infrastructure 

embankments. Temporal variations in moisture content could deliver valuable insights 

into the potential for failure of embankments 

In order to test the methodology, the BIONICS test embankment facility near Newcastle 

has been instrumented with ERT arrays to enable time-lapse imaging on two cross 
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sections through the embankment. In addition, a monitoring network of sensors, 

including temperature, moisture content and suction, have been installed within the 

embankment. These data will be used, along with other geotechnical properties and 

relationships from laboratory work, to create numerical models capable of describing 

the temporal variations of moisture content inside the embankment.  

 

Initial findings indicate the ability of the ERT array to detect important physical property 

differences inside the embankment, including the location of lifts generated during the 

construction of the embankment. Temperature variations inside the embankment 

appear to be considerable with fluctuations occurring at depths as large as 4m.  ERT is 

sensitive to variations in temperature and further research is required to appreciate the 

importance of these variations for the relative interpretation of multi-temporal arrays.  

Laboratory work is being undertaken using a modified compaction mould into which 

compacted samples of representative clays can be placed. This will enable the 

assessment of the sensitivity of ERT to small variations in key parameters and the 

development of a suitable model that can be used to assess the long term condition of 

infrastructure embankments in a quantitative way.     

 

Introduction 

Research is in progress to bring together information obtained during a resistivity 

survey and the factors which affect the measured values in order to aid investigations 

into long term progressive failures in infrastructure embankments.  

 

Electrical resistivity is a measure of how much a material resists the flow of electrical 

current (Schippan, 1997). The electrical current flows through the movement of ions. 

The more ions and connected pathways present in a bulk material the greater the flow 

of current and the lower the resistivity. Electrical Resistivity has been used since the 
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early 1940’s to indicate the presence and quantity of oil reserves in offshore deposits 

(Archie, 1942). This technique used a vertical arrangement of electrodes to measure 

the resistivity of the geological strata. The oil has a significantly higher resistivity to that 

of the surrounding unsaturated or  sea water saturated rock (Archie, 1942), so that the 

difference between the two materials is clearly identifiable.  

 

With developments in technology both in the instrumentation and the processing of the 

gathered data, the applications for which resistivity can be used as a subsurface 

investigative tool has expanded. Resistivity has been used in a 2D and 3D 

configurations to allow mapping of large areas (Carpenter et al., 1991; Suzuki et al., 

2000). It has at present been mainly used to identify areas of contamination in an 

aquifer such as sea water ingress (Abdul Nassir et al., 2000; Whittecar et al., 2005). 

Also it can be used to track voids in a karst environment (Ahmed and Carpenter, 2003; 

Zhou et al., 2000). In a soil material the primary control on the resistivity value is the 

amount of moisture in the material, other factors shown to affect the resistivity 

readings,  include temperature, pore water chemistry and clay mineral content (Bryson, 

2005; Fukue et al., 1999).  

 

Slope failures are occurring in some of the Victorian age railway embankments. There 

are failures that occur unexpectedly and in areas previously not showing signs of 

deformation. This type of failure can cause massive disruption to rail services and lead 

to closures while the failure is treated. This kind of disruption is both bad for the 

company economically but also it portrays a poor image to the public. The 

embankments that are particularly susceptible are those that were constructed using 

overconsolidated fine grained soils and which have a large amount of swelling clay 

minerals present (Palmer and Rice, 1973). The failures occur when the material 

undergoes repeated cycles of shrinking and swelling caused by the clay absorbing 
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water and increasing in volume and then drying out and decreasing in volume. This 

process builds up irreversible plastic strains within the soil and this weakens the soil 

reducing shear strength until the forces acting on the slope are greater than the 

resisting forces.  The reduced shear strength occurs in zones, starting in general at the 

toe and progressing up into the body of the embankment (Leroueil, 2001).  There is a 

moisture content change across the shear zone (Skempton, 1964). The identification of 

this zone and subsequent quantification of the change in moisture content will enable a 

better use of stakeholders resources in preventing failures that cause disruption to 

passengers, and will lead to a more planned management system. 

 

Infrastructure embankments stability 

Large infrastructure embankments were constructed during the Victorian period from 

1850 to 1900 for the expansion of the rail system and also in the 1950’s and 1960’s for 

the road construction. The soil used to construct the embankments was often won 

locally from cuttings or tunnels on the same stretch of line or road (MacDonald, 2005). 

