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Abstract:  
Integrated environmental modeling (IEM) is inspired by modern environmental problems, 
decisions, and policies and enabled by transdisciplinary science and computer capabilities that 
allow the environment to be considered in a holistic way. The problems are characterized by the 
extent of the environmental system involved, dynamic and interdependent nature of stressors and 
their impacts, diversity of stakeholders, and integration of social, economic, and environmental 
considerations. IEM provides a science-based structure to develop and organize relevant 
knowledge and information and apply it to explain, explore, and forecast the behavior of 
environmental systems in response to human and natural sources of stress. During the past 
several years a number of workshops were held that brought IEM practitioners together to share 
experiences and discuss future needs and directions. In this paper we organize and present the 
results of these discussions. IEM is presented as a landscape containing four interdependent 
elements: applications, science, technology, and community. The elements are described from 
the perspective of their role in the landscape, current practices, and challenges that must be 
addressed. Workshop participants envision a global scale IEM community that leverages modern 
technologies to streamline the movement of science-based knowledge from its sources in 
research, through its organization into databases and models, to its integration and application for 
problem solving purposes. Achieving this vision will require that the global community of IEM 
stakeholders transcend social, political, and organizational boundaries and pursue greater levels 
of collaboration. Among the highest priorities for community action are the development of 
standards for publishing IEM data and models in forms suitable for automated discovery, access, 
and integration; education of the next generation of environmental stakeholders, with a focus on 
transdisciplinary research, development, and decision making; and providing a web-based 
platform for community interactions (e.g., continuous virtual workshops). 
 

Keywords: integrated environmental modeling, community of practice, roadmap, model 
integration  
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1.0 Introduction 
Integrated environmental modeling (IEM) is a discipline inspired by the need to solve 

increasingly complex real-world problems involving the environment and its relationship to 

human systems and activities (social and economic). The complex and interrelated nature of real-

world problems has led to a need for higher-order systems thinking and holistic solutions (EPA, 

2008b; Jakeman and Letcher, 2003; MEA, 2005; Parker et al., 2002). IEM provides a science-

based structure to develop and organize multidisciplinary knowledge. It provides a means to 

apply this knowledge to explain, explore, and forecast environmental-system response to natural 

and human-induced stressors. By its very nature, it breaks down research silos and brings 

scientists from multiple disciplines together with decision makers and other stakeholders to solve 

problems for which the social, economic, and environmental considerations are highly 

interdependent. This movement toward transdisciplinarity (Tress et al., 2005) and participatory 

modeling (Voinov and Bousquet, 2010) fosters increased knowledge and understanding of the 

system, reduces the perception of ‘black-box’ modeling, and increases awareness and detection 

of unintended consequences of decisions and policies. 

 

IEM concepts and early models are now more than thirty years old (Bailey et al., 1985; Cohen, 

1986; Mackay, 1991; Meadows et al., 1972; Walters, 1986). With the emergence of problems 

related to regional-scale land-use management, impacts of global climate change, valuation of 

ecosystem services, fate and transport of nanomaterials, and life-cycle analysis, the application 

of IEM is growing. National and international organizations have commissioned studies to 

determine research directions and priorities for integrated modeling (Blind et al., 2005a, 2005b; 

EC, 2000; ICSU, 2010; NSF; Schellekens et al., 2011). Senior managers in government, 

academia, and commercial organizations are restructuring operations to facilitate integrated and 

transdisciplinary approaches (EPA, 2008b). Mid-level managers who realize that no single group 

has the comprehensive expertise needed for integrated modeling are actively pursuing inter-

organization collaborations (e.g. Delsman et al., 2009, ISCMEM; OpenMI, 2009). 

Environmental assessors are utilizing IEM science and technologies to build integrated modeling 

systems that will address specific problems at varying scales (Akbar et al., 2012, Bergez et al., 

2012, Linker et al., 1999, Mohr et al., 2012, Quinn and Jacobs, 2006). Finally, policy developers 
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and decision makers are asking for and processing information synthesized from holistic 

systems-based modeling approaches (EPA, 2008b; ABARE-BRS, 2010).  

 

The primary motivation and input for this paper are drawn from a series of workshops held 

during the past several years (Table 1). The workshops were open forums convened to share 

knowledge, experience, and future visions related to IEM. The workshops were attended by a 

cross-section of IEM practitioners including environmental modelers, software technologists, 

decision analysts, and managers. Participants represented government, academia, and the private 

sector.  

 

The principal message from the workshops is a call to elevate solutions to key IEM issues and 

challenges to a level of community above individual groups and organizations. In effect, to 

establish an open international community environment for pursuing the ability to share and 

utilize the broad science of IEM by communicating ideas, approaches, and utilizing modern 

technologies and software standards. The purpose of this paper is to synthesize the knowledge 

and perspectives shared during the workshops and present a holistic view of the IEM landscape 

and a roadmap, consisting of goals and activities, to guide its navigation. The remainder of this 

introduction is intended to provide a definition of IEM relative to several similar terms, describe 

the role of IEM in the decision making and policy development1

                                                 
1 For efficiency, in this paper when we refer to decision making alone we intend to include policy development as 

well.  

 process, and establish a 

conceptual view of IEM as a landscape with interdependent elements. Sections 2 through 5 then 

present each element of the IEM landscape, including an integrated roadmap of activities that 

addresses the associated collection of issues and challenges. Conclusions and a summary are 

presented in Section 6.
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Table 1. IEM Workshops 
Workshop Title Sponsor Date Organizations Represented Outputs 

Environmental Software Systems Compatibility and 
Linkage Workshop 

US NRC 
DOE 

March 
2000  >40 attendeesa,b,c,d,e Report: NRC (2002)  

Integrated Modeling for Integrated Environmental 
Decision Making US EPA January 

2007  >100 attendeesb,f,g Report: EPA (2007) 
White Paper: EPA (2008b) 

Collaborative Approaches to Integrated Modeling: 
Better Integration for Better Decision making US EPA December 

2008  >50 attendeesb,h,i,j,k,l,m,n,r,t,v Report: EPA (2008a) 

iEMSs 2010 Conference 
Science session: Integrated Modeling Technologies  
Workshop: The Future of Science and Technology 
of Integrated Modeling 

iEMSs July 2010 
 >75 attendeesb,e,j,m,n,p,v 
 International Conference (most 

organizations listed below and others) 

This roadmap paper 
 

The International Summit on Integrated 
Environmental Modeling 

BGS 
USGS 

US EPA 

December 
2010 

 >50 attendeesa,b,d,e,h,I,m,o,v 
 International Conference (most 

organizations listed below and others) 

Report 
(https://iemhub.org/resourc
es/386/supportingdocs) 

 
aUS NRC: US Nuclear Regulatory Commission (http://www.nrc.gov/) 
bUS EPA: US Environmental Protection Agency (http://www.epa.gov) 
cDOE: Department of Energy (US) (http://energy.gov/) 
dUS ACoE: US Army Corps of Engineers (http://www.usace.army.mil) 
eNGO: Non-Governmental Organizations 
fEC: Environment Canada (http://www.ec.gc.ca/) 
gEU: European Union (http://europa.eu/) 
hISCMEM: Interagency Steering Committee for Multi-media Environmental Modeling (US Federal Agencies) (http://iemhub.org/topics/ISCMEM) 
iCEH UK: Center for Ecology and Hydrology, UK (http://www.ceh.ac.uk/) 
 jiEMSs: International Environmental Modeling and Software Society (http://www.iemss.org/society/)  
kOGC: Open Geospatial Consortium (http://www.opengeospatial.org/) 
lCUAHSI: Consortium of Universities for the Advancement of Hydrologic Science, Inc. (http://www.cuahsi.org/) 
mOpenMI: Open Modeling Interface (Association) (http://www.openmi.org/) 
nUSDA: US Department of Agriculture (http://www.usda.gov) 
oCSDMS: Community Surface Dynamics Modeling System (http://csdms.colorado.edu/wiki/Main_Page) 
pNRC (Italy): National Research Council (Italy) (http://www.cnr.it/sitocnr/Englishversion/Englishversion.html) 
qNSF: National Science Foundation (http://www.nsf.gov/) 
rONR: Office of Naval Research (US) (http://www.onr.navy.mil/) 
sNASA: National Aeronautics and Space Administration (US) (http://www.nasa.gov/)  
tUSGS: US Geological Survey (http://www.usgs.gov) 
uNOAA: National Oceanic and Atmospheric Administration (US) (http://www.noaa.gov/) 
vBGS: British Geological Survey (http://www.bgs.ac.uk/) 
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1.1 Related Terms  

Within the literature, multiple terms related to “integrated environmental modeling” create a 

distracting confusion for practitioners and users alike. From our view, the terms are more similar 

than dissimilar; and are collectively defined within the greater context of environmental decision 

making and policy development (see Box 1). In any of the definitions, we perceive the term 

integrated to convey a message of holistic or systems thinking (sensu Tress et al., 2005) and 

assessment as a message of decision or policy relevance (Tol and Vellinga, 1998), while 

modeling indicates the development and/or application of computer based models.  

