oct 1982

INSTITUTE OF TERRESTRIAL ECOLOGY
(NATURAL ENVIRONMENT RESEARCH COUNCIL
NCC/NERC CONTRACT F3/03/80
lITE PROJECT 466
Final Report to Nature Conservancy Council

THE BIOLOGICAL SURVEY OF BRITISH RAIL PROPERTY

CAROLINE SARGENT

Monks Wood Experimental Station Abbots Ripon
Huntingdon

This report is an official document prepared under contract between the Nature Conservancy Council and the Natural Environment Research Council. It should not be quoted without permission from both the Institute of Terrestrial Ecology and the Nature Conservancy Council.

INSTITUTE OF TERRESTRIAL ECOLAOGY
 (NATURAL ENVIRONMENT RESEARCH COUNCIL)

NCC/NERC CONTRACT F3/O3/80
ITE PROJEC'T 466
Final Report to Nature Conservancy Council

THF BIOLOGICAL SURVEY OF BRITISH RAIL PROPERTY

CAROLINE SARGENT

Monks Wood Experimental Station Abbots Ripton

[^0]"The railways were-built with the idea that they would make the countryside more beautiful."

Sir John Betjeman, 1979
BBC Radio Broadcast

```
-

Following the introduction, in which the aims of the project are outlined, a brief review of the literature is given. This has been largely concerned with alien and adventive plants, dispersing with traffic and goods, although more recently the ruderal vegetation of some European station yards has been studied and the ecology of railway embankments in Finland described. The Section continues with a discussion of the railway environment, and selected plant species (complete lists given) are related to particular habitats. Species found during the survey are compared with those mentioned in County Floras. A bias toward grassland plants and bryophytes occurs in the survey lists, whilst the floras: describe more alien and ruderal species. The reasons for this bias are discussed.

In Section 3, the collection of data using a geographical stratification (track classification) of railway land is described. An outline of the stepwise numerical technique developed to handle the very large amounts of information gathered is given, and the classification of 32 defined plant communities discussed in some detail. Several of these communities (noda) are unique, and have developed in response to the particular conditions found along railway verges, which are not strictly mimicked elsewhere. The distribution..of each nodum is given in relation to the track classification, and environmental characteristics are defined.

In the final Section, the selection and distribution of sites of biological interest are described. 185 sites were considered to be biologically outstanding, and these are listed, together with notes on preferred management, in 5 independent appendices designed to be distributed in the 5 BR Regions. The appendices complement detailed site files previously prepared for the NCC. The report concludes with a description of changes in railway vegetation. 265 quadrats first recorded in 1977 were revisited in 1981. A Markov population model has been constructed from this information and predicts the increase in area of finc-leaved grassland. The value of the model is discussed and its implication for the conservation of \(B R\) verges considered.
Page
SUMMARy ..... i
1 INTRODUCTION ..... 1
2 SPECIES AND HABITATS ..... 3
2.1 Introduction ..... 3
2.2 Habitats ..... 4
2.2.1 The.railway cess
2.2.2 Verges
2.3 Floristics ..... 8
2.3.1 The cess flora
2.3.2 Annual species on the cess
2.3.3 Cess cryptogams
2.3.4 Cess perennials and woody species
2.3.5 The verge flora
2.3.6 Alien species
2.4 Vice County flora and survey records ..... 18
3 VEGETATION ..... 68
3.1 Sampling ..... 68
3.2 Classification and ordination ..... 68
3.3 BR vegetation noda ..... 76
3.3.1 Heath and fern associations
3.3.2 Fine-leaved grasslands
3.3.3 Arrhenatheretum elatioris
3.3.4 Tall herb and bramble
3.3.5 Secondary woodland
4 CONSERVATION OF RAILWAY VEGETATION ..... 99
4.1 Introduction ..... 99
4.2 Biological interest sites ..... 99
4.3 Changes in railway vegetation ..... 103
Page
5 KEY TO ABBREVIATIONS ..... 63
6 KEY TO LITERATURE SEARCHED ..... 64-67
7
TABLES
TABLE 2.1 BR approved wecdkillers ..... 6
TARLE 2.2 Railway species common to survey and literature ..... 19
TABLE 2.3 Higher plants on British Rail land ..... 23-62
TABLE 3.1 The. constant attributes.of the railway track classes ..... 69
TABLE 3.2 Area of rural railway verges by track class ..... 70
TABLE: 3.3 The distribution of vegetation noda within track classes on \(B R\) land ..... 77
TABLE 3.4 Heath and fern associations 212 samples, 226 species ..... 79
TABLE 3.5 Fine-leaved grasslands 388 samples, 354 species ..... 82
TABLE 3.6 Arrhenatheretum elatioris 1594 samples, 461 species ..... 86
TABLE 3.7 Tall herb and bramble 791 samples, 349 species ..... 90
TABLE 3.8 Secondary woodland 474 samples, 277 species ..... 93
TABLE 3.9 Miscellaneous associations 68 samples, 175 species ..... 96
8 FIGURES
FIGURE 2.1 The distribution of plants withdifferent strategies within differentrailway habitats10
FIGURE 2.2 The distribution of alien and native phanerogams recorded during survey within different habitats on \(B R\) land ..... 16
FIGURE 2.3 The proportions of phanerogams and cryptogams found on BR land during the survey and reported in the literature ..... 21
FIGURE 3.1 Generalised site diagram ..... 71
FIGURE 3.2 Key to initial TWINSPAN ..... 73FIGURE 3.3 Average linkage between the membersof the initial TWINSPAN classification(937 samples and 442 species) foundusing. the Czekanowski similaritycoefficient74
FIGURE \(3.495 \%\) confidence ellipses enclosing the datum points of the. 4 major vegetation groups on BR land as ordinated with DECORANA ..... 75
-FIGURE.4.1 BI Sites within track classes ..... 101
FIGURE 4.2 Population change ..... 103
FIGURE 4.3 Vegetation dynamics ..... 105

Legend
Following page. 68 Eastern Region Southern Region Western Region London Midland Region Scottish Region

ACKNOWLEDGEMENTS109
REFERENCES ..... 110

\section*{APPENDICES}

Appendix 1 Areas of biological interest on British Rail Eastern Region

Appendix 2 Areas of biological interest on British Rail Southern Region

Appendix 3 Areas of biological interest on British Rail Western Region

Appendix 4 Areas of biological interest on British Rail London Midland Region

Appendix 5 Areas of biological interest on British Kuil Scottish Region

This is the final report to the Nature Conservancy Council (NCC) on the survey of British Rail land (BRS). The survey was begun in response to concern about changing vegetation management practices. The use of chemical weed control was questioned in Parliament (Parliamentary debates 1961). To assess the situation, quantifiable information about the resource was needed.

