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mesospheric night-time ozone during and after a moderate

geomagnetic storm

M. Daae,' P. Espy,1 H. Nesse Tyss;ay,2 D. Newnharn,3 J. Stadsnes,2 and F. Seraas®
Received 5 September 2012; revised 11 October 2012; accepted 11 October 2012; published 14 November 2012.

[1] Using a ground-based microwave radiometer at Troll
Station, Antarctica (72°S, 2.5°E, L =4.76), we have observed
a decrease of 20—70% in the mesospheric ozone, coincident
with increased nitric oxide, between 60 km and 75 km alti-
tude associated with energetic electron precipitation (E >
30 keV) during a moderate geomagnetic storm (minimum Dst
of —79 nT) in late July 2009. NOAA satellite data were used to
identify the precipitating particles and to characterize their
energy, spatial distribution and temporal variation over Ant-
arctica during this isolated storm. Both the ozone decrease and
nitric oxide increase initiate with the onset of the storm, and
persist for several days after the precipitation ends, descending
in the downward flow of the polar vortex. These combined
data present a unique case study of the temporal and spatial
morphology of chemical changes induced by electron precip-
itation during moderate geomagnetic storms, indicating that
these commonplace events can cause significant effects on
the middle mesospheric ozone distribution. Citation: Daae, M.,
P. Espy, H. Nesse Tyssoy, D. Newnham, J. Stadsnes, and F. Seraas
(2012), The effect of energetic electron precipitation on middle meso-
spheric night-time ozone during and after a moderate geomagnetic
storm, Geophys. Res. Lett., 39, 1.21811, doi:10.1029/2012GL053787.

1. Introduction

[2] Odd nitrogen (NO, =NO + NO,) catalytically destroys
ozone (O3) in the atmosphere, especially if it is created or
transported below 40 km into the stratosphere where it is
shielded from photo-dissociation and can survive for years.
In the polar upper mesosphere during winter, the photo-
chemical lifetime of NO, is on the order of days due to the
low elevation angles of the solar irradiance. This is long
enough for NO, to undergo both horizontal and vertical
transport. Downward transport during the polar winter
increases the lifetime of NO, and enhances its impact on
middle atmospheric O [Funke et al., 2005].

[3] In the thermosphere, auroral particle precipitation,
with electron energies typically less than 10 keV, is known
to enhance NO, production, particularly during the winter
[e.g., Scetre et al., 2004, and references therein]. A statistical
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study by Hunt et al. [2011] over solar cycle 24 shows a
significant short-term correlation between the Ap-index
and the infrared radiation from NO,, indicating that even
weak geomagnetic storms may enhance thermospheric NO,
densities. However, the rate of transport of this NO, down-
ward through the mesopause and into the middle atmosphere,
where it can react with mesospheric and stratospheric Os,
is uncertain [Smith et al., 2011].

[4] During Solar Energetic Particle (SEP) events, direct
production of NO, in the middle atmosphere, caused
mainly by large fluxes of high-energy protons with energies
>100 MeV, has been observed and modeled [Turunen et al.,
2009]. This NO,, as well as short-lived HO, that is also
produced, has been observed to create large decreases of
stratospheric and mesospheric O3 that persist throughout the
winter [e.g., Jackman et al., 2001]. However, since these
events are relatively uncommon, occurring sporadically near
solar maximum, their overall effect on middle atmospheric
chemistry may be limited.

[5] Long-term statistical studies show a strong correlation
between Energetic Particle Precipitation (EPP) and NO,
levels in the polar middle atmosphere, along with an anti-
correlation with O; abundance in the middle atmosphere
[Siskind et al., 2000], further indicating that geomagnetic
storms weaker than SEPs may be important in middle
atmospheric chemistry. Newnham et al. [2011] used ground-
based radiometer observations to show that moderate geo-
magnetic storms, which occur frequently throughout the
solar cycle, can produce large enhancements of mesospheric
nitric oxide (NO).