 

Box 1: Terms Related to Integrated Environmental Modeling 
 
 Conventional Modeling: a process of creating a simplified representation of reality to 

understand it and potentially predict and control its future development. Models are 
generally single purpose (i.e., represent a single modeling discipline) and can come in a 
variety of forms and implementations, including mental, verbal, graphical, mathematical, 
logical, physical, etc. (Voinov, 2008). 
 Integrated Modeling: includes a set of interdependent science-based components (models, 

data, and assessment methods) that together form the basis for constructing an appropriate 
modeling system (EPA, 2008b; 2009). 
 Integrated Assessment: seeks to provide relevant information within a decision making 

context that brings together a broader set of areas, methods, styles of study, or degrees of 
certainty, than would typically characterize a study of the same issue within the bounds of a 
single research discipline (Parson, 1995; Weyant et al., 1996; Jakeman and Letcher, 2003). 
 Integrated Assessment Modeling: an analytical approach that brings together knowledge 

from a variety of disciplinary sources to describe the cause-effect relationships by studying 
the relevant interactions and cross-linkages (Rotmans and van Asselt, 2001; Rosenberg and 
Edmonds, 2005). 
 Integrated Environmental Decision Making: an approach for evaluating complex 

environmental problems holistically by integrating resources and analyses to address the 
problems as they occur in the real-world; including input from appropriate stakeholders 
(EPA, 2000). 
 Participatory Modeling: a generic term used for modeling strategies that rely upon 

stakeholder involvement and participation in various forms. In various applications also 
known as group model building, mediated modeling, companion modeling, shared vision 
planning, participatory simulation, etc. (Voinov and Bousquet, 2010). 
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1.2 The Environmental Decision and Policy Development Process and the Role of IEM 

The environmental decision and policy development process is illustrated in Figure 1; similar 

descriptions are presented by others (CMP, 2007; Jakeman et al., 2006; Liu et al., 2008; van 

Delden et al., 2011; Zagonel, 2002). The process can be described as a loop containing two 

principal stages: decision/policy and modeling/monitoring. Stakeholders in this process can be 

grouped by stage. Decision stakeholders are primarily concerned with the problem, its impacts, 

representation of interests/concerns, management scenario development, and decisions related to 

solving the problem. Science stakeholders are primarily concerned with the organization and 

application of science-based knowledge in the form of data, models, and methods for the purpose 

of informing decisions. 

 

The process begins in the decision/policy stage with the formulation of a problem statement that 

defines the causes of concern, policy or decision context, boundaries and objectives, 

management scenarios and options, solution criteria (including tolerance for uncertainty), and 

resource constraints. The decision stage is coupled to the modeling/monitoring stage by the 

system conceptualization, which represents a high level view of the social-economic-

environmental system within which the problem occurs. It represents the common view of the 

system constructed jointly by all stakeholders. Formulating the system conceptualization requires 

the merging of often different world views held by the stakeholders. The conceptualization forms 

the basis for developing a detailed modeling- and/or monitoring-based solution. The relevant 

science, in the form of models, data, and assessment strategies, is organized and executed in the 

modeling stage. The modeling stage is coupled back to the decision stage by a process of 

information synthesis which consolidates and interprets modeling results for use by decision 

makers. Feedback and iteration within and across these stages are essential aspects of the 

modeling (Jakeman, et al., 2006) and stakeholder-driven IEM and decision processes.   

 

The role of the IEM modeler in the decision/policy process is often not limited to the modeling 

stage or the technical details of the modeling effort.  Kragt et al., (2012) presents an in depth 

discussion of the various roles modelers may play in structuring and executing integrative 

research projects. Because of the modelers natural systems orientation he/she may perform roles 
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that include facilitator, knowledge broker, technical specialist, and leader. These roles are 

equally applicable in the larger decision/policy context.   

 

 
Figure 1: The Integrated Environmental Modeling and Decision Process 

1.3 IEM Landscape 
To organize the myriad of topics discussed during the workshops and provide an intuitive 

structure for presenting the roadmap, we characterize IEM as a landscape and recognize four 

interdependent elements: applications, science, technology, and community. These elements are 

presented in Box 2 with descriptions that reflect the current and envisioned future of IEM. In the 

following sections, we briefly discuss these elements from the perspective of current practices 

and the issues and challenges that must be addressed to advance IEM. To address the issues and 

challenges, a set of activities in the form of a roadmap are organized and presented. 

 
Box 2. Envisioned IEM Landscape 

 

1. IEM Applications reflect problem formulations and solution approaches that are transparent and holistic, 
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establishing a view of the human-environmental system that recognizes the interdependent relationships among 
responsible organizations, management scenarios (decision options), co-occurring stressors, the environment, 
and socio-economic structures. This integrative systems approach engages all stakeholders throughout the 
decision process. 
 
2. IEM Science is transdisciplinary, involving the integration of social, economic, and environmental science 
into modeling systems that describe and forecast the behavior of the human-environmental system in response 
to natural and human induced stress. The science provides methods for model evaluation, including the 
characterization and communication of model sensitivities and uncertainty to inform both decision and science 
stakeholders according to their role and related needs for information. IEM is recognized as a science discipline 
and is taught in schools and universities.  
 
3. IEM Technology provides the means to express, integrate, and share the science of IEM. It provides 
standards and tools to facilitate the discovery, access, and integration of science components (data, models, and 
assessment strategies) by stakeholders worldwide. Integrated modeling systems are constructed and executed on 
a variety of platforms serving research, applications, and education at a variety of spatial, temporal and 
complexity scales. 
 
4. A Community of IEM stakeholders and associated organizations engages in, invests in, and contributes to, 
the shared and open development of integrated environmental science and related computer-based technologies. 
The community is open and grows to further engage scientists, engineers and educators, as well as interested or 
concerned citizens, decision makers, and their associations and gains their support for the development and 
application of IEM.  

 

2.0 IEM Applications  

IEM applications are the stakeholder community’s methods for defining, selecting,  integrating, 

and processing the combination of environmental, social, and economic information needed to 

inform decisions and policies related to the environment (i.e., implementation of the process 

shown in Figure 1). During the past two decades, there has been a steady evolution toward IEM 

in the range and complexity of environmental issues and problems, related decisions and 

policies, and the modeling performed to inform the decisions. While decision makers will 

continue to address traditional problem sets involving environmental quality standards and 

compliance, management challenges are now framed in ecological, social, and economic terms 

(MEA, 2005). The literature contains a growing number of studies involving the application of 

integrated environmental modeling concepts and approaches. Table 2 lists a number of such 

examples organized by dominant IEM characteristics.  

 

Dominant themes throughout workshop discussions concerning IEM applications included 

stakeholder involvement, adaptive management strategies, education, peer review, and 
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reusability. In the following sections we discuss these topics from the perspective of current 

practices, issues, and challenges that lead to the IEM science roadmap presented first, in Figure 

2. 

 

Table 2. Examples of IEM Applications.  

Characteristics Context Examples and References 

Inter-dependent relationships 
among multiple stressors, 
multiple environmental 
compartments, and multiple 
endpoints 

San Joaquin River Deep Water 
Ship Channel, Stockton, CA USA 

Jassby and Cloern (2000); Lehman et al., 
(2001); Quinn and Jacobs, (2006) 

Venice Lagoon, Italy Sommerfreund et al., 2010 

Life-cycle analyses of chemical-
based stressors at a global scale Sleeswijk and Heijungs, 2010 

Pinios River, Greece Makropoulos et al., 2010 

Groundwater-surface water 
flooding in United Kingdom basins Hughes et al., 2011 

Ecological applications focused 
on decision/policy objectives 
with alternative management 
strategies 

Quantifying the trade-offs among 
ecosystem services in complex, 
dynamic systems. 

Farber et al. (2006)  

Agent-based modeling of land use 
and land cover. 

Bolte et al. (2006) and Guzy et al. (2008)  
 

Willamette River Basin, Oregon, 
USA Hulse et al. (2008) 

Unified metamodel of the 
biosphere 

Boumans et al. (2002) 
 

 

See also: Maxwell and Costanza (1995); 
Daniels (1999); Noth et al., (2000); 
Costanza et al. (2002); Sengupta and 
Bennet (2003); Schaldach et al. (2011) 

Applications involving a diverse 
set of stakeholders 

Multi-criteria integrated resource 
assessment with science and 
decision stakeholders 

Stahl et al., 2011 and 2002 

Solutions requiring holistic 
systems-based approaches that 
involve integration of 
multidisciplinary data, models, 
and methods and facilitate 
adaptive management strategies 

Emergency preparedness Akbar et al., (2012) 

National scale risk policy Babendreier and Castleton (2005) 

Natural resource management Johannes 1998, Shea et al., 2002, 
McCarthy and Possingham, 2007 
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Figure 2 : IEM Applications Roadmap 

 

2.1 Stakeholder involvement  

Stakeholders have become an intrinsic part of the systems analytical approach, which is essential 

for environmental management. The idea of transdisciplinarity is based on stakeholder 

involvement in solving multi-disciplinary problems, where stakeholders are used to improve the 

understanding across formal and informal knowledge bases and to glue together the data and 

theories originating from different disciplines. The definition of stakeholders in this case is quite 

broad (Krueger et al., 2012) and in the case of IEM applications includes experts (scientists, 

engineers, educators, and decision makers) as well as non-experts (in the traditional sense). An 

often overlooked but potentially valuable group of stakeholders is represented by citizen-science 

networks. Citizen-science networks can contribute in many different ways, including direct 

Facilitate greater stakeholder 
involvement and further 

develop guidelines, protocols, 
metrics and tools for managing 

the stakeholder dynamics 
related to IEM applications 

and model building

Advance the state-of-the-art of IEM Applications

Stakeholder involvement Advance adaptive 
decision process 

Develop guidelines for IEM to 
serve the needs of the 
iterative and adaptive 

strategies of the decision-
making process.

Education, Peer 
Review and Reuse

Develop processes for 
independent review and 
QA/QC assessments of IEM 
applications.

Use exemplar IEM 
applications as a vehicle for 

learning, training, and 
communication of 

solutions to complex, 
interrelated problems 

statements.

Develop strategies for 
designing  and executing 
applications to enable reuse in 
whole or in part (e.g., for 
transfer and use at a new 
location /community facing a 
similar problem)

Investigate  means for 
engaging citizen scientists  

(e.g., in the ongoing 
monitoring  of  the 

environment post-decision) 
and explore the use of social 

media for enhancing IEM-
based decisions and 

applications



 

12 
 

monitoring of natural resources and environmental conditions2

 

,  facilitate knowledge transfer  

between scientists and lay public, test IEM and monitoring technologies and processes (e.g. 

Smartphone apps), and provide historical knowledge and local stakeholder continuity to ensure 

persistence and improvement of IEM application efforts.  