In attempting to. provide such information, the. Institute of Terrestrial Ecology (ITE) has asked the following questions:
a. How large is the resource? The length of actively used \(B R\) line is given by iil as 18000 km (ll 300 miles), although estimates of the area-of verge and permanent, way (cess) were not available, and measurements have therefore been made.
b. What kind of habitats occur? There are distinct differences between cess and verge; but is the slope, aspect or kind (cutting or embankment) of engineered formation important in determining the
-distribution of vegetation and animals? What are the important effects of management and disturbance?
c. Does the railway provide a refuge for some plants and animals? What species move along, or are blocked by, this linear environment?
d. What kinds of vegetation occur? Are these associations unique to the railway, or essentially continuous with neighbouring forms?
e. Is the system comparatively stable, or are irreversible changes occurring? Is intervention needed to prevent such change or to protect particular areas?

Six reports have been prepared by ITE for the NCC. A history of railway formations (Sheail 2979) describes the building and maintenance of the habitat. Unfortunately, detailed records of management for any particular stretch of line were not kept, although the general strategy of cutting, clearing and burning is known.

The first interim report (Way \& Sheail 1977) outlined the objectives of the work-and. described a preliminary look at railway land in which selected lengths of line in 3 of the 5 (Eastern, Southern, Western, London Midland, and-Scottish) BR Regions were walked.

Each of 4 other interim reports (Way et al. 1978; Sargent \& Mountford 1979, 1980, 1981) deals with a particular BR Region (Southern and Western, of shorter track lengths, being combined). These were surveyed successively during the ficld seasons of 1977-1980. The interim reports give detailed.species information and describe the development and modification of sampling and analysis. A stratification of RR land was introduced during the survey (Sargent \& Mountford 1980), and previousiy surveyed sites were ascribed to this stratification post hoc.. During 1981, some areas of Eastern; Southern and Western Regions were revisited, enabling an analysis of changes that had taken place to be made, and allowing some previously undersampled areas to be visited.

In this final report, information from all Regions is pooled and analysed. Some general principles are drawn and an attempt is made to answer the questions posed. All plant species and vegetation types found and identified are catalogued. The reader is referred to previous reports for information about animals on railway land. It was not possible, within the resource, to sample populations systematically, and, although all species identified were recorded, no attempt to analyse what are effectively no more than field notes has been made.

\subsection*{2.1 Introduction}

Much of the interest in railsay botany has been in the study of adventive plants. Whilst describing the flora of Thalkirchen Station (near Munich), Kreutzpointner (1876) gave the earliest account of the introduction of alien species with rail traffic. Thellung (1905) showed that a large proportion of introductions into Switzerland were associated with the railway (which, at that time, carried the greater bulk of goods), although Leymann (1895) had earlier recognised that railways were also.interesting from.: the point of view of the native flora. Working in latvia, he noted certain meadow species growing along embankments where they had been transported with sod, or soil, during construction. He was able to predict the origin of ballasting materials by the plants he found. Matthies (1925). made an important contribution to railway botany by considering the effects of construction, management, aspect and slope on the distribution of species. Much recent floristic work in Europe has followed this approach (eg Lejmbach et al 1965; Lienenbecker \& Raabe 1981; Niemi 1969; Westhoff 1964). The literature has been reviewed by Muehlenbach (1979), who also gives a very detailed account of the adventive flora of the St Louis (Missouri) railway yards and tracks.

In Britain, 2 important studies have been made. Dony ( 1955,1974 ) describes the flora of railway lines in Bedfordshire, paying particular attention to adventives and to plants introduced with shoddy for the Luton wool industry, whilst Messenger (1968) has made a careful study of the flora of the railway in Rutland.

Additionally, the majority of County Floras (especially in England and Wales) cite plants from railway habitats. A literature search has been made and a list of all plants recorded from active (lines in use at present) BR land compiled. This.list has been compared with species found during the current ITE/NCC BR land survey (Tables 2.3 and 2.4).

1932 phanerogams (including aggregates, species, subspecies and varieties) have been described from \(B R\) land. 611 of these are unique to the literature, 807 were confirmed during survey and 214 are newly reported. Cryptogams had been less ithoroughly described, and, of the 323 species (pteridophytes and bryophytes only) given in. Table 2.4, 52 occur in the literature only, whilst a further 94 records were confirmed during survey and li77. new species have. been added to the list. This rather more than doubles the number of cryptogams previously known to occur on railway land.

The majority of records has been stored in a machine-readable form, and computer-generated lists of vascular species were sent to all Botanical Society of the British Isles (BSBI) recorders within whose Vice Counties sampling sites were located. Many recorders kindly checked the lists and marked now Vice County, or \(10 \mathrm{~km}^{2}\), records where appropriate. Where these records have been confirmed, they are given in Tables 2.3 and 2.4.

More than 200 vascular species gave rise to one or more new 10 km records, whilst there are 49 Vice County records (ist or 2nd) and one species new to the United Kingdom (Hieracium zygophomm; Sell \& West 1980). Additionally, much helpful and interesting information based on local knowledge was received.

This Section begins with a description of railway habitats. Species are then related to the habitats in which they are preferentially found, and the. Section concludes with a comparison between survey and County flora records.

Particular attention is paid to plants growing along the cess (permanent way), as \(B R\) safety regulations prevented their systematic recording and hence numerical classification and description (Section 3). Detailed observations were, however, made.

\subsection*{2.2 Habitats}

\subsection*{2.2.1 The railway cess}

The railway cess is strictly defined as the freely draining area of cindery material over which ballast (the track bed) and rails are laid. The cinder is usually exposed between tracks and in station and shunting yards. For the purpose of this discussion, the sense has been extended to include all engineered railway habitats in which desiccation limits the development and diversity of the flora. These are the stressed habitats (sensu Grime 1979) and include, together with cinder, ballast (in situ and discarded along verges), masonry and rock cuttings.

Ballast is composed of rock chippings, not usually more than 10 cm (4 inches) in diameter in any one plane. Until recently, limestone was used in some areas; however, attrition levels became unacceptable_and granite is now preferred. Ballast underlying rails usually becomes polluted with plant (and sometimes domestic) litter, and with olly and nitrogenous wastes from trains. There is a gradual accretion of fine particled material amongst the chips. Drainage becomes impeded, and, for safety reasons, the ballast is replaced every few years. Spent material is tipped on to adjacent verges.

The term 'masonry' here includes tunnel mouths, bridges, platforms, buildings, and concrete posts and sleepers. Particularly in East Anglia, where natural rock outcrops are scarce, these areas provide habitats which support interesting additions to the flora (Walters 1969; Dony 1974).

Rock cuttings expose a wide variety of surfaces. Where the material .1s soft or unstable, as with chalk or some shales and sandstones, cuttings are engineered at less than \(90^{\circ}\). Elsewhere, the walls may approach vertical. Marked differences are observed between predominantly northern and southern aspects.