[6] In this work, using the same instrumentation employed
by Newnham et al. [2011], we examine the case of a mod-
erate geomagnetic storm that was relatively isolated in time.
We show that not only did this storm produce a considerable
enhancement of NO in the mesosphere, but also that this
enhancement was accompanied by a substantial decrease of
O; at the same altitudes. These ground-based data have been
combined with satellite observations of the particle flux to
characterize the energy deposition altitude, as well as the
temporal and vertical evolution of the resulting NO and O3
catalytic chemistry.

2. Instruments and Method

[7] A microwave radiometer was stationed at Troll,
Antarctica, at 72°S and 2.5°E (62° Mlat, L = 4.76). The
instrument operated at this location between early 2008
and early 2010, collecting spectral data from O3, NO and
CO [Espy et al., 2006]. The radiometer measures thermal
emissions from a rotational transition for NO centered at
250.796 GHz [Newnham et al., 2011]. In addition, the
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Figure 1. (a) The diurnal cycle of O5 at 70 km altitude between 15 July and 10 August 2009 (black) and the solar elevation
angle (red), grey area shows the time of day we pick O; profiles from. (b) The numbers of hourly O3 profiles averaged each
night. (c) Nightly averaged O; vmr between 15 July and 10 August 2009 in the mesosphere. (d) The averaged night-time

measurement response for the O3 inversion.

radiometer measures the O; line centred at 249.96 GHz
using a 220 MHz bandwidth, 14.5 kHz resolution Chirp
Transform Spectrometer, which, due to the brightness of
this line and its spectral proximity to the NO line, can be
observed simultaneously with NO. To increase the S/N we
average over 200 spectra giving an hourly resolution for
O3 profiles. The Oz spectra were inverted into volume
mixing ratio (vmr) profiles using the Atmospheric Radiative
Transfer Simulator (ARTS) as a forward model [Buehler
et al., 2005], and the optimal estimation technique of
Rodgers [1976].

[8] Midnight a priori Oz profiles at Troll were taken
from a climatology generated with the Whole Atmosphere
Community Climate Model (WACCM v3.5.48) [Garcia
et al., 2007], averaged over the years 2004-2007. In an
effort to see if the daily a priori Oj profiles used in the
spectral inversion were affecting the inverted O; profiles,
the spectra were also inverted using a constant a priori
value above 50 km. The resulting O3 values were not sig-
nificantly different from those presented in this paper, and
thus the results represent a real feature in the data and are not
a product of the inversion method nor the a priori used.

[o] Figure 1d shows that the measurement response
exceeds 80% from 57 km to 75 km, indicating that retrievals
over this range are driven by observational data rather than
a priori information. This altitude range includes the Middle
Mesospheric Maximum (MMM) of O; which occurs at a
nominal altitude of ~72 km [Marsh et al., 2001]. The MMM
is known to have a strong diurnal cycle, where the O3 vmr
is greatly reduced in sunlight. The diurnal variation at 70 km,
shown in Figure la, shows that an average covering the
period when the sun is more than 20° below the horizon
represents a mean nighttime O3 value. The nightly average
is taken from, for example, the evening of 21 July through
the morning of 22 July (for solar elevation <—20°) and is
referred to in the text and figures as the 22 July. The resulting
nightly-averaged O; is shown in Figure lc. The NO were
processed using similar techniques [Newnham et al., 2011]
as for O; to give daily profiles between 60 km and 85 km.

The inversion is insensitive to NO above 85 km, and below
65 km NO converts to NO, in darkness.

[10] NOAA data [Evans and Greer, 2000] were used for
characterizing the particle precipitation occurring over Troll
during this event. Particle data were picked from an area
covering —72.0° &+ 1.0° latitude (—60.5° £+ 0.5° Ilat) and
24°W to 67°E longitude. The proton spectra are corrected
for degradation according to Asikainen and Mursula [2011]
before they are converted into energy deposition profiles.
In the first phase of the storm there was a significant flux of
protons in the energy range 210-2700 keV which could
contaminate the MEPED electron detector. Reliable spectra
of Energetic Electron Precipitation (EEP) in the main phase
therefore required a wider search. The METOP 02 data at
03:32 UT taken at —61.5 Ilat and —62.5 longitude were not
contaminated by protons. We believe this profile represents
the lower limit of electron energy deposition in the first
phase of the storm as it was retrieved from the flanks of
the main particle deposition region. Proton fluxes were
low enough during the last part of the storm that the
electron spectra could be corrected for contamination. The
electron energy spectra are based on the three MEPED electron
channels (>30 keV, >100 keV, >300 keV). We use the electron
spectra to calculate the energy deposition as a function of
altitude. In these calculations we use the cosine dependent
IDH (Isotropic over the Downward Hemisphere) model of
Rees [1989]. The proton energy spectra are based on five
MEPED proton channels (30-80 keV, 80-250 keV, 250—
800 keV, 800-2500 keV, 2500-6900 keV). The energy
deposition height profile for protons is calculated based
on range-energy of protons in air given by Cook et al. [1953]
for £ < 300 keV and by Bethe and Ashkin [1953] for
E > 300 keV. We have assumed that the proton fluxes are
isotropic over the downward hemisphere.