While the importance and value of involving the full stakeholder community in the decision and 

application process is recognized there remains a significant need for guidelines for managing, 

facilitating, and reporting the dynamic interactions among stakeholders (Arciniegas et al., 2012). 

These interactions are critically important in establishing a common understanding and 

appreciation of the problem, the relevant social-economic-environmental system, the role of 

modeling, and the information provided by the modeling. The process of merging differing 

world views, priorities, and value systems into a unifying and objective approach to problem 

elucidation and resolution will require social science expertise (Kalaugher et al., 2012). 

Additional issues related to the science content of these interactions are discussed in Section 3.1.  

 

2.2 Adaptive Decision Process 

Adaptive management (AM) refers to the realization that with respect to the complexities of the 

human-environmental system we are “learning as we go”. IEM-based decisions and policies are 

based on existing knowledge, understanding, and observations and often prove to fall short in 

terms of intended outcomes. There is, therefore, an intrinsic need for iteration and adaptation in 

the decision process. Combined with integrated modeling, adaptive management provides the 

stakeholder community with a means to jointly build an understanding of the system, conduct 

experiments related to the exercise of management options, and refine and update management 

strategies when coupled with ongoing monitoring.  

 

According to Stankey et al. (2005), the specific idea of AM, as a strategy for natural resource 

management, can be traced to the seminal work of Holling (1978), Walters (1986), and Lee 

(1993). It is a framework that promotes iterative learning-based decision making (Holling, 1978) 

from management outcomes and making adjustments as understanding improves (Williams, 

2011) and will probably never converge to a state of equilibrium involving full knowledge and 
                                                 
2 http://creekwatch.researchlabs.ibm.com/ 
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optimum productivity (Walters, 1986). Walters (1986) defined AM as consisting of three 

essential tasks: structured synthesis and analysis, use of formal techniques that consider 

uncertainties and result in optimal decisions and policies, and design and implementation of 

monitoring programs to collect data needed to measure the effectiveness of decisions and 

advance system understanding. Bormann et al. (1994) defined four phases (plan, act, monitor, 

and evaluate), whereas CMP (2007) identified five steps (conceptualize, plan and monitor, 

implement and monitor, analyze/use/adapt, capture/share learning), where monitoring is an 

important component in each approach. 

 

Implementing adaptive management strategies is complicated by the involvement of a diverse 

stakeholder community and the idea that complex problems have many potential solutions, each 

perhaps appealing to a subset of the stakeholder community. The challenge for IEM is to reflect 

this adaptive management process in the design and execution of applications and, in particular, 

building modeling systems that can elucidate these solutions and the implications of choosing 

one versus another (Van Delden et al., 2011, Voinov and Bousquet, 2010).  

 

2.3 Education, peer review, and reuse 

A review of current applications shows a wide range of approaches for designing, executing, and 

documenting applications, making it difficult to understand, review, and reuse applications. 

Rouwette et al., 2002 review the system dynamics literature in an attempt to characterize the 

effectiveness of such stakeholder driven model building exercises. They found a similarly wide 

variation in approaches and present guidelines for reporting the process and assessing 

effectiveness. To improve this situation for IEM, there is a need to move toward conceptual 

standardization of the application process (i.e., defining and documenting the elements of IEM 

applications according to a community recognized process and set of practices).  

 

IEM applications are resource intensive, and thus, the ability to reuse an application, in part or in 

whole, can result in significant resource savings and more problems and decisions served. To 

achieve reusability of applications will require formal documentation and archiving strategies 

that preserve not only the software technology utilized (data, models, etc.) but also the expertise 

that sets up, executes, and interprets the results of the modeling system. Assumptions and model 
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parameterization schemes should be documented in machine readable formats. Janssen et al., 

2009 discuss these issues and propose the use of assessment project ontologies for describing and 

documenting scenarios and assessments. This level of documentation and transparency is also 

necessary to facilitate quality assurance and peer review. 

 

 3.0 IEM Science 

The science of IEM provides the knowledge and integrative strategies that support the decision 

process. In conducting the IEM process, scientists do not directly pursue new knowledge within 

individual disciplines, but rather concern themselves with issues that arise when domain-specific 

knowledge bases must be integrated. The goal is to construct and apply systems-based 

approaches to explore, explain, and forecast system response to changes in natural or managed 

environmental systems. Workshop discussions related to IEM science focused on several areas 

including holistic systems thinking and integrated modeling, data, model evaluation, and peer 

review. In the following sections we discuss these topics from the perspective of current 

practices, issues, and challenges that lead to the IEM science roadmap presented in Figure 3. 

 

3.1 Holistic Systems Thinking and Integrated Modeling 

At the core of IEM science is the concept of holistic thinking (i.e., assessing a problem in the 

context of the larger system - of systems - within which it occurs). This systems approach is 

necessary to serve the decision makers’ needs to understand the working system, compare 

impacts among decision scenarios, analyze trade-offs among options, ask “What if?” questions, 

avoid the creation or transfer of problems in pursuing solutions to the problem at hand, adapt 

strategies based on future monitoring of the system, and respond to unintended consequences.  
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Figure 3: IEM Science Roadmap 

 

A primary challenge for IEM is the merging of knowledge domains into coherent and 

appropriately complex representations of the relevant system (Kragt et al., 2011; Lancaster, 

2007; Otto-Banaszak et al., 2011; Voinov and Bousquet, 2010; Voinov and Gaddis, 2008; 

Zagonel, 2002). Coherence exists when modeling components are scientifically consistent across 

the system with respect to complexity, data requirements, and uncertainty (EPA, 2008b). 

Complexity is a direct function of the problem statement, decision objectives, system 

understanding, and data availability. It is not possible (and unnecessary) to include all known 

science related to the social, economic, and environmental disciplines (Liu et al., 2008; Oreskes 

2003). The challenge is to determine which of the detailed processes are important in simulating 

the system behavior at an appropriate scale of application (Sidle, 2006). These challenges must 

be addressed in a consistent manner across each step of the modeling process, beginning with the 

formulation of a problem statement and followed by the system conceptualization, an integrated 

modeling methodology, and the synthesis of the modeling results (Hinkel, 2009; Liu et al., 

Advance the Science of
IEM-based Decision Making and Modeling

Advance holistic 
systems thinking

Advance model 
evaluation 

Develop conceptual 
framework for comprehensive 
analysis and communication 
of uncertainty for integrated 

modeling systems and 
workflows (this must serve the 

needs of scientists and 
decision stakeholders alike)

Develop strategies and 
processes for peer review of 

IEM components and systems 
(including “full” review of 

software products) and QA/QC 
assessments of IEM 

applications for DSS and MS

Convene scientists and 
technologists in an effort to 
develop community-based 

criteria (in form of metadata) 
for expressing model 

evaluation information related 
to IEM components and 

systems

Organize existing and develop 
new methods for verifying, 
calibrating, and validating 
integrated interdisciplinary 

modeling systems

Develop and apply multi-
modeling  strategies for 
uncertainty analysis and 

modeling science 
comparisons

Develop methods for data 
exchange among components 
of IEM systems that resolve 
dimensional conflicts (e.g., 

space, time, aggregations of 
demographics, species, 

chemicals, etc.)

Document IEM needs for 
observational data, and 

collaborate on the design of 
integrated monitoring 

programs that combine social, 
economic, and environmental 

observations

Advance Science 
Related to IEM Data

Develop metadata to describe 
data sources for purposes of 

enabling automated data 
discovery and accessibility

Advance peer review 
methods for IEM

Develop methods for data 
integration across disciplines 

and disparate sources

Document best practices and 
develop guidelines for 

designing combination of 
system conceptualization, 

quantitative modeling 
methodology, and synthesis of 
modeling results as a function 

of a problem specification, 
scenario design, and decision 

stakeholder’s need for 
information

Develop standard metadata 
for describing semantics and 
ontology for science-based 

modeling components
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2008). We discuss each of these modeling steps to emphasize the manner in which IEM issues 

and challenges manifest and also to point out that to efficiently share IEM science products 

across the global community we will need to be more explicit and compartmentalized in our 

implementations. 

 

A problem statement is a question that requires the application of a structured approach to a 

solution. A problem statement contains a targeted interest or concern, context, objectives, 

questions to be answered, scenarios, solution criteria (i.e., tolerance for uncertainty), and 

available resources (Arnold, 2012 presents an interesting discussion of this topic from the 

perspective of the resource manager). The purpose of the problem statement is to provide the 

information needed to guide the subsequent steps of an IEM application. Decision stakeholders 

are primarily responsible for the content of the problem statement and the science stakeholders 

must ensure that the content is sufficiently focused and detailed to achieve its purpose. Currently, 

there are no widely accepted protocols for developing and documenting problem statements. A 

challenge for IEM is to establish appropriate guidelines for defining and documenting the full 

expression of a problem statement. 

 

System conceptualization captures the essence of the real-world problem including the processes, 

cycles, and flows that characterize the relevant social-economic-environmental components of 

the system (Fischenich, 2008). System conceptualization serves as a basis for communication 

between decision and science stakeholders. Several methods for creating and documenting a 

conceptual model have been developed. Luna-Reyes (2003) presents examples of mapping tools 

used to graphically represent dynamic systems. Other methods, based upon specific quantitative 

modeling approaches, include systems dynamics (Boumans et al., 2002; Fenner et al., 2005; 

Muetzelfeldt and Masheder, 2003), fuzzy cognitive mapping (Özesmi and Özesmi, 2004; 

Samarasinghe et al., 2012), and Bayesian inference (Reckhow, 2003).  

 

Despite the availability of methods and evidence that engaging stakeholders in the system 

conceptualization process is a growing priority (Voinov and Bousquet, 2010) their wide spread 

use across the community of IEM remains an issue. There is a need to promote best practices 
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with respect to the social process of eliciting and merging the array of stakeholder mental 

models.  