As along sand/shingle foreshores, particle size, and hence water retention capacity (Fuller 1975), has a major effect on the kinds of plants that become established. Brandes (1979) has investigated the colloidal capacity of soil samples from railway stations in Eastern Saxony (DDR), and is able to show correlation with vegetation. Hard vertical rock cuttings clearly retain very little water, whilst softer, rotting, or more sloping surfaces have a higher capacity. Newly laid ballast is engineered to be very freely draining. Niemi (1969) has shown comparatively high maximum temperatures and wide diurnal fluctuations' on a Macadamised track bed: in Finland. It is very likely that a considerable amount of condensation occurs when ballast cools at night. Along verges, spent ballast has a mulching effect, the surface layer inhibiting evaporation from below. The material is often tipped on to existing vegetation, and a damp, nutrient-rich soil may be formed from the dead and decaying plants beneath. The flora in these areas is strongly influenced by the depth of ballast, although the proportions of smaller-particled, organic and chemical materials present will also determine which kinds of plant become established.

Drainage-through cinder along the track may become impeded by accumulation of plant litter. In railway yards, cinder is sometimes admixed with brick and rubble, as well as organic materials and oily pollutants. Yards often become compacted by trampling and vehicular movement, and, despite the larger sized fraction, will retain water more efficiently than the looser packed cinder along tracks.

Detailed edaphic measurements are required to expand these observations.

The water balance of the cess is altered when plants become established. Rail traffic safety requires that the track is freely draining and that sight lines are kept open (C Beagley, BRB \(H Q\), personal communication). The track bed and a restricted area of adjacent verge are therefore sprayed with chemical weed killer. This is done annually in early summer from especially adapted trains run by BR or under contract with Chipmans Chemical Co Ltd or Fisons. Pest-Control Ltd. Vegetation in railway yards is more often controlled by manual application of herbicide - sprays or granules. A list of herbicides currently authorised for use on BR land is given in Table 2.l.

Thus, in many cases, the vegetation on the cess is subject to radical disturbance (management) as well as water stress.

TABLE 2.1 BR approved weedkillers


\subsection*{2.2.2 Verges}

Verges comprise cuttings (positive slopes from the railway line), embankments (negative slopes), and flats. Drainage ditches have been dug at the base of most embankments, whilst cuttings drain more frequently into concrete channels or conduits adjacent to the cess. In some areas, borrow pits, now flooded were dug to provide additional material for embankment building. The construction of slopes is described-in the interim report 'The history of the railway formations' (Sheail. 1979).

The essential distinction between sloping formations is in the excavation of cuttings and-the engineering of embankments, which were built with introduced materials. The difference is reflected in the soil composition and structure: cuttings usually have a mineral soil, characteristic of: local drift or solid geological conditions, whilst organic (nitrogenous and oily) train wastes drain on to embankments (and flats). In neither case has the time elapsed..since building (very approximately, 100 years) been sufficient for soil profiles to develop fully. The microclimate of ---embankments in Finland has been investigated by Suominen (1969), who. showed that: seasonal and diurnal temperature fluctuations were
_...greatest at the top of slopes, where the soil was also most freely draining. The microclimate is modified down slope where the vegetation becomes increasingly closed. Comparable studies have not been made along flat verges or cuttings, although Dony (1974) has shown that. a more diverse flora develops on south-facing slopes.

In Britain, spent ballast is tipped on to embankments (and sometimes on flats or cuttings if the slope is not too great). In addition to obvious mechanical disturbance and the removal of sites available for establishment, accumulation of ballast influences the temperature and drainage of the soil, and hence the composition and structure of the vegetation (Section 3).

Verge management has been discussed in several of the interim reports (eg 1977; 1979), and the discontinuance of traditional hand maintenance methods, scything, cutting, controlled burning, was a prime motive for this research: the implication being that the fine, species-rich grassland, likely to have developed after 100 years of such management; \(\because\) was at risk... Since the early l960s, BR policy has been to cut and clear verges only where a hazard exists, although, recently, -labour relcased by cut-backs in expansion and electrification has been. deployed to verge maintenance ( \(C\) Beagley, personal communication). In particular, scrub and woodland have been cleared from main line cuttings where accumulation of leaf litter on rails has interfered with traction and braking.

A narrow strip (generally less than 3 m ) adjacent to the track bed is, however, usually sprayed annually by train with selective herbicides (Table 2.1). The growth retardant Krenite (carbamoylphosphonate) was introduced for the purpose during 1980, but has met
with little favour, as the cost of running additional spray trains in late summer, when the chemical is most effective, is inhibitive. Until recently, 2-4-5T was used to help control brushwood (usually thorn, ash and bramble), but this is now banned and Picloram and Garlon applied instead.

Ditches are usually more carefully maintained, because the stability, and hence safety, of line depends on adequate drainage. Boundary hedges are also looked after to prevent casual straying by animals or trespassing. In some areas, following complaints from local farmers, rabbit-proof fencing has been installed.

In general, the maintenance of main and overhead electrified lines is of a higher standard than that of branch lines. Cuttings are
-more frcquently cleared than embankments, because of the dangers of falling trees/branches and of leaf litter accumulating on the lines. Trees are encouraged along embankments, where they help stabilise the slope, and have sometimes been planted for this purpose after construction.

\subsection*{2.3 Floristics}

Tables 2.3 (phancrogams) and 2.4 (cryptogams) list all species found during the survey and mentioned in the literature search (bibliography, p 64 ). The nomenclature follows Flora Europaca (vascular plants) or Smith (1978; bryophytes), and the order is as in our recording method (example in Sargent \& Mountford 1979), with phanerogams subdivided into grasses, forbs and woody species.

Although pteridophytes were recorded with forbs, they are here, more logically placed with bryophytes. Bryological records wore only kept during the final 3 -years of the survey, whilst lichens, fungi and algae were not systematically recorded. Such species as the dog lichen (Peltigera canina (L) Wild) and the edible morel (Morchella esculenta L.) which occur on-freely draining verges were, however, noted when seen.

Plants recorded in the survey were annotated with habitat information (Tables 2.3 and 2.4 , columns 5 and 3 respectively). Each species was ascribed to one of the following classes:
\begin{tabular}{rl}
B & \(=\) Ballast \\
C & \(=\) Cinder \\
M & \(=\) Masonry \\
\(\mathrm{R}, \mathrm{RC}=\) & Rock, rock cuttings \\
\(\mathrm{YDS} \quad=\) & Yards, station or shunting \\
\(\mathrm{E} \quad=\) & Epiphytic (not included in \\
& analysis in Figure: 2.1 )
\end{tabular}

CESS
Stressed environments subject to periodic desiccation and often to intensive management/ disturbance.
\(\left.\begin{array}{ll}\text { CUT } & =\text { Cuttings } \\ \text { EMB } & =\text { Embankments }\end{array}\right\}\) SLOPES

\section*{VERGES}

Environments supporting closed vegetation. Previously scythed/cleared/burnt annually, now sporadically managed. Freely draining to aquatic.

The general category 'verges' was used. for plants which showed no distinct preference, or which occurred too infrequently to classify with accuracy. Very often the distinction between well-drained cuttings and embankments becomes obscure.

All phanerogams-observed on \(B R\) land have been classified further by life cycle (Table 2.3, column 2), distinction being made between annuals and biennials or perennials (following Clapham et al 1962).