This acquisition of soils leads the embankments to reflect the local geology and 

therefore vary across the country.  Embankments constructed during the two periods 

have different physical properties due to the technology and knowledge available at the 

time. Figure 1 shows the difference between the two different construction methods. 

 

The railway embankments were generally constructed using an end tipping method 

(Figure 2). In this method the soil is carried by cart either horse drawn or steam driven 

to the end of the constructed area and the carts emptied to form the structure 

(Skempton, 1996). The soil was not compacted as part of the construction method and 

only underwent compaction through the trafficking of passing vehicles and subsequent 

layers of soil. This method was employed as it was the most cost effective at the time, 

as the storage of soil from the nearby cuttings and tunnels was expensive so the 
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material had to be placed in the embankment at the same rate that it was being won 

(Skempton, 1996). 

 

The more recent motorway embankments were constructed to the specifications and 

standards in place at the time. This meant that they were constructed using suitable 

soils that were compacted in layers of known thickness and to achieve the maximum 

strength available for the material. An example of this specification is Design Manual 

for Roads and Bridges (1994).  

 

The type of failures that are being identified in the older railway embankments can be 

caused for a number of reasons and one of these is repeated cycles of wetting and 

drying. This failure method is termed progressive failure and was first identified as a 

mechanism by Terzaghi and Peck (1948) and Taylor (1948). The soils that fail through 

this method generally contain clay minerals that have the ability to absorb water onto 

their surface and in between layers to increase their volume (Mitchell and Soga, 2005). 

When the water is removed through drying the material shrinks.  This process causes 

shear stress to increase and hence shear strains (Lambe and Whitman, 1999). It is 

possible for the accumulated shear strains to be mobilised (Figure 3, point B). Once the 

peak has been reached the soil element can no longer support all the shear stress and 

this is transferred onto adjacent soil particles. This process is repeated throughout the 

soil until a zone of soil particles with post peak and possibly residual shear strength 

(Figure 3, point C) is formed. Once the zone of soil at a post peak shear strength can 

no longer can retain an equilibrium state then failure of the slope will occur. At the time 

of failure zones of soil in the shear zone can exist in three states, those that are at a 

post peak state (Figure 3 point C), those that at are peak stress (Figure 3, point B) and 

those yet to reach peak stress (Figure 3, point A).  
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Potts et al. (1997) showed through modelling of a cutting that it can take a large 

number of cycles for strain of 20% to build up (Figure 4). Also the strain does not form 

a continuous shear zone, but originates at the toe and retreats in to the slope with 

repeated cycles. The rate at which this propagation occurs is dependant on the range 

of moisture content change and the physical properties of the soils. This method of 

failure was monitored and identified through field observations in an Oxford clay cutting 

by Burland et al (1977) and in a test site in Gault Clay by Cooper et al. (1998). This 

mechanism may result in an embankment that has remained stable for over 100 years 

beginning to show signs of shallow deformation or possibly more significant deep 

rotational failure.  When an embankment is constructed it undergoes stress release 

when the construction material is removed from the ground it then undergoes 

compaction, this creates a reduction in pore pressures. When placed in the 

embankment the soil will absorb water to return this reduced pore pressure to 

equilibrium values. When this occurs it reduces the shear strength of the material and 

the embankment slopes may no longer be able to withstand the destabilising forces.  

 

 

ERT for soil moisture assessment 

Electrical resistivity is considered to be a suitable technique to assess the moisture 

content changes within an embankment as it is a relatively non intrusive technique and  

resistivity is sensitive to changes in moisture (Fukue et al., 1999).  The resistivity 

equipment can be set up to be a permanent installation logging on a pre-programmed 

time series or equipment can be taken out to site and measurements made when 

required.   