 

The integrated modeling methodology is a combination of a modeling system and an 

implementation strategy. The modeling system represents an integration of data and knowledge 

from across relevant science domains and represents the quantitative and computational form of 

the conceptual model. The mathematical form of the modeling system may be empirical, 

statistical, process-based, or a combination of the above (Linker et al., 1999; Hart et al., 2009; 

Schwarz et al., 2006). The implementation strategy specifies how the modeling system will be 

deployed in the context of an IEM application. Deployment may include such strategies as 

applying the modeling system to representative locations across a regional or national landscape 

(Marin et al., 2003), executing the modeling system within a Monte Carlo simulation protocol to 

address uncertainty (Johnston et al., 2011), or applying the modeling system repeatedly within an 

adaptive management strategy (Akbar et al., 2012). Multiple implementation strategies may be 

applied with the same modeling system.  

 

Key science aspects of these integrated systems are ensuring the conceptual compatibility among 

the components (ontology) and specification of the information to be exchanged between 

components (semantics). Achieving semantic and ontological consistency is particularly 

challenging for IEM system design due to the transdisciplinary nature of components and the 

common practice of linking existing modeling components (e.g., legacy models) not originally 

designed for such integration. Voinov and Cerco (2010)  and Voinov and Shugart (2012) discuss 

these issues and point out several challenges and potential pitfalls regarding the construction of  

IEM systems.  

 

No general guidelines, best practices, or standards exist for defining and harmonizing the 

semantic and ontological information. In practice, these issues are resolved either implicitly or 

explicitly by the development team responsible for the integration of modeling components. For 

example, Akbar et al., 2012, in building an emergency response modeling system, select a fixed 

set of models on the basis of ontological consistency and specify a mapping of variables from 

one model to another. FRAMES (Johnston et al., 2011) defines data dictionaries that contain 
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semantics that reflect controlled vocabularies and relationships among the variables. Each 

dictionary represents a standard set of information either produced or consumed by a type of 

model (e.g., watershed model) and thus allows for application specific configuration of models. 

Ontological consistency is enhanced with the data dictionaries but not ensured. Finally, 

SEAMLESS (van Ittersum et al., 2008) defines formal expressions of the combined semantics 

and ontologies associated with the modeling components needed to construct workflows for 

agricultural based modeling assessments. Any modeling component that conforms to these 

definitions can be used in the workflows with assurance of both semantic and ontological 

consistency. 

 

The challenge for the IEM community is to expose and standardize the model integration process 

and explicitly express a model’s semantics and ontology, thus facilitating the ability to 

interoperate with a wider array of available models. To guide this movement toward higher 

degrees of interoperability, we look to Wang et al. (2009), who describe six levels of 

interoperability (Table 3) in order of increasing capacity for interoperation. Differences between 

these levels reflect the type and content of information to be exchanged, not the technology that 

implements the exchange. While some standards are available for expressing this information in 

software technology, until this science-based information is defined and standardized, it will not 

be possible to address the technology issues of software reuse and interoperability, which we will 

discuss further in Section 5. 
 
Table 3. Levels of Conceptual Interoperability Model (Adapted from Wang et 
al., 2009). 

Level of 
Interoperability  

Information 
Defined  Content Defined  

L6: Conceptual  Assumptions, 
constraints,  etc.  

Documented conceptual 
model   

L5: Dynamic  Effect of data    Effect of information 
exchanged  

L4: Pragmatic  Use of data   Context of information 
exchanged  

L3: Semantic  Meaning of data  Content of information 
exchanged  
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L2: Syntactic  Structured data  Format of information 
exchanged  

L1: Technical  Bits and bytes   Symbols of information 
exchanged  

L0: None  NA  NA  

   
 

The final step of the modeling process, synthesis of modeling results, represents a key interface 

between science and decision stakeholders. The objective is to interpret, consolidate, and present 

the results of complex integrated modeling to stakeholders and decision makers. Synthesis must 

produce information that is not only of high scientific quality but also useful to the decision 

makers. McNie (2006) discusses the challenges of “reconciling the supply and demand” of 

scientific information between scientists and decision makers, defining “useful” as a combination 

of salient, credible, and legitimate information. Salience implies contextual relevance, credibility 

refers to scientific veracity, and legitimacy refers to a lack of bias. While scientists routinely 

synthesize results via scientific journals, the synthesis of scientific information for decision 

making is not well understood and executed (NRC, 2005). The challenge for IEM is to serve 

diverse users and stakeholders who may require multiple synthesization streams designed 

hierarchically to move seamlessly from very general displays of overall results to highly detailed, 

component-based visualizations (Ellarby and Kite, 2006; Liu et al., 2008).  

 

Marin et al. (2003) and Babendreier and Castleton (2005) provide an example of a successful 

synthesis involving the application of 17 science-based models to predict national-scale human 

and ecological exposure and risk due to chemical releases from waste disposal facilities. The 

effort included hundreds of thousands of individual simulations and resulted in output too 

voluminous to store, much less hand to the decision makers. A database of modeling results was 

constructed along with a graphical user interface to allow decision makers to ask and receive 

answers to very specific policy questions related to risks, protection levels, human versus 

ecological impacts, etc. Identifying and promoting exemplars will help focus attention on this 

important science issue. 

 

3.2 Data for IEM 
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 Environmental, social, and economic data drive model development, application, and 

evaluation. Discovering, accessing, processing, and preparing data for IEM tasks is particularly 

challenging due to a combination of cross-disciplinarity, volume, and disparate sources 

presenting data with varying formats and semantics. 

 

Figure 5 describes an integration framework that illustrates the typical data and processing needs 

for an agency like the US Food and Drug Administration. In this example, data reflecting 

biological levels ranging from molecular to population are contained in a series of databases 

owned and maintained by a variety of institutions. Viewed generically, this example illustrates 

the IEM data challenge described above.  

 

 
Figure 5. Integration framework for FDA Scientific Computing Strategic Plan (After 

Perkins 2012). 
 
Recognizing these issues and the importance of data to decision making, many government 

agencies and offices are consolidating access to environmental data. Table 4 summarizes several 

such efforts from the United States, Europe, and Australia.  

 

Space-time continuum = level of biological organization:

Molecular __________ Cellular____________ Organ _________________ Organism _____________ Subpopulation ___________Population

Archival: Genomic; proteomic; 
metabonomic; epigenomic; 

transciptomic; gene ontology; 
gene function; signaling and 
metabolic pathways; SNPs; 

scientif ic literature text

Other dimensions: Phylogenetic (species); Data type: Quantitative – Qualitative (textual); Collaboration (Internal to cross-community)

Population: Longitudinal; 
retrospective; epidemiological, 

disease cohorts; adverse 
events reports and other 

surveillance; electronic health 
records (physician notes)

In vitro dose response; 
high throughput screens; 

genetic tox; 
developmental tox; 

ADME, PKPD, all with 
chemical structure; 

Animal model in vivo 
dose response 

(developmental tox; 
ADME, PKPD), imaging; 

all with chemical 
structure; clinical trials

Tr
an

sl
at

io
n:

 H
yp

ot
he

si
s 

dr
iv

en
 d

at
a 

to
 s

tru
ct

ur
ed

 k
no

w
le

dg
e

Federated databases and knowledge bases

Molecular libraries and 
web links

Phenotype- / disease-
anchored databases

Phenotype- / disease 
anchored knowledge 
bases with predictive 

models

Validated biomarkers 
(e.g., ef f icacy; tox; 

diagnostic; prognostic; 
treatment selection)  

Analytics toolboxes (web service algorithms): e.g., visualization; a myriad of  statistics; simulation; supervised and unsupervised 
machine learning; chemometrics/QSAR; f inite element; text and topical mining

Research Community

Diagnostics; prognostics; 
treatment selection

Sponsor Community

Diagnostics; prognostics; 
treatment selection

Regulatory Community

Diagnostics; prognostics; 
treatment selection

Medical Community

Diagnostics; prognostics; 
treatment selection

R
ev

er
se

 T
ra

ns
la

tio
n:

 H
yp

ot
he

si
s 

ge
ne

ra
tin

g 
fe

ed
ba

ck
User queries and transactions



 

21 
 

Table 4. Examples of data access initiatives of relevance to IEM 

Initiative Scope Description 

Global Earth Observation System 
of Systems (GEOSS)a 

Global An international effort to coordinate a comprehensive 
monitoring of the state of the earth, study large scale 
processes, and predict behavior of the earth system 

Infrastructure for Spatial 
Information in the European 
Community (INSPIRE)b 

EU The stated purpose is to assist in environmental policy 
making across national boundaries. The spatial 
information considered includes seventeen topical and 
technical themes originating from numerous sources 
throughout the EU 

European Shared Environmental 
Information System (SEIS)c 

EU A web based system where public information providers 
share environmental data and information. In 
implementing SEIS, the EEA is building on existing 
reporting systems and tools: the INSPIRE directive, 
Global Monitoring for Environment and Security 
(GMES), and (GEOSS.) 

Water Information Service for 
Europe (WISE)d 

EU Gateway to information on European water issues. It 
comprises a wide range of of data and information 
collected by EU institutions to serve several stakeholders. 

Environmental Resources 
Information Network (ERIN)e 

Australia The objective is to organize environmental information 
from many sources and provide standards based tools for 
discovery, access, and use. The information includes 
maps, species distributions, documents and satellite 
imagery, and covers environmental themes ranging from 
endangered species to drought and pollution 

Environmental Dataset Gateway 
(EDG)f 

US A gateway developed by the US EPA to web-based 
information and services. It enables data consumers to 
discover, view and access data sets, as well as geospatial 
tools. Users also have the ability to catalog and maintain 
their geospatial metadata contributions via the EPA 
Metadata Editor Tool 

National Ecological Observation 
Network (NEON)g 

US Collection of data across the United States on the impacts 
of climate change, land use change and invasive species 
on natural resources and biodiversity. Designed to detect 
and enable forecasting of ecological change at continental 
scales over multiple decades. 