The proportions of species of different life forms and cycles occurring in the generalized categories, cess and verges are shown in Figure 2.1. The cess flora is discussed first, and the verges are described subsequently.

\subsection*{2.3.1 The cess flora}

Annuals and cryptogams, \(23 \%\) of which occur preferentially on the cess (Figure 2.1) are discussed before the less commonly found perennials and woody species. A large proportion of the plants growing on the cess are not native (Figure 2.2), and the section concludes with a discussion about introductions.

\subsection*{2.3.2 Annual species on the cess}

Several strategies are adopted by annual plants growing on the cess. Winter annuals are particularly abundant: they are able to complete their life cycles before chemical spraying. takes place: in early spring. During the desiccating. months of high summer, these plants are in a dormant: (seed) phase. The most frequent of. the winter annuals along cindery verges and track margins are

FIGURE 2.1 The distribution of l lants with different
strategies within different railway habitats.
Each \(13.62 \mathrm{~mm}^{2}\) within the circle represents
one species. \(1 \%\) of species occupies \(1.77 \mathrm{~cm}^{2}\)
Total species \(=1296\).


Erophila verna (flowers March - June) and Arabidopsis ihaliana (April - May). Valerianella locusta (April - June) is also characteristic.

Senecio viscosus (July - September), on the other hand, germinates and flowers after the tracks have been sprayed. This plant is abundant along the cess in late summer and Vice County (93) and 10 km square records indicate that it is actively extending its range into Scottish Region. Another successful tactic is shown by such plants as Myosotis arvensis and Cerastium glomeratum, which 'hedge their bets' by flowering (and sometimes germinating) from April to September:. S. viscosus and A. thaliana are considered; outstanding 'railway species' (sensu Almquist 1957), occurring in the category of species mentioned most often in the literature and recorded at more than \(5 \%\) of survey sites (Table 2.2).

Several local or rare annuals occur on \(B R\) land.. These include Dianthus-amneria (July - August), Linaria supina (June - September) and Geranium rotundifolium (June - July). Although it is
-recognised that spraying maintains an open, non-competitive habitat, it is clearly very important, if the plants are to survive in this habitat, that the event should be carefully timed. Chaenorhinum minus was found considerably less frequently during the survey than would be expected from the large number of records in the literature (Table.2.2). C. minus is an annual plant usually found on cinder in, or close to, the track bed. Although it flowers from May to October its life cycle is characterised by spring germination (Arnold 1981), and it seems probable that a large proportion of plants are-unable to set seed before being killed by herbicide. In the United States, where spraying usually occurs later in the year, \(C\). minus is becoming extremely widespread on railway land (Arnold 1981; Muehlenbach 1980).

A group of annuals, more usually associated with sand dunes and shingle, are also found along thecess. In some cases, these will have spread inland along railway lines, dispersal being helped by traffic. Cerastium semidecandrum and Mysotis ramossissima occur quite commonly. More rarely, Erodium cicutarium and finthriscus caucalis are found. A very small population of Cochtearia danica was seen in Eastern Region (Hertfordshire - confirmation of oid record) where it was growing in the spray shadow. cast by a discarded sleeper. A single site was also found inland on London, Midland Region ( Bl 25 , Snowford Junction), where the plants occurred on an unsprayed siding. It is likely that these are islands - or remnants of a once more continuous population - which spread from coastal areas.

On the less rigorously sprayed and often more compact cinder of yards and sidings, annual grasses, including Vulpia bromoides, V. mijuros and Aira caryophyllea (both flowering lay - July), occur and are frequently associated with acrocarpous bryophytes and Cladonia spp. Where there is more trampling, Sacira apetala and Poa annua become common.

The most commonly occurring annual on the ballasted track bed is Geranium robertianum, which elsewhere is found on shingle as well as in woods and along hedgerows. It is generally frequent on railway land and is an carly coloniser of ballast when spraying has been interrupted. Linum catharticum grows on cinder, ballast and freely draining verges. It was.also recorded from ledges in siliceous rock cuttings in west Scotland, and is clearly not restricted to the calcareous habitats where it is found more generally.

Grime (1979) has shown that the annual strategy is adapted to stressed environments. His findings support the observations that a large proportion of annuals on BR land grow preferentially on the cess.

\subsection*{2.3.3 Cess cryptogams}

The life cycle and the habit of some cryptogams also enable successful growth on the cess. Certain acrocarpous, endohydric bryophytes are-abundant on cinder. These tolerate dcsiccation and wide diurnal and seasonal fluctuations in temperature (Richardson 1981). Funaria hygrometrica is particularly widespread (Table 2.2), occurring on a great majority of sites. Bryum argenteum, \(B\). caespiticium and \(B\). capillare are also very common, as are Ceratodon purpureus, Barbula convoluta, B. unguiculata and Polytrichum juniperinum. It was expected to find the sand dune colonising Tortula muraliformis, but this species proved surprisingly uncommon.

Where drainage is impeded, the thallose hepatic farchantia polymoipha becomes frequent, whilst, in the high rainfall areas of the upland north and west, a very wide variety of bryophytes, including Dicranella palustris, Dicranum scoparium and Polytrichum formosur, occur on cinder track margins. In these areas, B. argenteum becomes quite rare.

Horsetails are also common on cinder margins. Their rhizomes penetrate the soil deeply, and the plants show considerable resistance to herbicide (Sargent \& Mountford 1979). Equisetum arvense is particularly widespread on lines in England and Wales. where its distribution is probably only limited by the dependence of the gametophyte (haploid generation) on adequate surface water for development and fertilisation. In Scottish Region, E. palusǐ? and E.-sylvaticum share the same habitat.

Few cryptogams survive on ballast on the track bed unless regular management is interrupted. Discarded (and hence no longer sprayed) material is colonised by crustose lichens (especially in the west and _north), and by acrocarpous bryophytes including Tortiula muralis, Grimmia pulvinata, and, less frequently, Orthotrichum diaphanum. Barbula unguiculata and others of the cinder group (above) also colonise spent ballast, and Racomitrium canescens is frequently found in upland regions.

Where ballast is shaded, pleurocarps occur more often, and, under the 'summer canopy' of rosebay, nettle or false oat grass, Erachythecium rutabulum almost invariably covers the stone chips. It is often only absent at, and may be used as an indicator of, sites which have recently been burnt. Laphocolea bidentata is a very common associate of \(B\). rutabulum.
-An.interesting bryophyte of the cess in Scottish Region is Tetraplodon mioides. This species was found luxuriantly covering a - sheep lying near the track, on to which the sheep had evidently strayed and been killed by: a train.

Because resources were limited, it was only possible to record bryophytes systematically from. within quadrats. This meant that railway masonry was not-adequately explored. However, some rock cuttings were quadratted, and more obvious species on walls and bridges were noted. Bryophytes were almost invariably more luxurious and frequent on north, than on south, facing cutting walls. Barbula spp., Homalothecium sericeum and Campylium chrysophyllum were amongst those species found often in chalk cuttings, whilst Trichostomun crispuium, Seligera calcarea and Tortella tortuosa occurred morefrequently on limestone. Eucladium.verticillatum. was noted under. the arches of more than one bridge, growing on damp lime-containing mortar.