3. Results

[11] Figure lc shows the O; mixing ratio as a function of
altitude and time during the 26-day period between 15 July
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Figure 2. (a) Dst-index (black) with blue (red) dots indicating the times of the electron (proton) energy deposition altitude
profiles. (b) Energy deposition altitude profiles from electrons in the magnetic local time morning side. (c) The AE- and
ap- index. (d) Energy deposition altitude profiles of protons in the magnetic local time evening side.

and 10 August 2009. The maximum mesospheric O3 vmr
occurs between 65 km and 70 km. Since the measurement
response is low above 75 km, the stronger secondary maxi-
mum near the mesopause (~95 km) is not observed. Nightly
variations on the order of £0.5 ppmv due to wave-induced
temperature fluctuations are seen to occur in the mesosphere
[Azeem et al., 2001]. However, a deeper and more persistent
O; minimum appears on 22 July, corresponding to the
onset of a moderate geomagnetic storm and lasts for about
1-2 weeks.

[12] The Dst-index (Figure 2a) shows that the storm
reached —79 nT within the first 6 hours of 22 July, with the
magnetosphere mostly recovering by the end of the day (seen
in Figure 3a). The 4E-index, although based on magnetom-
eter data from the northern hemisphere, indicates (Figure 2b)
that two bursts of precipitation occurred: one around 03:00 UT
and a smaller burst around 09:00 UT. The energetic precipi-
tation during both bursts in the 4E-index occurs over a broad
latitudinal range, extending 5 degrees equatorward and
poleward of Troll (not shown).

[13] The electron- and proton- energy deposition profiles
are displayed in Figures 2¢ and 2d respectively (explained
in section 2), taken at the times marked by red/blue dots
in Figures 2a and 2b. During the first burst of precipitation,
electrons are seen to deposit their energy down to 70 km
altitude coincident with the immediate reduction of O3
observed in Figure 1c. While the electrons come into the

mesosphere, the protons are all stopped above 100 km,
depositing their energy into the thermosphere. During the
second burst of precipitation, electrons still deposit energy in
the same region of the mesosphere where the reduction of O;
is observed. At this time, the detectors do not register any
significant proton fluxes. The high energy proton detectors
P6omni-P7omni, COVering energies > 16 MeV, from 0.8 MeV
to 6.9 MeV, do not respond during this geomagnetic storm,
indicating that there are no high-energy protons (or highly
relativistic E > 800 keV electrons) present. Thus, it is unlikely
that protons played a role in the O; decreases observed below
80 km.

[14] To further examine the Oz reduction that coincided
with the geomagnetic storm we have calculated O; anomalies;
these are shown in Figure 3b. The anomalies were calculated
by subtracting the O3 profile averaged over the 7 days prior
to the storm onset from each profile shown in Figure Ic,
and are given in percentage relative to that 7-day average.
The temporal behavior and spatial morphology of the O; loss
are clearly seen. The O3 shows a 17% reduction immediately
following the storm onset at altitudes above 75 km, i.e., in the
electron energy deposition region. The depletion above 70 km
intensifies to 67% the following day, and gradually recovers
over the next ~2 days above this altitude. Figure 3b also
shows that the reduced O; region extends and shifts to lower
altitudes, with the centroid of the loss region reaching ~60 km
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Figure 3. (a) Black (Red) line is the Dst-index (4E-index) from 15 July to 10 August 2009, blue vertical bar shows storm
onset. (b) Mesospheric O; anomalies relative to a 7-day average prior to storm onset. Values are given in percentage of
the 7-day average. Numbers on the plot highlight O3 depletion at different altitudes and times. (c) Daily NO vmr profiles.

in ~5 days and continuing down to 55 km ~12 days after
the storm onset, after which the feature is lost.