US based Consortium of 
Universities for the Advancement 
of Hydrologic Science, Inc. 
(CUAHSI)h 

US Developing the Hydrologic Information System (HIS), an 
internet-based system that provides for sharing 
hydrologic time series data contributed by a wide range of 
providers, including the National Water Information 
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System of the US Geological Survey. 
a http://www.earthobservations.org/index.shtml 
b http://inspire.jrc.ec.europa.eu/index.cfm/pageid/48 
c http://ec.europa.eu/environment/seis/ 
d http://water.europa.eu/  
e http://www.environment.gov.au/erin/about.html 
f https://iaspub.epa.gov/sor_internet/registry/edgreg/home/overview.do & https://edg.epa.gov/EME/  
g http://neoninc.org   
h http://his.cuahsi.org   
  

As seamless access to data becomes available, the next challenge is to process and transform the 

data for use in IEM systems. The gateways, like IEM systems, are designed with internal 

semantic and ontological consistency but not for seamless integration across systems. This data 

integration task requires reconciliation of varying semantics and establishing a system’s level 

operational ontology that honors the relationship among physical, chemical, and biological 

entities across the components. This may include such procedures as statistical processing (e.g., 

averaging, interpolation, etc.), geo-processing (e.g., re-projection, clipping overlays, merging, 

etc.), and processing specific to physical interfaces between elements of the modeling domain 

(e.g., catchment and stream segment connectivity). Currently, the execution of this process for 

individual applications can be characterized as a semi-automated task of discovering data sources 

and subsequently cutting and pasting file fragments to form a single coherent dataset.  

 

Enhanced solutions to this issue are beginning to emerge. The GEON 3

                                                 
3 http://www.geongrid.org/ 

 (Ludascher et al., 2003) 

is an open collaborative project funded by the US National Science Foundation to develop 

cyberinfrastructure with the ultimate goal of linking heterogeneous scientific data and 

information for the purposes of knowledge discovery, sharing, and integration into scientific 

workflows. Data for Environmental Modeling (D4EM - Johnston et al., 2011) is an open source 

software system developed expressly to access, retrieve, and process data for IEM. D4EM is 

currently linked to several US Government databases and performs all data processing required 

to serve data directly to an integrated modeling system designed to simulate interactions among 

watersheds and aquatic ecosystems. CUAHSI (Maidment et al., 2009) has designed and 

implemented standards for exchanging hydrologic data over the web including the 

WaterOneFlow web services and the Water Markup Language (WaterML). These were used to 
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construct a Hydrologic Information System with a service-oriented architecture and able to 

integrate hydrologic observational data from international, federal, state, local, and academic 

data providers (Tarboton, 2011). The design principle is to keep databases separate and 

autonomous while providing standards that allow software programs to query and extract data 

from them using standardized approaches (Goodall et al., 2008; Horsburgh, 2009). Other 

important efforts include the development of controlled vocabularies that promote common 

referencing and facilitate variable matching across sources. Examples include the NetCDF 

Climate and Forecast (CF) Metadata Convention4 and the Consortium of Universities for the 

Advancement of Hydrologic Science, Inc  - Hydrologic Information System (CUAHSI- HIS) 

Controlled Vocabulary5

 

 for hydrology data (Beran and Piasecki, 2009). Applying and integrating 

these techniques and technologies to the larger data domains of IEM is an important need. 

3.3 Model Evaluation 

Model evaluation combines quantitative and qualitative information about a modeling system’s 

appropriateness and effectiveness for the problem and ability to characterize the uncertainty of 

model predictions. Key attributes of model evaluation are transparency, refutability, and 

uncertainty quantification. Together, they establish the scientific veracity and stakeholder 

confidence/acceptance of an application and the information it produces. Transparency requires 

that all aspects of the application design and execution be accessible to facilitate understanding 

and reproducibility. Refutability requires a hypothesis-testing framework in which data are used 

in specific ways to test the model’s ability to simulate the system of interest. This may require 

the involvement of decision stakeholders because the ultimate test of a model is always its utility 

and usability by end users. Refutability is difficult for any model of an environmental system, 

and evaluating an IEM system is even more challenging.  

 

Challenges related to uncertainty quantification of predictions in integrated modeling were 

experienced in recent climate change modeling (e.g. IPCC, 2007). In Table 5, we describe basic 

model evaluation methods developed for conventional modeling that have characteristics 

advantageous to IEMs. Several textbooks on these subjects have been produced in recent years 

                                                 
4 http://cf-pcmdi.llnl.gov/ 
5 http://his.cuahsi.org/mastercvdata.html 
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(Menke, 2012 and Aster et al., 2005 from geophysics; Beven, 2009; Clark et al., 2011; and Hill 

and Teideman, 2007 from hydrology; and Saltelli et al., 2008 from econometrics), and an active 

scientific community continues to explore new methods. Further, Matott et al. (2009) note that a 

great deal of literature has been published on model evaluation ranging from introductory 

descriptions to uncertainty analyses to methodological applications. They cataloged 65 different 

model evaluation tools for applicability across seven thematic model evaluation methods 

including data analysis, identifiability analysis, parameter estimation, uncertainty analysis, 

sensitivity analysis, mulitimodel analysis, and bayesian networks. They evaluated these tools 

based on the number of literature citations, robustness of documentation, and form of software 

distribution.  

 

Application of these ideas to more complicated IEMs is only beginning to emerge, (Ascough et 

al., 2008; Bastin et al., 2012; Beven, 2007; McIntosh et al., 2011; Refsgaard et al., 2007), and 

there is still much to learn in developing methods and case studies. It is expected that the 

growing use of IEMs will test the limits of these existing methods and lead to additional 

innovations.  

 

3.4 Peer Review 

An important consideration discussed during the workshops is the challenge related to peer 

review of IEM integrated science as expressed through technology and applications. The 

transdisciplinary nature of the modeling challenges presents challenges to individual peer 

reviewers representing a particular science domain. Certainly, this level of review is necessary; 

however, there is concern whether it is sufficient with respect to integration issues, especially 

given the implicit manner in which integration issues are resolved and documented. Peer review 

of applications involving a wide array of stakeholders, each capable of varying degrees of 

understanding, also represents a challenge. Each application should be reviewed from the 

perspective of each stakeholders knowledge base and perspective. Finally, the peer review of 

implementation technologies represents a significant time resource requirement. Verifying that 

the science has been implemented correctly in software presents significant issues in an IEM 

world, where the technological implementations vary widely in terms of design, 

software/hardware, documentation, and testing. New means of ensuring the veracity of the 
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science-based products and applications represents a prime challenge to the IEM science 

community. 

 
     Table 5. Summary of methods used for model evaluation 

Technique Description 

Error evaluation 
and propagation 

Starts with data used to construct the component and IEM models, and proceed to the 
analysis of predictions relative to observations. This is critical to IEMs because data 
availability and errors in one part of the system invariably affect uncertainties in other 
parts. 

Error-based 
weighting 

Critical to integrated use of data in IEMs; is complicated by need to synchronize 
weights among various disciplines since variations in the importance of processes and 
data may occur.  

Sensitivity 
analysis 

This can be conducted by combining computationally efficient local linear methods, 
efficient global screening methods, and computationally expensive global variance 
methods. Linear methods are attractive for IEMs with relatively few parameters they 
may require only on the order of 10s of model runs to obtain useful results. 

Alternative 
models 

Important in IEM model development to assess effects of conceptual model 
uncertainty. Alternative conceptualizations often affect more than one aspect of the 
system. Integrated models allow consequences to be represented realistically 
throughout the system simulation (e.g., the hydrologic cycle, Clark et al., 2011). 

Automated 
calibration 
methods 

These are used to improve objectivity and reproducibility. The optimization process 
can identify the information content of a given set of observations and, along with 
sensitivity analysis methods, can identify important new data. For IEMs, this can be 
particularly challenging because of the number of linked/coupled component models 
involved. 

Uncertainty 
Quantification 

IEM models require both knowledge and uncertainty from different system 
components to be integrated into a unified expression of  uncertainty quantification.  
Existing methods should be reviewed and applied considering the computational 
demands of the model and requirements of end users of model results. 

Model Tests Should be undertaken against alternative data sets. In IEM, it is important to test 
component models; integration requires additional tests throughout the IEM. 

Post-Audits Comparing model predictions to the observed results (a true post-audit) requires 
monitoring. IEMs provide important opportunities for post-audits because simulated 
results can affect resources important to large ecological systems and many people.  
These opportunities are not easily pursued however, as post-audits of IEMs can also 
be very difficult because of long delays in observing impacts, confounding variables, 
changes in forcing drivers etc. 

Calibration and 
testing in data 
scarce 
conditions 

The likelihood of having complete datasets for extensive IEM analysis is low. 
Building representative data sets and uncertainty analyses have to be performed in 
data-scarce conditions. The models and theories can suggest specific monitoring to 
collect the most important data to help decrease uncertainty and facilitate adaptive 
management strategies.  
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4.0 IEM Technology  

Technology represents the primary means by which the science of IEM is expressed and applied.  

In this section we present two key topics that emerged as critical technological drivers for IEM 

from the workshop discussions. First is a discussion of modeling frameworks and standards for 

IEM software design and implementation. This section (4.1) provides background and context to 

inform the reader about the state-of-the-art, issues, and challenges associated with IEM modeling 

frameworks. It concludes with an argument for a universal standard for model integration that is 

compatible with framework-specific standards that already exist, but provides much needed 

interoperability across modeling frameworks. Second is a discussion of leveraging the World 

Wide Web for IEM. This section (4.2) presents modern and visionary work using concepts such 

as Cloud-based computing and web services to achieve a higher level of functionality in next 

generation IEM modeling frameworks. The section argues that a key goal of the IEM community 

must be to more effectively leverage the Web for publication, discovery, access, and integration 

of IEM information and software in order to achieve the ambitious goals set by the IEM 

community. Figure 6 presents the IEM technology roadmap, whose elements are discussed in the 

following sections. 