A greater variety of species were observed on siliceous cuttings, with Grimmia, Tortula and Isothecium spp. being especially common, except on sandstone where Dicranella heteromalla became ubiquitous. On flushed or dripping walls, larger foliose hepatics, including Diplophyllum albicans and Gymnocolea inflata, were often found, whilst the more local Odontoschisma denudatum was recorded from Baron Wood (Bl78), on wet sandstone.

Asplenoid ferns, including Asplenium trichomanes, A. ruta-muraria and Ceterach officinarm, were occasional on rock and masonry. All masonry ferns were less frequent than the literature (especially Nalters 1969; -Dony 1974) might suggest, possibly because of the complete decline of steam locomotion, which must have produced considerable condensation on tunnel mouths, bridges and platforms, favouring the gametophyte, and hence establishment of such species. Asplenium viride was found at one site (R2O3, Woo Dale).

\subsection*{2.3.4 Cess perennials and woody species}

Perennials and woody species occur infrequently on systematically managed areas oi the cess (sce, however, Equisetum arvence above) although plants rooted on the verge may spread runners on to the track margin, where there is less competition. Poientilla reptans, fragaria vesca and bramble (Rubus fruticosus spp.) were particularly - often observed, and the habit is shared by Hiercoiven pilosella and Ajuga reptans, which may also successfully produce overwintering rosettes.

These plants are among the early colonisers of spent ballast tips, wherc, however, false oat grass (Arrhenatherum elatius) is very effcctive. False oat grass is the most common plant of \(B R\) land. It is known as a coloniser of limestone scree (Pfitzenmeyer 1962) and of onshore shingle banks (R Fuller, ITE, personal communication). It of ten forms more or less pure stands on ballast discarded one or two years previously. Adjacent to woodland, or an established source, bramble becomes very competitive, whilst, if the ballast includes a high proportion of cinder or fine grained material, Chamer'ion angustifolium (rosebay) and Senecio jacobaea (ragwort) colonise successfully. In upland areas of Scottish Region, where false oat and bramble are not found, colonisation is usually by ragwort. Some crucifers establish on this matrix: in London Midland Region, Lepidium heterophyllym was found frequently, whilst Sinapis, Diplotaxis, Draba and Sisymbrium spp. are common.

As with seaside annuals, habitat similarities encourage some sand dune and shingle perennials to move inland. Carex arenaria has a new Vice-County record for Herefordshire, where it was found growing on a cindery track margin. Both C. arenaria and Saxifraga granulata were found growing on a cindery track margin on the down side (away from the coast) only of a line in west Scotland, some 16 km ( 10 miles) inland from a known coastal site. The spread of propagules had presumably been assisted by rail traffic. On less thoroughly managed track beds, a more varied flora has survived. A particularly good example is found on the Isle of wight, where spray trains are not used. Much of the line has been closed, but the remaining 11 miles between Ryde and Shanklin are maintained manually. The ballast is of small shingle. Chaenorhinum minus is frequent on the track and Senecio squalidus, having crossed the Solent, has-become well established. (The verge flora is also of interest and includes Fulmonaria longifolia and Orobanche hederae). Spray trains are also absent from the west Wales coast line, being unable, for safety reasons, to cross the causeway at Barmouth. The track flora..is not outstanding, although some interesting coastal species occur, including Catapodium marinum and Vicia sylvatica.

Elsewhere, less used branch lines tend to be of interest. In Southern and Western Regions, Pirmila vulgaris, Viola riviniana and Lathyrus spp. are often found on the cess, whilst Epilobium lanceolatum, Barbarea verna and Linaria repens occasionally occur. At one site on limestone in north wales (Bl80, Graig fawr), plants
. growing on the ballast included Silene nutans, Helianthemwn conum, Minuartia veria and Geranium sanguinewm. Although still officially listed as active, this quarry line is seldom used - except as a public footpath!

A small group of perennials with Crassulacean acid metabolism are characteristic of the water-stressed track margin. These include Sedum rojlexum, S. acere and S. telephium. S. roseum is also common in Scottish Region.

Although many species may germinate on water-stressed ballast and
cinder, and up to 22 species have been recorded within one 2 m square quadrat R261, Rigmoor) in early summer, the majority of plants are extremely stunted, and it is clear that the survival rate is low. Where drainage is impeded, however, and water-retaining organic matter accumulates, successional stages from a ruderal tall herb community towards birch and sallow scrub are observed (eg RI 85, Derby Airport; R282/R200, Bogside). This is particularly characteristic of little used areas of railway yards. Many of the more common species are those most often described in floras (Table 2.2).

\section*{2.3:5 The verge flora}

The composition of the verge flora is outlined in Figure 2.1. It is dominated by native perennial species, and includes comparatively few ruderal, annual or alien-taxa. The majority of cryptogams are pleurocarpous or epiphytic. Much of the BR verge supports a closed vegetation (sensu Grime 1979) of false oat/fescue grasslands, with finer-leaved or species-rich facies occurring on mineral cutting soils, and coarser forms with broad-leaved grasses, and dock, nettle, thistle, rosebay and invasive bramble on embankment slopes. The vegetation at the top of such slopes and on many flat areas adjacent to the track bed is open and disturbed by the tipping of spent ballast (see-above). Scrub invasion is widespread (proportions of defined vegetation.-types are given in Section 3 of this report) and in some areas, particularly towards the west coast and in steep cuttings (where management has not proved practicable), secondary woodland has become established. K Mellanby (personal communication) has suggested that the only area in Britain where secondary woodland is still expanding is along railway verges (used and disused; see, however, Section 4). On flats and embankment slopes, sallow, hawthorn and blackthorn scrub are common, with ash (Fraxinus excelsior) occurring remarkably often on colonised (old) ballast tips.

The flora shows considerable regional variation, with, for example, a larger woodland component in the west, and more aquatics on the footings and ditches of embankments crossing arable land in the east.

Species-rich chalk grassland and calcicolous scrub with dogwood (Comus sanguinea) and viburnum (V. Zantana and V. opulus) are common in Southern Region, whilst in Scottish Region Molinia grassland and pinewoods occur, with the ground flora including Vaccinium spp. or dryopterid: ferns. Railway verges provide a refuge for, and in some senses are a microcosm of, the British flora. . Almost two-thirds of the native vascular species occur, with only plants such as the pasque flower (Anemone pulsatilla) indicative of long established vegetation (Mellanby 1981) and rare or local lowland species (although a number of such were found, Tables 2.3 and 2.4 ) and aquatic and montane plants being poorly represented. Further study of the bryophyte flora would almost certainly. show it to be more diverse.

