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An emerging problem in conservation is whether listed morpho-species with

broad distributions, yet specialized lifestyles, consist of more than one cryptic

species or functionally distinct forms that have different ecological requirements.

We describe extreme regional divergence within an iconic endangered butterfly,

whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate

and supplant the brood in ant societies. Although indistinguishable morpho-

logically or when using current mitochondrial and nuclear sequence-, or

microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit

different Myrmica ant species and experience 100 per cent mortality with each

other’s hosts. This reflects major differences in the hydrocarbons synthesized

from each region by the larvae, which so closely mimic the recognition profiles

of their respective hosts that nurse ants afford each parasite a social status

above that of their own kin larvae. The two host ants occupy separate niches

within grassland; thus, conservation management must differ in each region.

Similar cryptic differentiation may be common, yet equally hard to detect,

among the approximately 10 000 unstudied morpho-species of social parasite

that are estimated to exist, many of which are Red Data Book listed.
1. Introduction
To set meaningful priorities in conservation and for practical remedies to suc-

ceed, it is vital to ascertain whether the threatened morpho-species named in

Red Data lists are likely to consist of more than one cryptic species [1,2] or

functionally distinct genotypes. In theory, regional (co-)adaptations may be

amplified in closely coupled biological systems [3], such as obligate mutualisms

[4] and host–parasite arms races [5]. In the case of insect–insect interactions,

both parties may be susceptible to strong selection within small spatial scales,

even between neighbouring landscapes [6,7]. Thus, unexpected subsets of

host specificity, rapid evolution and cryptic speciation are an emerging feature

of insect-parasitoid studies [8], and apparently exist, possibly in extreme forms,

among the estimated 100 000 morpho-species of poorly studied insects that

interact with ants (myrmecophiles) [9].

DNA analysis transformed biologists’ ability to detect cryptic species within the

described morpho-species [10,11], and with a burgeoning array of reference

sequences available (e.g. Consortium for the Barcode of Life), an increasing

number of species complexes are being identified [2]. Nevertheless, commonly

used, affordable techniques may be insensitive to detecting differentiation that

has arisen recently or from selection on one or a few genes that affect the phenotype

in major ways [12–14]. Maculinea (large blue) butterflies exemplify this problem: all
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six recognized morpho-species are iconic flagship insects, long

identified as global conservation priorities [15–17], that possess

attributes associated with cryptic speciation [2], including

socially parasitic young stages that use non-visual, non-tactile

cues, including chemical and acoustical mimicry, to infiltrate

and exploit ant societies [15–19]. Recent analyses of mitochon-

drial- (COI, COII) and nuclear sequence data (EF1a, wingless),

as well as microsatellite data, suggest that each morpho-species

of Maculinea that has a predatory lifestyle contains cryptic

lineages, but recognized cuckoo species (species that are fed

directly on regurgitations by ants; see the electronic supplemen-

tary material, figure S1e) could not be distinguished [15,20–22],

despite their closer integration and local coevolution with ant

societies and, typically, more extreme host specificity [9,23,24].

We studied the regional divergence that nevertheless

appeared to exist within the endangered cuckoo butterfly

Maculinea rebeli (Hirschke), which was itself indistinguishable

from a close relative, Maculinea alcon (Denis & Schiffermüller),

in recent molecular studies [20,21]. Prior to 1991, each of these

congeners was classed as globally vulnerable [25], but uncer-

tainty about their taxonomic status led to exclusion from

subsequent lists. It is not disputed that Ma. rebeli and Ma.
alcon are distinct ecotypes (or putative ecospecies) which