 

4.1 Modeling Frameworks and Standards for IEM Software Design and Implementation 

Conventional environmental modeling systems include science models, user interfaces, data 

analysis and visualization tools (including GIS), and calibration and optimization tools. Within 

this ecosystem of software tools required to perform IEM, there is a strong need to provide 

interoperability between tools to simplify and automate data transfer across applications. Not 

only is interoperability required across the tools used for environmental modeling, but at a 

deeper level interoperability is required between the individual science models used to address 

specific environmental concerns. It is this interoperability – between individual science models 

used in IEM – that has attracted much of the attention within the community because of the 

inherit challenges of properly translating and transferring knowledge between multiple science 

domains.   
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Figure 6: IEM Technology Roadmap 

 

Interoperability in this sense means the ability of different information technology components, 

systems, and software applications to communicate and exchange data accurately, effectively, 

and consistently, and to use the information that has been exchanged (Heubusch, 2006; IEEE, 

1989). Thus, focusing on individual science models, the interoperability challenge is to enable 

communication and exchange of data between two scientific models that may be from different 

scientific domains. This problem is multifaceted, and we discussed the issues of coherence, 
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process of IEM because they limit the number and variety of tools available for integrated 

modeling and assessment. As a result, small communities have evolved, each with its own 

modeling framework and internal standards for integrating model components. Table 6 provides 

a list of some of the modeling frameworks that exist within the IEM community.  

 

Table 6 – A sampling of the modeling frameworks with connections to the IEM community. 

Name Brief Description Reference(s) 
LHEM Flexible landscape model structures, easily modified or 

extended for different goals. 
Voinov et al., 2004 

OMS Provides the ability to construct models and applications 
from a set of components. 

David, et al., 2002 and 
2012; Ahuja, et al., 2005 

MIMOSA A model simulation platform for building conceptual 
models and running the simulations. 

Müller, 2010 

FRAMES A modeling system that includes a collection of models as 
well as data retrieval and analysis tools. 

Johnston et al., 2011; 
Babendreier and Castleton, 
2005 

SHEDS A modeling system for simulating human activity patterns 
and related chemical exposures. 

Zartarian et al., 2012 

ARAMS Used to estimate impacts and risks associated with military 
relevant compounds. 

Dortch et al., 2007 

GENII For calculating radiation dose and risk from radionuclides 
released to the environment. 

Napier, 2007 

IWRMS Integrates a collection of water resource models 
(watersheds, rivers, lakes, estuaries) to support decision 
makers. 

Thurman et al., 2004 

AMBER Designed to explore the benefits of making scientific 
modelling tools available on the internet. 

Quintessa, 2012 

GoldSim For dynamically modeling complex systems including but 
not limited to IEM systems.  

GoldSim, 2012 

GMS/WMS/SMS Groundwater, watershed, and surface water modeling 
systems 

Aquaveo, 2012 

BASINS Integrates modeling and assessment tools with national 
watershed data using a GIS 

EPA, 2001 

ESMF For building climate and weather prediction models as 
interlinked components 

Hill et al., 2004 

CSDMS Component-based modeling framework targeting the earth 
surface dynamics community 

Peckham, 2010 

SEAMLESS Integrated framework for linking models, data, and 
indicators in support of environmental, economic and 
social analysis.for agricultural systems 

van Ittersum et al., 2008 
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HydroModeler Integrated modeling environment plug-in to CUAHSI 
HydroDesktop application and built on OpenMI standard. 

Castronova et al., 2012  

ARIES Tool for assessing and validating ecosystem services in 
decision-making.  

ARIES, 2012 

EvoLand/ENVISION Regional planning and environmental assessment tool; 
spatially explicit and multi-agent based. 

Bolte et al, 2006, 
http://envision.bioe.orst.edu/ 

 

Many of the modeling frameworks listed in Table 6 have advanced over several years of 

development effort to become sophisticated tools. Many are also widely used tools within 

segments of the IEM community. The adoption of specific modeling frameworks within local 

communities is understandable and unlikely to change in the near future because maintaining 

local control over the user experience, in particular the design and implementation of the 

Graphical User Interface (GUI), is important for buy-in and effective use within specialized 

communities. The protocols and standards employed locally by individual frameworks to 

facilitate interoperability, while important within the framework itself, do not directly address the 

challenge of achieving interoperability across frameworks. This may be counterintuitive, but 

when one considers the vast variety of ways for achieving interoperability between models, it 

becomes reasonable that no two modeling frameworks have independently settled on the same 

standard for achieving interoperability. As stated earlier, this lack of cross-framework 

interoperability is a significant technical challenge facing the IEM community because, even 

though different frameworks may focus on different problem domains, the science (data, models, 

and methods) expressed within each framework is often the same. The frameworks themselves 

are therefore repetitive causing additional work in terms of code development and maintenance. 

But it is not only this additional work that is a cause for concern; more important is the fact that 

modeling frameworks, because they tend to focus on specific problem domains, do not always 

include the state-of-art scientific models for problem domains that are tangential to their own 

area of focus. For example, a groundwater model must include a way of modeling river 

hydraulics to provide a boundary condition to the subsurface environment, but this is not the 

primary focus of the groundwater model, so the tangential river hydraulics code is less likely to 

be kept up to date compared to the core groundwater code. Therefore the need for 

interoperability across frameworks is deep and far reaching and a solution to this problem would 

be a great benefit to the IEM vision.  
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Given these technical challenges, we believe a near-term goal of the IEM community should be 

to work on protocols and standards that are appropriate to be elevated to a level higher than 

individual frameworks, thus facilitating access to a much wider inventory of models and 

components. This challenge is gaining recognition and progress toward increased interoperability 

is occurring. Workshop participants agreed that, to date, groups involved in modeling framework 

development have “discovered by doing” that the technological issues described above are 

common across frameworks and that the required functionality can be abstracted and 

standardized at a higher level, i.e., a global standard. For example, it is clear that a core set of 

properties that each model within a modeling system must follow exists. These properties 

include a structure that enables the modeling system to initialize, execute (e.g., step through time 

and update state), retrieve and provide data to other models, and close the model on demand 

through a standardized Application Programming Interface (API). Models that can provide these 

interface functions are able to provide their caller with fine-grained control of their functionality, 

which is a key step to achieving interoperability across frameworks. In effect, this process of 

standardization is one of separating framework functionality from the science components 

contained within them, rendering the components framework independent. If well designed, the 

standardization process can be done in a way that minimizes potential negative impacts including 

placing unreasonable burdens on scientists or inhibiting creativity due to the need to adhere 

to onerous standards. 

 

To move forward, the IEM community would be well served to look at examples of past work 

that offer more generic solutions for interoperability across modeling components. One example 

is the Common Component Architecture (Larson et al., 2004), which is a set of component and 

framework standards developed within high-performance, scientific computing. CCA-compliant 

components can be reused in any CCA-compliant framework (e.g., Ccaffeine6, XCAT7). CCA is 

used as the underlying architecture for modeling frameworks such as the CSDMS (Peckham et 

al, 2012). Another example is from the OpenMI8

                                                 
6 http://www.cca-forum.org/software/index.html 

 Association, which has proposed a global 

standard for exchanging data among linked models at run time (Moore and Tindall, 2005, Moore 

7 http://grid.cs.binghamton.edu/projects/xcat.html 
8 http://www.openmi.org/ 
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et al., 2005). The OpenMI standard has been the subject of many recent studies and movement of 

existing frameworks to accommodate the standard is occurring (Fotopoulos et al., 2010; 

Castronova and Goodall, 2010; Elag et al., 2011; Betrie et al., 2011; Janssen et al., 2011; 

Bulatewicz et al., 2010; Ewert et al., 2009; Reussner et al., 2009).  

 

On a more general level, the challenge of interoperability present in IEM is similar to 

interoperability issues addressed by the World Wide Web, which would not be possible without 

broad agreement on standards for data and information (knowledge) storage and exchange (e.g., 

HTTP, HTML, etc.).  The World Wide Web Consortium9 (W3C) and the Open Geospatial 

Consortium10 (OGC) are international consortia involving companies, government agencies and 

universities, committed to a consensus process for development of standards that empower 

development of a vast array of applications. The W3C pursues open standards related to every 

aspect of the web, from its basic architecture to the provision of data and information storage and 

access services, to enabling web functionality on all manner of devices. One path forward for 

IEM is to embrace and build from standards and technologies for representing structured data 

and the Semantic Web technologies for representing knowledge and linking information sources 

(e.g., RDF, SPARQL, OWL, and SKOS). The OGC focuses on standards that facilitate access to 

and use of spatial information and related services (e.g., WFS, WPS, WCS, SOS, WNS), as will 

be discussed further in Section 4.2. Other standards relevant to IEM include the development of 

several science domain markup languages based on XML, including the GeographyML11, the 

Earth ScienceML12, the WaterML13, the NetCDFML14, and the Systems BiologyML15. 

Examples of ontology applications based on OWL include the Semantic Web for Earth and 

Environmental Terminology16 (SWEET), the Environment Ontology17

                                                 
9 http://www.w3.org/ 

 (EnvO), and the Exposure 

10 http://www.opengeospatial.org/ 
11 http://www.opengeospatial.org/standards/gml/ 
12 http://esml.itsc.uah.edu/index.jsp 
13 http://www.opengeospatial.org/projects/groups/waterml2.0swg 
14 http://www.unidata.ucar.edu/software/netcdf/ncml/ 
15 http://sbml.org/Main_Page 
16 http://sweet.jpl.nasa.gov/ontology/, E 
17 http://environmentontology.org/ 

http://sweet.jpl.nasa.gov/ontology/�
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Ontology18

 

 (ExO). Each of these applications focuses on a particular science domain. The 

challenge for the IEM community is to bring these concepts and standards to bear on IEM 

systems in an effort to establish a unifying publishing capability for software that facilitates 

discovery and utilization of individual IEM components and systems independent of the source 

of their development.  