 

Understanding of the factors that affect resistivity in soil are key to being able to use it 

as a tool for assessments of moisture content changes that occur in an embankment.  
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Numerous investigations have been undertaken to investigate the effects of different 

soil parameters on resistivity readings. The parameters include moisture content, 

temperature, clay size particle content, clay mineral type, pore water chemistry and 

concentration, and compaction. Table 1 provides a summary review of the key 

research in this area and indicates the relative focus given to each of the above 

parameters .Resistivity sensitivity is different to each parameter and therefore needs to 

be considered separately, however the parameters and sensitivities may be 

interrelated. The soils that are more susceptible to fail by progressive failure are the 

formations with large amounts of swelling clay minerals (Palmer and Rice, 1973). 

These materials are often not quantified in laboratory studies due to the added 

complexity and cost of the tests and because they change volume during moisture 

content changes and absorb water into the interlayer space. The investigation of these 

soils and their resistivity is crucial to understanding the long term progressive failures 

within UK infrastructure embankments. 

 

 

 

Research programme  

To achieve an understanding of soil resistivity behaviour and integrate field and 

laboratory behaviour a combination of field monitoring and laboratory testing is being 

utilised. The field work is concentrated on the full scale test embankment BIONICS 

(BIOlogical and eNgineering Impacts of Climate change on Slopes). This embankment 

was constructed during 2005 to investigate the effect of climate change on 

infrastructure embankments. The site is managed by Newcastle University with a 

number of other institutions running long term experiments on the site. The 

embankment is 90m long, 6m high with a crest width of 5m (Hughes et al., 2008). The 

soil used to construct the embankment was a locally won glacial till (Hughes et al., 
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2008). The embankment is orientated with the long axis aligned east-west. There are 

two sections with differing compaction, one is compacted to existing highway 

specifications for earthwork construction, the  second area was not actively compacted, 

with compaction coming from the trafficking of vehicles during the construction process 

(Hughes et al., 2008). This is to represent compaction practice consistent with older 

railway embankments. In collaboration with the British Geological Survey the 

embankment was retrofitted with a number of instruments to aid the interpretation of 

resistivity values. A resistivity array was installed in each of the different compaction 

zones. These were orientated perpendicular to the long axis of the embankment. The 

electrodes were spaced at 0.5m across the entire section a total of 32 electrodes on 

each array. The arrays are set to record once every 24 hours with arrays monitored 

one after the other, to reduce the possibility of interference. 

 

In addition to resistivity arrays, 14 combined temperature and moisture content probes 

were installed in the less compacted section close to the resistivity array (Figure 5). 

These probes are set to log once every 30 minutes, this data is then downloaded to the 

onsite computer by radio transmission from the logging boxes. The combined probes 

were installed at varying depths below the surface along the length of the section to 

enable interpretation of temperature across the embankment including the effect that 

orientation has on the temperature, as this is crucial in allowing a quantitative 

assessment of the resistivity readings. In addition, 5 suction probes were installed at 

depths up to 1.0m on the southern flank to monitor the drying of the shallow material 

where the propagation of desiccation cracks is identified (Barnfather, 2009). These 

probes also log on a 30 minute cycle and are downloaded in the same way as the 

combined probes. To identify how the embankment responds and in turn how the 

instruments respond to weather changes two air and shallow soil temperature probes, 

have been installed on the north and south flanks. The data gathered from these 
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probes will allow for long term monitoring of the temporal and spatial changes in the 

embankment. At present there is approximately 10 months of data. The data gathered 

from these instruments will allow the testing of relationships between resistivity, 

moisture content and temperature formed through the laboratory work and used to 

identify whether an economically viable method could be developed for assessing 

infrastructure. 

 

Laboratory work  

The laboratory testing programme is designed to relationships between the various soil 

parameters and resistivity. The tests are carried out in a purpose built testing rig, to 

control the parameter variations. Compaction of the soil is identified in previous work as 

important (Abu-Hassanein et al., 1996) and so the ability to control the amount of 

compaction used to form a sample and the repeatability of this compaction is crucial. It 

was decided to use an existing compaction process as set out in the British Standard 

(1990) and the Proctor mould compaction method was selected. The process requires 

soil to be compacted using a weight of specified mass, dropping from a specified height 

for a specified number of blows. The material is compacted in this way in 3 or 5 layers 

and using 2.5 kg or 4.5 kg hammers (British Standards Institute BS 1377, 1990).  