inhabit different ecosystems, xerophytic and moist grassland,

respectively, and exploit different plant and Myrmica species

[9,22]. Both are extreme specialists whose respective larvae

feed initially on the flowerheads of Gentiana cruciata and

Gentiana pneumonanthe on typical sites, a distinction widely

used, including here, to classify the two types. Larvae then

infiltrate Myrmica ant colonies in their final instar, where

they live for 11–23 months and acquire more than 98 per

cent of their ultimate biomass (see the electronic supplemen-

tary material, figure S1) [9]. They achieve this transition by

abandoning their host plant and secreting simple cocktails

of hydrocarbons that resemble the chemical signatures of

Myrmica grubs sufficiently well to trick foraging workers

of any Myrmica species to ‘rescue’ the mimic and carry it

into the underground brood chambers [9,18]. However,

although each caterpillar is adopted indiscriminately by the

first forager to encounter it [9], each Myrmica species whose

nest it enters represents not only a different food but also a

different enemy, chemical template to mimic [26] and living

environment for 92–96% of the intruder’s life: unsurprisingly,

caterpillars typically survive with the single, or occasionally

sibling, model ant species that they mimic best [9]. Thus,

within colonies of the model host species, the intruding

larvae successfully compete with the ant brood for worker

attention and are soon fed (and rescued) preferentially by

the nurse ants (see the electronic supplementary material,

figure S1e), a subterfuge that is achieved by synthesizing

additional hydrocarbons shortly after adoption that more pre-

cisely mimic their host Myrmica species (but other Myrmica
species less) [27]. By contrast, caterpillars carried into nests

of other Myrmica species suppress their secretions and rely

on the passive acquisition of their host’s gestalt odour for

social integration [27]. Acquired camouflage alone, however,

is insufficient to survive periods of stress or deprivation,

when nurse ants become discriminatory and xenophobic [28].

We noticed that populations of Ma. rebeli in southwest

Europe and Poland appear to exploit very different species of

Myrmica, Myrmica schencki and Myrmica sabuleti, respectively

[9,29]: ants whose chemical recognition profiles differ more

than any other known pairs of Myrmica species [26] and
which occupy different niches within grassland. We therefore

studied the exclusivity of host specificity that has evolved in

each region by measuring survival both in natural populations

and in the laboratory. We then devised behavioural exper-

iments to assess the social status achieved by Spanish and

Polish larvae after infiltrating the two host ant societies, and

also identified the mechanism responsible for host specificity

by analysing the mimetic chemicals secreted by pre- and

post-adoption larvae from each region. Finally, we described

the key attribute of the niche occupied by each ecotype

(or cryptic species) of this endangered butterfly, which provides

the essential knowledge for their future conservation [16].
2. Material and methods
(a) Measuring host specificity in natural populations
Host specificity was measured by comparing the proportions of

caterpillars that were adopted into different Myrmica nests with

the proportions that survived to adulthood or pupation. Data

were obtained from three populations for 5 consecutive years

near Panticosa in the Spanish Pyrenees [9,30] and in one popu-

lation for 4 years near Przemyśl, southeast Poland [22]. The

proportion of larvae adopted by different ants was estimated

by baiting beneath stratified random samples of gentians and

by counting the number of eggs on each plant [30,31]. Previous

work had shown that there was no difference in egg or larval sur-

vival on gentians growing in different ant territories, nor in the

ratio of larvae retrieved from beneath plants by different ant

species: the first Myrmica worker to encounter a larva retrieved

it, and where two species overlapped, there was no bias in retrie-

val towards one species [30,32]. The distribution of the egg

population on gentians is, therefore, an accurate surrogate for

the distribution of the final-instar population entering nests of

each Myrmica species [30,32]. Adult estimates of Ma. rebeli were

obtained by recording eclosing individuals along stratified trans-

ects across sites, and identifying the nest after confirming that it

contained an empty pupal case [30,31]. Additional data were

obtained by excavating all Myrmica nests near gentians along

stratified transects that had supported known densities of eggs

the previous year and by counting the pupae they contained.

No mortality has been recorded in pupae in Myrmica cells

before eclosion [30–32].

A map of regional host specificity (figure 1) was compiled

from our published results [9,29–32] supplemented by

additional field data. The distributions are considered to be

near complete for Poland [22,29], the French and Spanish

Pyrenees and southern Alps [30–32], but the northern Alps

and Massif Central were less comprehensively sampled and

may contain greater complexity in host use. Host use in Italy,

Hungary and central Switzerland was not mapped.

(b) Laboratory experiments of host specificity
Host specificity from the two regions was measured using naïve

laboratory My. schencki and My. sabuleti colonies, collected from

the Jura, east France, midway between the Pyrenees and Przemyśl

in a landscape lacking the butterfly (figure 1). Six nests of each

species were excavated and divided into subcolonies, maintained

on a standard diet in Brian nests [33]. After 6 to 8 weeks acclimat-

ization, more than 100 G. cruciata flower spikes were randomly

collected from the Polish and Spanish sites, and the resultant

final-instar larvae were used within 12 h of leaving their foodplant

to establish experiments (§2b–d). First, larval survival was

measured in 22 laboratory cultures, each containing 50 workers

and five ant larvae, established from the stock nests (six pairs of

My. schencki, five pairs of My. sabuleti). A total of 123 Ma. rebeli
larvae from Poland and 97 from Spain were introduced in