4.2 Leveraging the World Wide Web for IEM 

A second theme that emerged from the workshops concerns the leveraging of the World Wide 

Web for building next generation IEM modeling systems. Clear momentum exists in the broader 

information technology domain toward storing data and tools in the Cloud. Much work has been 

done in IEM communities to create Web-based analysis tools and portals (e.g., Booth et al., 

2011), expose large databases as web services (e.g., Goodall et al., 2008), and for creating 

workflows to coordinate data flow between databases, analysis tools, and models (e.g., Granell et 

al., 2010, Kepler, 2012) . Recent work has focused on service-oriented and resource-oriented 

paradigms for organizing model software architectures suggesting that model frameworks 

themselves could be integrating computational and data resources that are distributed across the 

Web (Goodall et al, 2011, Nativi et al., 2012, Granell et al., 2012). Commercial investment in 

cloud-based computing resources, which allows users to rent computing resources, opens new 

doors for dynamically-scaling compute intensive tasks or web applications with temporarily high 

demands, as discussed later in this section. Collectively, these Web-based initiatives offer 

potentially transformative changes to the technological approaches available to the IEM 

community, but much work is needed to understand how to effectively and efficiently leverage 

these approaches for specific applications within IEM. 

 

A key challenge to the IEM community for achieving the full potential of the web is to advance 

our understanding of how to optimize data and operations between traditional personal computer 

(PC) environments and remote computers on the Web. This is because, while the Web is a 

promising tool that could be better leveraged in IEM applications, there remain issues that must 

be addressed. For example, IEM applications often require the use of large volumes of data, and 

moving these datasets effectively and efficiently over the Web is challenging.  Second, in some 
                                                 
18 http://obofoundry.org/cgi-bin/detail.cgi?id=exo 
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cases IEM workflows may require dynamic and complex interaction between components of the 

workflow. An example might be coupled model components within a workflow that have a time-

step dependent feedback loop for data exchanges. The challenge facing the IEM community is 

how to allow for such functionality while still maintaining sufficient reliability and serviceability 

of the IEM software systems.  

 

Moving forward, the community should be aware of the different ways in which the Web can be 

leveraged when building IEM software systems. In one scenario, the entire IEM solution might 

be hosted on a single web server and the user would then interact with the application through a 

Web browser. This is the typical solution and has been widely leveraged for providing data, 

visualization tools, and basic analysis tools in the IEM community. A second scenario is for the 

IEM solution to be a Desktop application that has built-in capabilities for leveraging remote data 

or processing resources directly through the Desktop application itself. In this case, the remote 

resources would ideally be made available to the Desktop application as web services using a 

public and well described API. An example of this approach is the CUAHSI HydroDesktop 

application that provides access to remote data archives made available using the CUAHSI 

WaterOneFlow web service (Ames et al., 2012; Tarboton et al, 2009). In HydroDesktop, the 

functionality for both searching and downloading data is executed on remote servers that have 

their own databases. The software architecture involves a network of servers, with each server 

having its own database and software stack that allow it to be a node within the network 

(Horsburgh et al., 2009; Horsburgh et al., 2011). The user executes data search and download 

tools directly from the HydroDesktop application instead of through a Web browser. Because the 

web services remote servers have been built using a standardized API, it is possible to ingest data 

from any server that adopts the API into a local database on the machine running HydroDesktop. 

This local data is then available for performing data analysis, visualization, and modeling 

activities.  

 

This approach  is in the spirit of 'Cloud Computing', although recent investment by the public 

and private sectors has grown the Cloud computing concept into a powerful new paradigm for 

building Web systems. A key idea of the cloud computing concept is that a user can rent 

computer resources (processing,  storage, software) from a vender rather than buying and 
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maintaining their own computing resources. Commercial-based cloud services are offered from a 

range of providers, e.g., Amazon, Google, and Rackspace. The advantage is that a user has 

access to a theoretically unlimited amount of computing resources to accomplish a task. 

Therefore applications can more dynamically scale as more or less resources are needed over 

time.  

 

Governmental agencies have begun exploring cloud-computing and offering tools as Web 

resources made available through the Cloud. The British Geological Survey has initiated the 

Environmental Virtual Laboratory19 project and is exploring the provisioning of data services, 

web-enabled environmental models, and a suite of on-line local community tools in the spirit of 

the Cloud paradigm of software as a service. The US Department of Agriculture Natural 

Resources Conservation Service is developing the Cloud Services Innovation Platform20 to offer 

data and modeling services for use in the field, and the US Environmental Protection Agency has 

developed the WATERS21

 

 program that provides services that perform various data services and 

related analyses like watershed delineation.  These applications suggest a certain momentum in 

the community toward moving more of the tasks needed to support IEM, such as running 

environmental simulation models or large databases, to remote computer servers on the Cloud 

rather than on PCs.  

The approach of using cloud computing and web services has several advantages over traditional 

modeling approaches, including the potential to greatly reduce the cost and time required for the 

development of an IEM solution through the re-use of modeling components. Each component in 

the modeling chain maintained can be rapidly distributed to the community and sharing of 

services can be a catalyst for building a stronger integrated environmental modeling community. 

Furthermore, the process of designing services would break down the different aspects of 

environmental modeling into a set of interoperable services that can be dynamically configured 

to create custom solutions to environmental problems. Another advantage is that moving 

resource intensive tasks to servers opens the possibility of performing sophisticated IEM 

                                                 
19 http:/www.evo-uk.org/ 
20 http://www.eucalyptus.com/sites/all/files/cs-usda.en.pdf 
21 http://www.epa.gov/waters/geoservices/index.html 

http://www.eucalyptus.com/sites/all/files/cs-usda.en.pdf�
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operations on mobile devices as well. Such tools could have large benefit in engaging 

stakeholders, and for this reason the US Environmental Protection Agency issued a challenge for 

the public to develop environmental applications for mobile devices22

 

 and the British Geological 

Survey has developed the iGeology application that combines GPS functionality with 

informational databases related to geology across Britain.  

Despite access to these new tools and resources available in the Web-domain, the fundamental 

challenge of establishing common standards for data and modeling services outlined in Section 

2.1 (science content) and 4.1 (technology) are only amplified as one attempts to capture the 

potential of the web for providing interoperability across a wide community of end users. The 

IEM community would be well served by identifying how existing science and technology 

standards can be leveraged, integrated, and extended to serve the broader needs and interests of 

IEM. As stated several times in this paper these standards must be guided through an approval 

process that includes sufficient representation from the community. Without such effort, the IEM 

tools built for the Web will suffer from the same interoperability challenges faced by modeling 

frameworks built for Desktop environments.  

 

5.0 IEM Community 

In many fields and sectors, openness, collaboration, sharing, and social learning have been 

shown to drive innovation and growth (Tapscott and Williams, 2006). These behavioral attitudes 

and characteristics are often expressed through formal communities of practice (Lave and 

Wagner, 1991). Structured community processes can reduce duplication of efforts and increase 

leveraging of resources and overall efficiency. IEM is transdisciplinary and, as such, involves a 

“community”. The members of the community include the full array of decision and science 

stakeholders described earlier. During the workshops, discussions of community focused on 

establishing and promoting a community of practice, IEM education, and a web-based 

community center. The resulting roadmap of IEM community activities is presented in Figure 7 

with related workshop discussions of the specific topics in the following sections. 

 

5.1  Communities of Practice 
                                                 
22 http://www.epa.gov/appsfortheenvironment/ 

http://www.epa.gov/appsfortheenvironment/�
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The early phases of IEM development were conducted by disparate groups working on science 

and applications (e.g., EPA, 1992; Onishi et al., 1985; Whelan and Nicholson, 2002; Whelan et 

al., 1986; Yu et al., 1993), mostly independent of one another. Results of these efforts were 

disseminated through traditional outlets, such as conference presentations, technical reports, 

journal articles, and websites. These groups advanced the science and application of IEM, but 

their efforts and products typically were neither coordinated nor compatible. The challenge is to 

foster and promote participation in a coordinated manner across the full community, which is 

often easier said than done (Voinov and Bousquet, 2010).   

 

  
Figure 7: IEM Community Roadmap 
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In recent years, a community of practice approach has emerged as a paradigm within IEM. 

Several formal groups relevant to the IEM community have formed. Table 7 lists several of these 

groups and describes the focus and scope of their activities. These groups have formed around 

particular IEM sub-domains, such as multimedia modeling, surface dynamics models, earth 

systems modeling, and hydrology. Operationally, these groups act as communities of practice 

growing their knowledge base and developing solutions to common problems together.  

 

More recently, communities have begun to form at levels higher than the sub-domain. For 

example, the U.S. National Science Foundation’s EarthCube23

decision making, promote contacts among physical, social and natural scientists, economists 

and software developers from different countries, improve the cooperation between the 

sciences and decision makers/advisors on environmental matters, and exchange information in 

the field of environmental modelling and software among scientific and educational 

organizations and private enterprises.  iEMSs sponsors a biennial conference and focuses 

attention on several areas of importance to IEM. Another approach to addressing broader 

participation is being pursued by the Community of Practice for Integrated Environmental 

Modeling (CIEM). CIEM has formed as a community of communities with several goals in mind 

including formalization of the discipline of IEM, linking of the growing number of sub-domain 

communities, and development and promotion of best practices and standards at the global scale. 

As part of its strategy, CIEM has developed the iemHUB

 initiative aims to support the 

development of community-guided cyber infrastructure to integrate data and information for 

knowledge management across the geosciences by fostering community collaboration. In this 

initiative, community groups, consortia, researchers, and educators share ideas, introduce 

concepts, and find and develop collaborative efforts focused on solving issues common to all. 

The International Environmental Modelling and Software Society (iEMSs) was formed to 

develop and use environmental modelling and software tools to advance the science and improve 

24

                                                 
23 

 web portal to 1) enhance IEM 

learning and education (establish best practices and  produce and share educational tools), 2) 

leverage IEM solutions (make them accessible and reusable), 3) facilitate scientific 

collaboration, and 4) allow efficient use of resources (limit duplication in technology 

http://earthcube.ning.com/page/intro 
24 http://www.iemHUB.org 

http://earthcube.ning.com/page/intro�
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development). Engaging this level of community has proven to be quite challenging. 