 

The mould used is made from metal and so not suitable for resistivity measurements 

and therefore a modification was designed. The soil sample is extruded directly from 

the compaction mould into a plastic pipe of equal internal diameter. This allows 

stresses created in the sample to be retained. To retain the moisture within the sample 

during testing the sample is waxed in a similar way to the preparation method of a 

U100 sample (British Standards Institute BS 5930, 1999).  Wax is non-conducting and 

will not interfere with the resistivity readings.  
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To measure resistivity readings of the cylindrical soil samples specially designed end 

caps were constructed that are slightly smaller diameter than the plastic pipe.  The pipe 

has an internal diameter of 105mm, with the end caps having a diameter of 100mm 

(Figure 6). These caps were designed to allow current flow through the entire sample 

and not just a small section, as has been used by previous researchers. It will provide 

an average value for the entire sample.  This will allow a similar measurement to the 

ones made in the field as the electrodes are installed perpendicular to the compaction 

layers. This method of reading allows for the averaging out of the slight difference in 

compaction that could be present across the sample (Figure 7).  The caps are 

designed to input current into the system and record the changes in voltage. This is 

done by arranging stainless steel screws in a grid formation in a sturdy plastic circular 

disk. The screws penetrate through the plastic disk so the threaded ends are in contact 

with the soil.  The screws that are providing the current are wired together and the 

screws that are measuring the voltage are wired together. This procedure is completed 

to form a pair of caps on each sample (Figure 7). The caps are then pushed into the 

top of the soil sample inside the plastic pipe and the remaining space in the top of the 

pipe is filled with wax to prevent moisture loss from the soil and to protect the operator 

from the electrical current. The samples are then placed into a Fisons FE610T climate 

chamber, that will maintain the temperature of the samples during testing and allow the 

samples to be subjected to a range of temperatures representative of current and an 

expanded range through the future climate predictions of UKCP09 (Murphy et al., 

2009)). The apparatus used to input current and record the voltage difference is a 

Terrameter SAS 4000.  The current is put in to the sample at both cap locations and 

the voltage is also recorded at each cap.  

 

The testing programme will include reworked embankment material mixed to a range of 

moisture contents to represent the different moisture contents measured within the field 
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environment. During testing, the soil samples will be retained within the temperature 

controlled chamber. This is important as temperature is seen as a significant factor in 

the bulk resistivity value of soil (Besson et al., 2008; Samouelian et al., 2005). 

 

 

Research results  

 

The results gathered from the field work at the BIONICS test site have identified that 

temperature changes occur throughout the embankment. The variation is greatest at a 

shallow depth which is as expected (Figure 8). The variation in temperature measured 

at 0.5m below ground level is 6.5°C (9.7 -16.2°C) between May 09 and September 09, 

for the same period on the same flank (southern) of the embankment at 3.0m depth the 

temperature variation is 3.1 °C (8.3 -.11.4°) (Figure 8). The north side of the 

embankment also shows a general trend of being cooler than the southern slope of the 

embankment, which is again as expected as the southern side will receive more direct 

sun rays than the northern flank. The temperature range at 0.5m bgl on the northern 

flank is 8.5 – 15.1°C between May and September 09, which is approximately 1° C 

lower than the southern flank (Figure 9).  Winds coming from the north are generally 

colder than winds from other directions and the southern flank is protected from these 

cooling winds.  A difference to the expected results is that the crest of the embankment 

has shown to be warmer than the southern flank through the summer months of June 

and July. This may be due to the thermal properties of the ballast. 

 

The resistivity array results can be presented to show both the absolute resistivity and 

the changes in resistivity from a base reading taken on the 14th March 2009 (Figure 10 

and 11). Showing change rather than a bulk value identifies zones of change, rather 
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than the underlying structure of the embankment that is shown in the bulk resistivity 

reading.  

 

The values of resistivity identified vary from 10 to 542Ωm. Initial resistivity plots 

obtained 14th March 2009, 1st May 2009 and 1st June 2009 show how the data is 

presented from interpretation undertaken by the British Geological Survey (Figure 10 

and 11) for the compacted and uncompacted sections For comparison the change in 

resistivity plots are shown in figures 10 and 11 with 14th March 2009 as the base 

survey from which the variation is calculated. The highly coloured zones to the base of 

the plots are developed through the processing method and are not representative of 

the physical attributes of the embankment.  