http://rspb.royalsocietypublishing.org/
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Figure 1. Host specificity of Maculinea rebeli in Spain and southeast Poland. (a) Field survival: outer circle, egg distribution (¼larval adoption, see §2a) in different
Myrmica ant territories (n ¼ 2859 Spain, 102 Poland); inner circle, ant species where Ma. rebeli survived to pupae or adults (n ¼ 148 Spain, 548 Poland). Map:
blue, My. schencki recorded as sole host; pink, My. sabuleti primary host; red circle, source of laboratory test ants in Alps. (b) Larval survival after 17 days in paired
laboratory ant colonies set from the same naive French source nests.
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groups of seven so that each set of cultures contained matching

pairs of colonies, each derived from the same stock nest. Larvae

that died in the first 7 days were replaced, and total survival in

each nest was recorded after 17 days. Statistical analysis was con-

ducted by paired two-tailed t-test.
(c) Social status achieved in natural and unnatural
host colonies

We assessed the social status achieved by each form of Ma. rebeli
within colonies of each Myrmica species in a standard bioassay [23]

that involved perturbing laboratory ant colonies and recording the

order in which the ants’ own brood or the mimetic caterpillars

were rescued. Groups of five butterfly larvae from each region

were adopted into matching colonies of näive French My. schencki
and My. sabuleti, using separate replicate nests to those used in §2b.

Every test colony also contained five brood items each of kin ant

pupae, large and small larvae, making a total of 20 immature individ-

uals and 20 workers per replicate. Cultures were established in

413 cm2 boxes containing a small moist sponge pad beneath an

inverted 6 cm diameter saucer with a notched entrance, under

which the ants gathered their brood and Ma. rebeli (figure 2). Three

hours after the Ma. rebeli caterpillars had been introduced, we per-

turbed the experimental colonies by uncovering the brood

chamber and relocating it over another pad nearby; we then recorded

the order in which the nurse ants rescued their 15 brood items or the

five Ma. rebeli and carried them into the new nest (figure 2). The same

experiment was repeated 7 days later, which represents a sufficient

period for Ma. rebeli caterpillars to attain their maximum potential

integration with a host society, yet remaining a similar size to
when first adopted, i.e. the same size or smaller than the Myrmica
pupae and large larvae [23,32]. The number of replicates for each

ant–butterfly combination tested varied owing to a paucity of ant

pupae and butterfly deaths (especially with unnatural hosts): n¼ 8

(figure 2a,b), n¼ 6 (figure 2c,e), n¼ 5 (figure 2d,h), n ¼ 4 (figure 2f)
and n ¼ 3 (figure 2g). Fisher’s exact tests were used to ascertain

differences in the probability of a class of item being retrieved or

abandoned by worker ants after perturbations. We also made

three types of non-parametric analysis of the rank order in

which chosen items were retrieved, within or between treatments:

Kruskal–Wallis to establish whether ants rescued items randomly

or selectively; Wilcoxon to test for changes in the order of selected

items after Ma. rebeli had lived for 7 days with the ants compared

with the initial 3 h; Mann–Whitney to test for differences in the

order in which ant brood or butterfly caterpillars were selected

within each of the eight combinations of ants and butterflies shown

in figure 2. In addition to Mann–Whitney analysis, we used a ran-

domization procedure whereby ranks were assigned at random for

each trial twice. We recorded the difference in median between the

two draws and repeated the procedure 10 000 times providing a fre-

quency distribution for differences in medians to arise without

selection. We then compared the observed differences in median

between the item classes and assessed their likelihood to occur at

random (see the electronic supplementary material, table S1).
(d) Analysis of surface semio-chemicals on
Maculinea rebeli larvae

To test whether observed regional differences in Ma. rebeli’s
host specificity could be explained by variation in mimetic
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246.66, p , 0.001). After 7 days with their natural hosts (e,h), Ma. rebeli were rescued first equal with kin pupae (Mann – Whitney W ¼ 38.5, p ¼ 1.000;
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semio-chemicals, we tracked the changing chemical profiles of

caterpillars from each region when reared with each ant, from

uncontaminated pre-adoption final instars (see the electronic sup-

plementary material, figure S1b), to individuals 6 weeks after

adoption (see the electronic supplementary material, figure S1e),

and finally to the latter after isolation from ants for 5 days,

which allows acquired semio-chemicals to dissipate and prompts

the hungry caterpillars to release their own secretions [27]. Hexane

extracts of surface chemicals were obtained [18,26,27] from:

(i) unparasitized My. schencki and My. sabuleti on our study sites

in the Pyrenees, Poland and the naive ants in France that had

not experienced Ma. rebeli (figure 1; n ¼ 5 workers from five

nests of each ant species per locality); (ii) eight batches per

region of pre-adoption final-instar Ma. rebeli larvae sampled

after leaving G. cruciata before contact with ants (see the electronic

supplementary material, figure S1b; n ¼ 5 larvae per batch,
P

40 individuals for each type of Ma. rebeli); (iii) Ma. rebeli
larvae after living 6 weeks with naïve French ants (see the elec-

tronic supplementary material, figure S1e), n ¼ 5 (Spanish þ
schencki and Polish þ sabuleti), n ¼ 3 (Spanish þ sabuleti and

Polish þ schencki); and (iv) Ma. rebeli larvae reared as in (iii),

then isolated from ants and kept unfed and singly in sterile con-

ditions for 5 days; n ¼ 5 (Spanish þ schencki), n ¼ 4 (Polish þ
schencki), n ¼ 3 (Spanish þ sabuleti and Polish þ sabuleti).

The chemical and statistical analyses of extracts followed an

established protocol [26,27]. Maculinea extracts were concentrated
to 20 ml, ant workers to 50 ml and 2 ml of every sample were ana-

lysed by gas chromatography with mass spectrometric detection

using a HP 5890II gas chromatograph and HP 5971A mass selective

detector, and ultra-high purity helium as the carrier gas with 10 psi

column head pressure. Mass spectral data were acquired in full scan

mode over 40–600 m/z. Mass chromatograms were initially

screened for hydrocarbons by examining the selected ion chromato-

gram of m/z¼ 57. The chromatogram was integrated at a threshold

value of 12 (HP integrator) to obtain the areas under the peaks

measuring the total ion count. With each sequence of samples,

we also analysed alkane standards (n-C20–n-C36), and the position

of each peak within that range in a sample was calculated as an

equivalent chain length (ECL) [26]. Mass chromatograms were

inspected to ensure that they were free of gross interferences and

that peaks of interest, such as branched and straight alkanes and

alkenes, were chromatographically distinct and symmetrical. We

excluded peaks that were column bleed, siloxanes or phthalate plas-

ticizers as indicated by a characteristic abundant ion at m/z 149.

Peaks of interest were tentatively identified by a combination of

ECL number and inspections of their full scan mass spectra and

matching with the NIST-97/08 mass spectral database.

For statistical analysis, the area under each peak was

expressed as the proportion of the sum of all peaks in the chro-

matogram [26]. Samples were compared using multivariate and

non-parametric multi-dimensional scaling on the ranks of the

Bray–Curtis similarities [34]. The extent of a final lack of fit
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was assessed by a STRESS statistic [26] before pairwise differ-

ences between species and treatments were assessed using an

analysis of similarities [35] in PRIMER-e v6. We used the average

pairwise distance between groups, and assessed two averages

with a two-sample t-test, to compare differences in the shift of

similarities between groups.

(e) Myrmica niches on Maculinea rebeli sites
Baits were placed under 223 flowering G. cruciata plants in Spain

to record the species of Mymica foraging around them [31]. Veg-

etation structure (height) was measured using Stewart’s direct

method [36] at four diagonal points 5 cm from each plant.

Species’ niches were compared using two-tailed t-tests having

confirmed normality of the data.
3. Results
(a) Host specificity
In three Ma. rebeli populations over 5 years in the Spanish

Pyrenees, we found that eggs were laid indiscriminately [37]

on G. cruciata growing in the territories of four species of

Myrmica, yet 100 per cent of adults emerged from My. schencki
nests the following summers, despite only 24 per cent of the

larval population being adopted by that ant (figure 1a;

z ¼ 2 96.81, p ¼ ,0.001). By contrast, for 4 years near Prze-

myśl, Poland, 28 per cent of Ma. rebeli larvae were adopted

by My. schencki, but no adult emerged from their nests

(z ¼ 2 9.66, p ¼ ,0.001). Instead, 77 per cent of adults

emerged from My. sabuleti nests and the remainder from

Myrmica scabrinodis, a chemically similar [26] close sibling to

My. sabuleti [38] (survival with My. sabuleti . My. scabrinodis;
z ¼ 2 3.85, p ¼ ,0.001). In Poland, we observed My. schencki
workers eject mutilated Ma. rebeli larvae from the nests into

which foragers had retrieved larvae a few hours earlier, with

each corpse showing clear signs of attack by their putative hosts.