FIGUlRE 2.2 The distribution of alien (including adventive, introduced and naturalized) and native planerogams
recorded durini; survey within different habitats on 3ik land. Each 17.31 mithin the circle represents one syecies. \(1 \underset{\sim}{6}\) of species occupies \(1.77 \mathrm{ca}^{2}\). Total species \(=1021\).


Because the variety is so great and the bulk of objective information collected relates to the verges, verge specics are not individually described, but are discussed in Section 3, in conjunction with the vegetation types of which they are indicative or characteristic. Localities and habitats of interesting or outstanding species have been detailed in the site files prepared as appendices to provious interim reports (1979; 1980; 1981). These sites are indexed in 5 BK regional appendices to this report.

\section*{2.3. o Alien species}

The proportion of alien phanerogams', 29\% (Figure 2.2 from data inTable 2.4), on railway land is high. Of those recorded during the survey \(32 \%\) occurred preferentially on the cess, \(8 \%\) were found most often on railway slopes, whilst \(60 \%\) showed an indifferent distribution, or were recorded too infrequently to classify accurately. Only \(15 \%\) of native plants were found more often on the cess than elsewhere.

The introduction of plants along railway lines has been well .... studied (p 4 ; Nuehlenbach 1979). Particular attention has been paid to the origins of plants and to the goods or packaging materials with which propagules were transported. Species were, for example, classified into citrus, wheat or wool aliens (Thellung 1919), with provenances, respectively, from around the Mediterranean, North America or the-Antipodes (Meyer 1931; Kreh 1960). In Britain, Dony (1955) described a flush of shoddy aliens on railway lines in Bedfordshire shortly after the Second World Var, when little labour had been available for track management. Dany of these were ephemeral (Dony 1974). With the decline of the Luton wool industry and the introduction of chemical herbicides, most aliens have been lost and are now primarily of historical interest. Comparatively few ephemeral or adventive plants were recorded during the survey. Crop species were occasionally noticed, although agricultural seed is seldom now transported by rail. The majority of aliens are species which are physiologically adapted to the hot and desiccating cess, and which have taken advantage of the comparative lack of competition in this open environment.

Many such aliens are garden escapes ("ferroviatic ergasiophygophytes"!); some have been shaken loose from goods or packaging during transport: others casually discarded from carriage windows or dropped by birds perching on associated telegraph wires. Turbulence from rail traffic (first described by Mathies 1926 , and recently studied by Arnold 1981) has helped dispersal of some introductions (eg Senecio squalidus, Kent 1957; 1960; 1964), whilst others may have become temporarily attached to rolling stock. Buddleja davidii is winddispersed and rapidly colonises unmanaged yards in southern England, whilst the disjunct records for Cotoneaster simondsii in Scottish Region are almost certainly due to the spread of berries by birds. There is some evidence that EpiZobium adenocculon has been extending its range on Bli land, whilst new Vice County records are claimed for Barbarea intermedia (VC 84) and Bunias orientalise (VC 75), indicating that these aliens are also spreading. E. opientalis is.
usually restricted to south eastern England (Perring \& Nalters 1962), although the Rev G Graham (personal communication) has information about a railway site in County Durham, suggesting that the plant may have spread along the east coast main line to its new sites in Scottish Region. However, Graham records that the ballast on which \(B\). orientalis is growing came from Hartlepool where "many species were listed as ballast aliens in 1866 by John Hogg'.

It is likely that aliens will continue to establish and spread in these stressed habitats, assuming disturbance is not too great. A first UK record has been established for Hieraciur. zygophorum (Sell \& West 1980), found by a member (J O Mountford) of the survey team on a cindery track margin.

\section*{2.4 "Vice County flora and survey records}

The floristic tables are annotated with source information for all species taken from the literature. Where there are more than 2 sources, the total number of references is given. This number is, to some extent, an index of the "railwayness" of the plants. Chaenorhinum minus, for example, has been considered a typical railway species (Salisbury 1961) and is mentioned in the literature more than 40 times, although it is. less frcquently found at present. Almquist (1957) defined "railway species" as those plants which "occur remarkably often in the railway flora, or show a preference for, or are locally exclusive to, such a flora" (translated in Niemi 1969). To examine this idea further, an index of the frequency with which species were found during the survey was prepared and a comparison made between the frequency of our observations and.-the literature records. In making such a comparison the null hypothesis was that species would occur equally frequently in both datum sets.

A total of 901 species was common to survey and literature. All species recorded by us, are annotated with one of the following symbols (Tables \(\bar{z} .3\), 2.4, columns 4, 2 respectively):
\[
\begin{aligned}
\mathrm{R}= & \text { Rare, found in }<1 \% \text { of random sites or during the subjective } \\
& \text { (Biological Interest, Section } 4 \text { ) survey only } \\
0= & \text { Occasional, found in } 1-2 \% \text { of randon sites } \\
\mathrm{C}= & \text { Common, found in }>2-5 \% \text { of random sites } \\
\mathrm{VC}= & \text { Very common, found in }>5-20 \% \text { of random sites } \\
U= & \text { Found in }>20 \% \text { of random sites }
\end{aligned}
\]

TABLE 2.2
Railway species common to survey and literature

The Table groups, by frequency class, the 896 species common to survey and literature: the large aggregates of Bryum bicolor, llieracium, Rosa canina, Rubus jruticoosus; and faraxacum officinale which were not identified to species level are omitted. The data are reduced from Tables 1.3 and 1.4 , where information about the status of all other species observed less frequently on \(B R\) land may be found.
survey
SITES
\(>20 \%\)

5-20\%

Cardaria draba Chaenorhinum minus Convolvulus arvensis
Diplotaxis muralis Echium vilgare Fragaria \(x\) ananassa Lathyrus latifolius Linaria repens Medicago sativa Reseda Iutea Reseda luteola Senecio squalidus Valerianella locusta vulpia bromoides vulpia myuros

Arabidopsis thaliana. Leucanthemun vulgare Linaria vulgaris Senecio viscosus Senecio viscosus

\section*{LITERATURE RECORDS}
\[
>20
\]

Chamerion angustifolium

LITEATURE RECORD
\[
11-20 \quad \leq 10
\]

Equisetum arvense Festuca rubra Heracleum sphondylium Lathyrus sylvestris Bryum argenteum

Cardamine hirsuta
Centcurea nigra
Daucus carota
Erophila verna
Fragaria vesca
Hypericum perforatum
Lotus corniculatus
Potentilla reptans
Tussilago farfara
Vicia cracca
103 Species including: 712 Species
91 Forbs
6 Ferns
3 Grasses
1 Woody species
No Bryophytes
13 Forbs
6 Grasses
5 Woody species
5 Bryophytes

2 Ferns

The bulk of less recorded by the literature and us. Mainly grassland

Arrhenatherum elatius Brachythecium rutabulum Ceratodon purpureus. Cirsium arvense Cratcegus monogyna Dactylis glomerata Funaria hygrometrica Galium aparine Hedera helix Holcus lanatus Lophocolea bidentata Plantago lanceolata Poa pratensis Rumex acetosa Uritica dioica

31 Species including: (cess acrocarps) (ground-growing) common railway plants species and individuals of welldrained soil and cinder.