 

The colours at the warmer end of the spectrum  (red, orange, yellow), indicate higher 

resistivity that could mean a reduction in  moisture content, cooler areas as these are 

factors that could result in an increased resistivity value.  The cooler colours (blue and 

green) represent areas of lower resistivity, that could be a result of higher 

temperatures, higher moisture contents.    

 

Summary and further work 

The results obtained to date show the importance of including temperature in any field 

resistivity interpretation. Without a correction for variation in temperature at the time of 

recording, any results presented are not reliable for use in moisture content change 

determination. The temperature recorded within a cross section of the BIONICS 

embankment shows that the orientation of the embankment plays a significant role in 

creating temperature variations both spatially and temporally. This signifies that a 

temperature correction based on a single generic site temperature is not appropriate 

and a correction based on a thermal contour correction is a more accurate method.  
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The resistivity plots show the ability of the technique to identify change within the 

embankment. The most significant change is located within the shallow material. This 

is primarily due to the proximity to the air, which will produce the most sudden and 

significant response. The further from the surface the small and slower the responses.  

 

Research into the response of resistivity to changes in moisture content within an 

embankment are on going. A range of tests will be undertaken within the laboratory to 

investigate the response of resistivity to changes in the key soil parameters including 

temperature data. The relationships will enable the quantification of resistivity survey 

data with respect to moisture content. This approach will allow for the identification of 

possible zones of deterioration in constructed embankments slopes    
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Figure 1: Variation in physical properties between modern highway embankments (on 

left) and Victorian railway embankments (on right) (after O'Brien, 2007) 

 

 

 

 

 

 

 

 

 

 

Figure 2: End-tipping on the Birmingham- London railway during 1830’s 

(Sullivan, 1983) 
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Figure 4: Propagation of strain a number of years after construction a) 9 years after b)  

14.5 years after  (after Potts et al., 1997) 
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Figure 3: Mobilised shear strength in soil zones during progressive 
failure. 
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BGSMT British Geological Survey combined 
moisture content and temperature probe 

BGSS British Geological Survey suction probe 
LUMT Loughborough University combined 

moisture content and temperature probe 
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Figure 5: Location of combined temperature and moisture content, and suction probes 
within the BIONICS embankment installed by British Geological Survey and 
Loughborough University. 
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Figure 6: Sample setup for laboratory resistivity testing.  
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Figure 9: Variation in temperature at 1m depth on the south, top and north 
locations at BIONICS  
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Figure 8: Variation in temperature on the southern flank of the BIONICS 
embankment.  
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Figure 11: Resistivity and resistivity difference plots for the compacted section of 
the BIONICS embankments. Image courtesy of the British Geological Survey.  

Figure 10: Resistivity and resistivity plots for the uncompacted section of the 
BIONICS embankment. (Image courtesy of the British Geological Survey) 
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Paper Parameters covered 

 Temperature Compaction Pore 
water 
Chemistry

Clay 
mineralogy

Moisture 
content 

Particle 
size 
distribution 

Determination 
of selected 
geotechnical 
properties of 
soil using 
electrical 
conductivity 
testing. 
(Bryson and 
Bathe, 2009) 

      

Electrical 
Resistivity of 
Compacted 
Clays. (Abu-
Hassanein et 
al., 1996) 

      

The 
temperature 
correction for 
the electrical 
resistivity 
measurements 
in undisturbed 
soil samples. 
(Besson et al., 
2008) 

 

 

     

Evaluation of 
Geotechnical 
Parameters 
using 
Electrical 
Resistivity 
Measurements 
(Bryson, 
2005).  

      

Electrical 
resistivity 
survey in soil 
science: a 
review. 
(Samouelian 
et al., 2005) 

      

Effects of 
liquid-phase 
electrical 
conductivity, 
water content 
and surface 
conductivity. 
(Rhoades et 
al., 1976) 
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The electrical 
resistivity 
characteristics 
of compacted 
clays. 
(McCarter, 
1984) 

      

Estimating 
water content 
of soils from 
electrical 
resistivity. 
(Kalinski and 
Kelly, 1993) 

      

Table 1: A summary of current work on soil parameters and their effect on resistivity.  

 

 

 

 