Well-fed captive ants are more tolerant of intruders than

in the wild [28]. Nevertheless, we obtained a similar pattern

of differential survival by Ma. rebeli within 17 days of
introduction to standardized laboratory My. sabuleti or

My. schencki cultures established from naive colonies from

France (figure 1b; Spanish butterfly = Polish butterfly

survival with My. schencki, t5 ¼ 2.51, p ¼ 0.054; Spanish

butterfly = Polish butterfly survival with My. sabuleti,
t4 ¼ 4.10, p ¼ 0.015).

(b) Social status of caterpillars in natural and unnatural
host species’ colonies

Maculinea rebeli larvae did not integrate with their host society

in the first hours after their adoption, being the last items to

be chosen by workers on the rare occasions they were rescued

after colony perturbation by exposure to light (see figure 2a–d
and the electronic supplementary material, table S1). As

expected [23], workers generally selected their pupae ahead of

their large larvae and retrieved both in preference to small

ant larvae. However, after a week with their natural hosts,

Ma. rebeli from Spain and Poland were chosen equal first with

the kin pupae of My. schencki and My. sabuleti, respectively, and

significantly ahead of the smaller ant larvae (see figure 2e,h and

the electronic supplementary material, table S1). But when each

was reared with its unnatural ant host, just 20 per cent of week-

old butterfly larvae were rescued, and these were afforded

lowly status, ranking well below small ant larvae (see figure

2f,g and the electronic supplementary material, table S1). Even

this may overestimate integration, because many Ma. rebeli
larvae were killed in unnatural host Myrmica nests, and we

perhaps tested the least maladapted individuals in the most

socially accepting colonies.

(c) Analysis of model and mimetic chemical profiles
Given the multi-functionality of hydrocarbons [39], perfect

matches by Ma. rebeli secretions to the dissimilar recog-

nition profiles of My. schencki or My. sabuleti [26] were

not expected [27]. Nevertheless, Ma. rebeli from each

region secreted a distinctive cocktail that mimicked its natu-

ral host’s signature with increasing likeness (figure 3).
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After living 6 weeks with laboratory ants, both types of

social parasite resembled their natural and artificial hosts

significantly more closely than did pre-adoption larvae

(t2 – 3 ¼ 2 4.28 to 218.41, p ¼ ,0.001, see the electronic

supplementary material, table S2 for full statistics). How-

ever, after 5 days of isolation, the profiles of Spanish

rebeli reared unnaturally with My. sabuleti, and Polish

rebeli with My. schencki, shifted to resemble their natural

model more closely (t43 ¼ 7.38, p ¼ , 0.001 and t27¼ 3.26,

p ¼ 0.003, respectively). In particular, the former lost one com-

pound, tentatively identified as 1-methyl-tricosane (see the

electronic supplementary material, table S3), which it had evi-

dently acquired from My. sabuleti and which was absent from

My. schencki, and instead started synthesizing heptacosane

and 3-methyl-tricosane, diagnostic hydrocarbons of My.
schencki which were absent or just detectable on My. sabuleti.
Similarly, isolated Polish rebeli lost dotriacontane and

octacosane acquired from My. schencki (but undetectable on

My. sabuleti) and gained docosane, an n-alkane characteristic

of My. sabuleti, but not of My. schencki. It is noteworthy that

two of these three emerging mimetic hydrocarbons (docosane,

3-methyl-tricosane) synthesized by isolated 7-week-old

Ma. rebeli larvae were absent from the simpler profiles secre-

ted by pre-adoption larvae. By contrast, individuals reared

with their natural host did not change significantly (Spanish

rebeli with My. schencki, t35¼ 0.99, p ¼ 0.327) or became

less like it (Polish rebeli with My. sabuleti, t19¼ 5.03,

p ¼ , 0.001) after isolation.

(d) Niches of host ants in grassland
We found that My. schencki inhabits shorter turf than

My. sabuleti in the xerotypic grasslands that support Ma.
rebeli in the Pyrenees (table 1: My. schencki = My. sabuleti
t98 ¼ 3.05, p ¼ 0.003; My. sabuleti = My. scabrinodis
t29 ¼ 6.37, p ¼ 0.001; My. scabrinodis = Myrmica rubra ns).