The hypothesised equivalents between literature and survey records were:
\begin{tabular}{clc} 
Literature & & Survey \\
\(1-2\) & \(=\) & \(R\) \\
\(3-5\) & \(=\) & 0 \\
\(6-10\) & \(=\) & \(C\) \\
\(11-20\) & & \(V C\) \\
\(>20\) & & \(U\)
\end{tabular}

The degree of correspondence in frequency class between coincident literature and survey records is low ( \(x^{2}=118.75, \mathrm{p}<0.1\) ). The cases when the survey and County floras correspond are fewer ( \(316,35 \%\) ) than those where the survey ( \(287,32 \%\) ) or the Floras ( \(293,33 \%\) ) recorded relatively more, ie 65\% of frequencics did not correspond.

This lack of correspondence could suggest that the selected frequency categorics are not equivalent. However, lack of correspondence would give a bias in one direction only, not the observed, extensive spread in both directions.

In Table 2.2 , species in the 2 most frequent classes from each source are compared. Residual data, 877 species, are broadly categorised rather than named.

There are 19 species common to the 2 highest frequency classes. They are gencrally plants of freely-draining grassland, although there is a blas towards ruderals in the literature group. Chamerion angustifolium is clearly the "railway species" (sensu Almquist) par excelience.

The discrepancies within and between the classes are due, in part, to the differing scopes of investigations. Restricted access (BR land is private property and trespassing is dangerous and carries the risk of a substantial fine) has limited much previous botanical work to station and shunting yards, whilst the present remit (with co-operation from \(B R\) ) has been to survey rural railway verges.

However, several of the plants, which were recorded during survey less frequently than expected, are declining because of changing railway management practices. Chaemorhinum minus (p. 10 ) and Convolvulus arvensis are good examples. C. arvensis is abundant on the Isle of Wight railway where spray trains are not in use. With the passing of steam, many saxicolous ferns have become less widespread on railway masonry. Other plants, eg Senecio squalidus and Diplotaxis musalis, have had their dispersal along railway lines well docurented (Kent 1957, 1960, 1964; Powell 1931), and may consequently have becn rather more zealously included, or overrated, in County Floras, whilst a further group, including Reseda spp. and Vulpia spp., are more characteristic of cinder flats and railway yards than of the rural verges on which the survey was focused.

Examination of the fuld list (Tables 2.3, 2.4; Figure 2.3) of plants occurring more frequently in the literature shows that there is a general bias towards introduced and naturalised species and towards some taxonomically difficult

FIGURE 2.3 The proportions of phanerogams and cryptogans found on \(B K\) land during the survey and reported in the literature. The species data are given in Table 2.3 and 2.4. Each \(9.03 \mathrm{~nm}^{2}\) within the circle represents one species. \(1^{\%}\) of species occupies \(1.77 \mathrm{ch}^{2}\). Total species \(=1955\).

groups which have been the particular interest of one or more authors. There is also a tendency for larger, or more showy plants, eg Verbascum spp. and Meililotus spp, which may be seen from railway carriage windows, to be more thoroughly documented. Railway coverage tends to be more extensive in Floras of southern and castern Britain, and there is some emphasis on plants with such a preferred distribution within this area, eg Kickria spp. and Lactuca. This may, however, also be due to the comparative continentality of the railway environment.

In the survey, on the other hand, more emphasis is placed on grassland and woodland species, and systematic recording produced many more records for Inconspicuous and common plants. In particular, no bryophytes have nore than 4 literature records and several grassland species very commonly found during survey, eg Eurynchium praelongum, Rhyncostegiun confertum, Rhijtidiadelphus squarrosus and Plagiomizum undulatum, are not mentioned at all.

41\% of all non-rare grasses were recorded more frequently during survey (Arrhenatherum eiatius occurred at \(>70 \%\) of random sites), whilst much higher abundance is assigned to species of Carex (19 out of 23 non-rare), Juncus (9 out of 11), Luzula (all 4 non-rare) and Rumex (5 out of 9).
plants whose range seems to be actively expanding are also more highly rated in the survey, eg Epilobium brunnescens, E. adenocaulon, Cotoneaster simonsii. and Rhododendron ponticum.

The species list for the survey shows that \(B R\) land includes more, and varied, grassland, woodland and moorland than an inspection of County floras, biased toward station yards and the railway cess, would suggest.

TABLE 2.3 Higher plants on British Rail land

The Table combines information from a literature search for species recorded growing in railway habltats with a complete list of plants found during the BR survey. The sources (or number of sources, where there are more than 2) are given for each species fron the literature, whilst survey plants are annotated with habitat and frequency information. Status and life cycles are noted (see text - for discussion). The plants are listed-alphabetically, although, following our recording procedures, grasses and woody plants are separated from forbs. Keys to atbreviations and to the literature searched will be found following Table 2.4.