[15] The observed daily NO profiles during the time inves-
tigated are shown in Figure 3c. The NO abundance increased to
0.5 ppmv the day following the storm. This increase occurred
the same day as O3 depletion becomes evident in the MMM
0O3;. The NO increase follows the same pattern as the O;
depletion, persisting between 65 km and 80 km for the first
four days after the storm onset before propagating down-
ward, reaching 60 km ~5 days after storm onset.

4. Conclusions and Discussion

[16] During 22 July 2009 a moderate geomagnetic storm
occurred reaching its maximum at 10:00 UT as characterized
by the Dst-index (—79 nT). Two precipitation bursts
occurred during the storm, with considerable precipitation
by electrons in the 30 keV to 300 keV range that deposited
their energy directly in the upper mesosphere above 70 km.
As the main precipitation came into the mesosphere close to
sunrise, only a minor decrease is seen in the O3 during the
night of the storm. However, on the following night, 22/23
July, the nightly-averaged O; was depleted by almost 70%
above 70 km, accompanied by a strong enhancement of NO
at the same altitudes. This region of decreased O; persisted
at altitudes higher than 70 km for about 4 days. The centroid
of the Oj depletion is observed to move downwards to
55 km within 12 days after storm onset. Thus, the depletion
moved downward at a speed of ~1-3 cm/s in agreement with
previous modeling results of the vertical wind at these altitudes

[e.g., Garcia and Solomon, 1985; Sheese et al.,2011]. NO was
observed to move downwards to ~60 km, tracking the
behavior of the Oj depletion at the same altitudes. Below
60 km, the NO vmr falls below the instrument sensitivity
due to the shift of the NO, balance from NO to NO,. Thus,
while NO is not retrieved below 60 km, it is likely that NO,
was still actively keeping the O3 levels depressed.

[17] Given the appearance of the NO enhancement and O,
reduction concurrent with the precipitation, coupled with the
downward propagation times above 80 km, it appears that NO
produced in the mesosphere, rather than downward trans-
ported thermospheric NO, was the dominant cause of O3 loss
during this storm. There may also have been a contribution to
O3 loss from HO, produced during the precipitation [Verronen
et al., 2011]. However, HO, is short lived and rapidly photo-
dissociated. In addition, the middle mesospheric maximum,
where O; loss is observed, owes its existence to photo-chem-
ical conditions that result in any photo-dissociated HO, rapidly
returning to stable chemical reservoirs [Marsh et al., 2001].
Thus, the timing of the precipitation just before and during
daylight, as well as the observed persistence of the O3 loss
(beyond the particle precipitation) and its coincidence with
enhanced NO, indicates that during this event the O; loss was
predominantly due to NO produced in the upper mesosphere
by energetic electron precipitation.

5. Summary

[18] Our study shows for the first time how a 12-hour long
moderate geomagnetic storm can cause chemical changes
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to the middle mesosphere. The night-time mesospheric O3
column was depleted by 20-70% relative to the average
values prior to the storm. A coincident NO increase was
measured with the same instrument and, given this coinci-
dence and duration of the O; depletion, it is likely that NO
was the active destructor in the loss of Os. The total impact
of the storm reached down to 55 km altitude within 12 days
giving a vertical decent velocity of 1-3 cm/s.

[19] Storms of this size occur frequently throughout a
typical 11-year solar cycle. Given the large effect on atmo-
spheric chemistry observed here, this implies that particle
precipitation can have a significant day-to-day impact on
middle atmospheric chemistry. This has been indicated sev-
eral times by long-term statistical studies [e.g., Callis et al.,
2001]. Although solar activity was unusually low during
2009, under more normal conditions, storms of similar size
may recur every 1-2 weeks, possibly causing a persistent
suppression of middle mesospheric Os.
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