Similarly, as befits the more thermophilous ant, we observed

My. schencki predominantly in well-grazed swards on skeletal

soils in Poland.
4. Discussion
Our results reveal a major difference in the physiology of

populations of Ma. rebeli in Spain and southeast Poland,

enabling each social parasite to infiltrate and exploit a

very different Myrmica host society—a degree of specializ-

ation that makes each incompatible with the other’s host

species. By contrast, some taxonomists consider Ma. rebeli
itself to be a mere ecotype of Ma. alcon rather than a true

species. On current knowledge, the known hosts of these

two cuckoo Maculinea belong to three distinct groups of

Myrmica [38]: rubra (includes ruginodis), scabrinodis (includes

sabuleti) and lobicornis (includes schencki), of which Ma. alcon
exploits representatives from the first two groups [9] and
Ma. rebeli from the second two. Field [40] and pre-adoption

chemical [24] evidence suggest that similar exclusive differ-

entiation may have evolved between the main European

form of Ma. alcon that exploits My. scabrinodis and that of

Scandinavia and the Pays-Bas that is adapted to My. rubra/
ruginodis. Current molecular techniques compound the con-

fusion, for no wide-scale differentiation was detected

between or within Ma. rebeli and Ma. alcon [20,21], perhaps

because current forms of these extreme specialists evolved

rapidly in recent millennia [20] and/or very few genes are

involved. Unfortunately, lycaenid butterflies in general,

and Maculinea species in particular, are notoriously difficult

to pair in captivity, making large-scale cross-breeding exper-

iments on hybrids exceedingly difficult. Thus, although

some morphologists and recent genetic analyses currently

recognize one cuckoo species of Maculinea (Ma. alcon), eco-

logical studies suggest two cryptic species (Ma. rebeli and

Ma. alcon) [9], and our current functional/physiological

studies point towards three (possibly four) recent siblings,

drawn from the above, exploiting rubra-, scabrinodis- and

lobicornis-taxa of Myrmica.

Whatever the taxonomic status of each form, all are ill-

served by traditional conservation paradigms based on

species listing. Like ecospecies [41], each type exploits a

resource that occupies a different niche or biotope, and all

are threatened by habitat degradation or destruction. In

the case of Ma. rebeli, My. schencki requires more frequently

grazed grassland than My. sabuleti and considerably more

than My. scabrinodis. The successful restoration to the UK

of Ma. arion resulted from creating optimum habitat for

its host My. sabuleti [16]: similar management would pro-

mote Ma. rebeli in southeast Poland yet cause population

extinctions elsewhere in Poland (figure 1a) and in Spain.

Regional host shifts are not unknown in social parasites,

especially among cuckoo species [24,40,42]. However, the

more different the ecology, physiology, defence and social

organization of hosts, the less we consider it probable that

the extreme adaptations required to exploit them will be

expressed by phenotypes of a single species [43]. Indeed, all

six morpho-species of insect social parasite whose ecology,

mimicry, host use or genetics have been studied show evi-

dence of cryptic speciation (Microdon hoverflies [43],

predatory Maculinea [15,20,21]) or extreme differentiation

(cuckoo Maculinea), making it likely that the phenomenon

is common among the approximately 10 000 unstudied

morpho-species [9] of insect social parasites, many of which

are Red Data Book listed [15,25]. Other parasitic systems

may be similar, particularly where species’ interactions are

governed by non-morphological cues such as chemical

signalling or resistance [8,10,43]. Thus, while molecular

techniques have strengthened the species paradigm by

identifying cryptic species among certain types of listed

morpho-species [8,10,11], conservationists cannot yet rely

on them [12–14] to recognize functionally distinct forms or

http://rspb.royalsocietypublishing.org/
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siblings of extreme specialists which perhaps differ by a

single gene or which evolve and disappear over millennia

rather than epochs, and yet are among the most interesting

and threatened species on the Earth.
We thank P. W. H. Holland for illuminating discussions on specia-
tion, R. Hails and S. Freeman for statistical advice, J. C. Wardlaw,
S. Everett and A. Worgan for help with experimental insects,
A. Górnicki for fieldwork, Richard Lewington for artwork and EU
Framework programmes Macman and CLIMIT for funding.
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