Organizations or groups have a mission, which defines its work, needs, and priorities. There are 

many fundamental differences in the types of inter- or intra-organizational responsibilities, 

including regulatory/enforcement, resource management, scientific research/monitoring, 

education and outreach, issue advocacy, community engagement, commercial or private sector 

development, etc. Even when there is a joint interest among several organizations or groups (e.g., 

working together to develop or apply an IEM), differences in priorities or alignment of 

perspectives can create barriers to effective collaborations. Organizations can be the greatest 

facilitators or barriers to a community of practice approach. For the IEM community of 

communities concept to be successful, organizations must come to terms with the need to 

collaborate in a joint effort to develop and promote the best practices and standards that will 

enable efficient sharing of the myriad of valuable IEM science products being produced. 

 

 
Table 7. IEM Relevant Communities or Communities of Practice. 

Name Scope 

ISCMEM1 Formal effort of modeling groups at nine U.S. federal agencies to share ideas, models, and 
projects. 

CSDMS2 Convenes experts to facilitate development and dissemination of integrated software modules that 
simulate dynamics of the earth's surface, focusing on the interface between lithosphere, 
hydrosphere, cryosphere, and atmosphere 

ESMF3 Produces shareable software for climate, weather, and related applications by building high-
performance, flexible infrastructure that increases ease of use, performance portability, 
interoperability, and reuse in climate, numerical weather prediction, data assimilation, and other 
earth science applications. 

OpenMI4 Community of organizations that has proposed a standard for exchanging data between 
environmental models. 

CUAHSI5 Community that facilitates discovery and access to hydrologic data (Hydrologic Information 
System, HIS), sharing of hydrologic models and codes (Community Hydrologic Modeling 
Platform, CHyMP), and a web portal for interactive access to widely used simulation codes and 
high performance computing (HydroHub).  

 

1ISCMEM: Interagency Steering Committee for Multi-media Environmental Modeling (http://iemhub.org/topics/ISCMEM) 
2CSDMS: Community Surface Dynamics Modeling System (http://csdms.colorado.edu/wiki/Main_Page) 
3ESMF: Earth System Modeling Framework (http://www.earthsystemmodeling.org/index.shtml) 
4OpenMI: Open Modeling Interface (Association) (http://www.openmi.org/) 
5CUAHSI: Consortium of Universities for the Advancement of Hydrologic Science, Inc. (http://www.cuahsi.org/) 

 

5.2  IEM Education and Use 
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Workshop participants consistently expressed the need for a specific focus on education. To 

promote and improve IEM within the stakeholder community, a symbiotic relationship needs to 

exist between academic, government, non-government institutions and the general public. 

Academic institutions train the next generation of scientists and engineers, so developing an 

appreciation of and skill sets that deal with multi-dimensional problems, allows for a more 

holistic and systematic understanding. Academic curricula could be designed that not only 

develops IEM science and tools (e.g., modeling frameworks) but are also structured to clearly 

articulate how the various disciplines can connect and contribute to transdisciplinary solutions or 

approaches. The subject of IEM is beginning to see inroads within academic institutions 

(Ramaswami et al., 2005), especially those associated with civil, environmental, and computer 

engineering.  

 

Workshop participants also supported the idea of identifying exemplar applications of IEM and 

utilizing them as a vehicle for education and to promote best practices. 

 

7.0 Summary 

From discussions held during a series of workshops and the literature review performed for this 

paper, it is clear that integrated environmental modeling (IEM) represents a critically important 

approach for providing science-based information to environmental decision makers and policy 

developers. It is also clear that there is significant ongoing effort from many groups across the 

world to address the issues and challenges related to IEM. These efforts collectively represent a 

natural progression of the science and application of IEM. In this paper, we have stepped back 

and taken a holistic view of IEM, its role in decision making, its elemental parts, the manner in 

which it is currently practiced, and the issues and challenges that remain to be addressed. With 

the perspective afforded from this view, we present a roadmap to provide direction and context 

for the continued advancement of IEM.  

 

IEM provides a science-based structure to assimilate and organize multidisciplinary knowledge. 

It provides a means to apply this knowledge to explain, explore, and forecast environmental-

system response to natural and human-induced stressors. Its structure serves as a unifying vehicle 

of communication among stakeholders holding diverse perspectives, values, and priorities. It 
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serves the decision makers’ needs to understand the dynamic workings of systems involving 

social, economic, and environmental components, compare impacts among decision scenarios, 

analyze trade-offs among options, ask “What if?” questions, avoid the creation or transfer of 

problems in pursuing solutions to the problem at hand, adapt strategies based on ongoing 

monitoring of the system, and respond to unintended consequences.  

 

In all of the workshop discussions leading up to the roadmap presented in this paper, there were 

several omnipresent themes that related to how we think about complex problems and how we 

should conduct the science and application of IEM. These are not new ideas; most have been part 

of the modeling conversation and literature for quite some time. The intent of sharing them here 

is to state that they remain not only relevant but critically important to the future value and 

acceptance of IEM.  They should be explicitly considered and applied to IEM activities 

articulated in the roadmap. They are: 

 

• Systems Thinking: Intrinsic to solutions of complex problems is the idea that an 

appropriate decision (i.e., one that is science-based, cost effective, socially responsible, 

adaptive, and sustainable) requires a systems framework and approach. All activities 

should reflect awareness of the larger system into which they fit.  

• Stakeholder Involvement: Ensuring appropriate stakeholder participation, assimilating the 

range of stakeholder perspectives, contributions and needs, and developing a consensus 

understanding of the problem, decision goals, conceptualized system, and solutions must 

be viewed as an essential ingredient for the conduct of IEM from individual components 

to complete decision support systems and applications. 

• Community Development: Sponsoring, nurturing, and participating in a global community 

that transcends individual groups and organizations will facilitate learning, sharing 

(knowledge and tools), and communication. 

• Openness: Openness is a combination of transparency, cooperation, and collaboration. 

Openly sharing the products of individual research and development efforts will allow a 

wider access to and enable innovation with respect to IEM science, technology, and 

applications. 
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• Reusable products: Community wide acceptance and use of globally recognized best 

practices and standards in the design and implementation of software-based science 

products is fundamental to long term IEM value and acceptance.  

• Investment: Virtually any effort to develop a portion of an IEM solution for a problem 

has value beyond its original need. To realize this value (e.g., make it available to the 

larger community) requires an investment beyond that necessary for the problem at hand. 

This investment must be shared among those organizations that sponsor and fund IEM. 

 

In developing the IEM roadmap, we organized the discipline of IEM as a landscape containing a 

set of interdependent elements including applications, science, technology, and community. IEM 

applications are the stakeholder community’s methods for selecting, organizing, integrating, and 

processing the combination of environmental, social, and economic information needed to 

inform decisions and policies related to the environment. The science of IEM provides the 

knowledge and integrative strategies that support and serve applications and related decisions. 

Technology represents the primary means by which the science of IEM is expressed and applied. 

Integrated modeling systems are constructed and executed on a variety of platforms serving 

research, applications, and education. Community reflects the fundamental nature of modern 

complex problems (i.e., problems affect communities and are solved by communities). In an 

equally important way, the community of IEM practitioners plays a fundamental role in the 

research and development of IEM science and technology. The roadmap presented in this paper 

is organized by IEM landscape element and includes a series of activities that represent a holistic 

approach to addressing the issues and challenges discussed throughout the workshops and 

summarized in this paper. Here we summarize the major activity areas for each element, whose 

details are captured in Figures 2, 3, 6, and 7. 

 

IEM Applications: The roadmap related to IEM applications focuses on three principal activity 

areas. First, with respect to stakeholder involvement, roadmap activities include further 

development of methods and guidelines for elucidation and integration of diverse knowledge 

bases, perspectives, values, and priorities. Secondly, activities are focused on the use of IEM in a 

fully adaptive decision and policy formulation context. And finally, activities are focused on the 
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identification and promotion of best practices, the use of applications as a tool for education, and 

the ability to reuse applications.  

 

IEM Science: The roadmap related to IEM science focuses on four principal activity areas. The 

first area involves developing awareness and guidelines related to holistic systems thinking and 

the design of integrated modeling systems for coherence and complexity. A second area of 

activity includes advancing the design of data monitoring studies to reflect the needs of IEM for 

cross-disciplinary data for model setup and evaluation. In the area of model evaluation, activities 

include the development of systems-levels methods for calibration and sensitivity and 

uncertainty characterization. Finally, peer review of complex IEM systems and their applications 

require attention. 

 

IEM Technology: There are three principal areas of activity for IEM technology. First, activities 

are included that focus on the development of protocols and standards for software design and 

implementation for reuse and interoperability. Secondly, activities are included that focus on 

building tools to enable automated discovery and utilization of IEM components and systems. 

The final technology activity area focuses on methods for further exploiting the World Wide 

Web and related technologies.  

 

IEM Community: A principal activity related to IEM community includes the articulation of 

the IEM science domain and its relationship to contributing disciplines. Additional activities 

include further developing and energizing a global community of practice for IEM, establishing 

IEM as a formal academic discipline, and encouraging funding organizations to coordinate 

funding efforts related to IEM.  

 

Finally, discussions have recently begun concerning the implementation of this roadmap and 

activities. A key aspect of the implementation is that solutions to common issues and challenges 

reflect community-wide participation and acceptance. As such, implementation of the roadmap 

faces several challenges, principle among them is the need to transcend individual problem needs 

and organizational mandates and pursue solutions to core issues and challenges of IEM (i.e., the 
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roadmap), as a well connected, cooperative, and collaborative global community. We encourage 

all IEM practitioners and stakeholders to contribute to this global awareness and effort. 

Disclaimer 
 

The views expressed in this paper are those of the authors and do not necessarily reflect the 
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