GRASSES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & Status & Life Cycle & Frequen & Habitat & VC Records & Flora Records \\
\hline Agrostis avemacea & INT & P & & & & BEDS \\
\hline Agrostis canina/vinealis & & P & . 0 & v & 0 & \\
\hline Agrostie gigantea & & P & 0 & V & & 6 \\
\hline Ajrostis laclinantha & INT & P & & & & BEDS \\
\hline Agrostis scabra. & INT & P & & & & SURREY \\
\hline Agrostis stolonifera & & P & c & v & 0 & 7 \\
\hline Agrostio curtisii & & P & 0 (WR) & cut/v & & \\
\hline Agrostis capillaris & & P & \({ }^{\text {v/ }}\) & cur/4 & & 8 \\
\hline Aima carycpinyllea & & A & 0 & c & & 14 \\
\hline Aira prwecos \({ }^{\text {Alopecurug yerimilatug }}\) & & A & c & c & 0 & \\
\hline \begin{tabular}{l}
Alopecurus gemionatus \\
Alopecurus mbesuroides
\end{tabular} & & P & R & DIT & & \({ }_{4}^{\text {TEVIOT }}\) \\
\hline ALopecurus pratensis & & P & c & v & & 5 \\
\hline Amrophila areraria & & P & R & YDS & 0 & KARUKS \\
\hline Anthoxanthwn odoratum & & P & vc & v & 0 & \\
\hline Anthoxarthem puelii & INT & \(\wedge\) & & & & s. Lancs \\
\hline Apera interupta & & \(\wedge\) & & & & RUTLAND \\
\hline Apera spica-venti & & A & R (ER) & C & & 5 \\
\hline irrheratherwm elatius & & P & U & v & & 10 \\
\hline Avena fatua & NAT & A & R & в & & 7 \\
\hline Averuia pratensis & & p & 0 & v & 10 & , \\
\hline divenula pubescens & & P & C & v/C & 0 & 11 \\
\hline Backmannia arucheformis & INT & & & & & MONMOUTH \\
\hline Brachupodium pinnatum & & P & C (ER) & cur/v & 0 & 9 \\
\hline \({ }_{\text {Brachupndium sylvaticun }}\) & & P & c & v & & 6 \\
\hline Briza naxima
Eriza meaia & INT & \({ }_{\text {A }}\) & \({ }^{R}\) & \({ }^{\text {B }}\) & & BERKS \\
\hline Trisa iminor & INT & A & 0 & v & & \({ }_{5}\) SUSSEX \\
\hline Bromue arvensis var velutinus & INT & A & & & & sussex \\
\hline Eromus comnutatus & & A/B & & & & derbys \\
\hline Bromus diandima & INT & \(\wedge\) & & & & 3 \\
\hline Bramus erectus & & P - & C & v & 44(2), 45(3),0 & 14 \\
\hline imomas ercotus var villosus & & P & & & & SUSSEX \\
\hline Froma inermis
borma;
copidias & \({ }_{\text {INT }}\) INT & \({ }^{\mathrm{P}}\) & R & v & 7(3),0 & 4 \\
\hline Bromus madritensis & Int & A & & & & 4 \\
\hline Browas madritensie var ciliatus & INT & \(\wedge\) & & & & BEDS \\
\hline Bramue molliformis & INT & \(\wedge\) & & & & BEDS \\
\hline Eromes hordnceus ol & & A/B & 0 & v & & \\
\hline Sromus hordnceus ss
Broma hordaceus var antractus & & A/B & & & & 7 \\
\hline Bromus hordaceus var contractus
Bronua hordnceus var leiostachys & & A & & & . & leics, rutland \\
\hline Bronua hordaceus var leiostachys
Bromns \(x\) pseudothominii & & \(\hat{\wedge}\) & & & & \({ }_{5}^{\text {cloucs }}\) \\
\hline Bronks racerosus & & \({ }_{\text {A } / B}\) & R & v & & \({ }_{\text {MDDX }}\) \\
\hline Bromus ramodus & & P & 0 & v & 0 & 4 \\
\hline bromus rigidus & INT & A & & & & ESSEX \\
\hline Bromus rubens. & INT & A & & & & beds, MORAY \\
\hline Bromus écaiinus & NAT & \({ }^{1 / B}\) & & & & HERTS, S. LANCS \\
\hline Bromus sterilis & INT & \({ }_{\text {A }}^{\text {A/B }}\) & & \(\mathrm{v}^{\mathrm{v} / \mathrm{c}}\) & & 5
3 \\
\hline Cortaderia selloana & INT & \({ }_{\mathrm{P}}\) & R (WR) & YDS & & 3. \\
\hline
\end{tabular}
pecies

镪管点点
落
萖舁
敦

 ล్ర
\(\qquad\)
－

－

\(\qquad\) ○ロッ＞＞ I


 I



药 ๓ッッ 嵌


๗ ๗ n I I．

気烒空㟧
Flora Records
－

SOMERSET
GLOUCS －
\(R\)
0 －

0

 \(\ggg\) \(\rightarrow\) 空旦
 I
 ARARARくくくくくんかくんくん 品 

忌芯

云会

\section*{\(=-\)}
Flora Records

Status
 Species

\footnotetext{
Ilex aquifoliven Juglans regia
Jwiperus c commuis Labum:en anagyroides Lavatera arborea Ligustrum ovalifolion Ligustrwn vulgare Lonicer'a periclymenum Lupinue arboreus
Lycium barbarwn

Nalsonia aquifoliun
Malus sylvestris
Maius eyzvestris
Ononis rapens
Oronis spinosa
}

줄
\(\approx\)
菅



Flora Records

Frequency Recorded Habitat
During Survey
\(\mathrm{R} \quad \mathrm{V}\)
\(>\) 苞 \(\gg\) 告

\author{
\(\square\)
}
\(\gg\)
\(>\)


ล్ర
000
ぞお兒
\(n\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & \multicolumn{3}{|c|}{0} \\
\hline & & & & \\
\hline & & & & \\
\hline \[
\begin{aligned}
& \text { m } \\
& 0 \\
& >
\end{aligned}
\] & \(>\) & \[
\rightarrow>\text { 菭 }
\] & \(\gg\) & \(\rightarrow \gg\) \\
\hline & & & & \\
\hline & & & － & \\
\hline  & & \[
\begin{aligned}
& \text { OT} \\
& \text { Un }
\end{aligned}
\] & & \\
\hline Du & \(\propto\) & \(\approx \approx 0\) ． & ט & U ¢¢ \\
\hline
\end{tabular}

3

－
\(\circ\)
ぞ心. K
N
\[
\begin{aligned}
& \text { ๓ } \\
& 0 \\
& >
\end{aligned}
\]
\(\propto\)
0

\section*{Species}


\section*{\(\square \square\)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SPECIES} \\
\hline Frequency Recorded During Survey & Habitat & VC Records & Flora Records \\
\hline R & V & & s．LaNCS，MORAY NOTTS \\
\hline c & DIT & 0 & \\
\hline \multirow[t]{3}{*}{R， \(\mathrm{L} M \mathrm{R}\)} & cut & & \\
\hline & & & NOTTS \\
\hline & & & teviot \\
\hline R，Sc．R & DIT & & TEVIOT，GG \\
\hline R，Sc．R & v & & moray \\
\hline R & v & 0 & 4 jurham \\
\hline 0 & v & & \\
\hline \multirow[t]{5}{*}{R} & v／c & & MORAY \\
\hline & & & SUSSEX \\
\hline & & & \begin{tabular}{l}
GLOUCS，TEVIOT \\
6
\end{tabular} \\
\hline & & & moray \\
\hline & & & teviot \\
\hline \multirow[t]{2}{*}{R} & DIT & & ESSEX \\
\hline & & & RUGBY \\
\hline \multirow[t]{3}{*}{\({ }^{\circ}\)} & DIT & 0 & 5 \\
\hline & & & DERBYS \\
\hline & & & CAMBS，essex \\
\hline \multirow[t]{3}{*}{c} & v & & SUSSEX，MORAY \\
\hline & & & MORAY \\
\hline & & & teviot，GG \\
\hline 0 & V & & rutl，teviot \\
\hline c & \(\stackrel{\rightharpoonup}{ }\) & & \(4{ }^{4}\) \\
\hline R，LMR & cut & & moray \\
\hline R，ER & & & Gloucs，MDDX \\
\hline \multirow[t]{2}{*}{R} & v & 63 & \\
\hline & \(v\) & & \({ }_{4}^{\text {GG }}\) \\
\hline 0 & v & 0 & 8 \\
\hline 0 & v & 32（2）， 0 & RUTL，GG \\
\hline R & v & & \\
\hline c & v & & 4 \\
\hline 0 & v & & gloucs \\
\hline 0 ． & V & & \\
\hline R，WR & V & & \\
\hline \({ }_{\text {R，}} \mathrm{C}\) ER \(\cdot\) & V & & RUTL，teviot \\
\hline ＇0 & v & & LEICS \\
\hline c & v & 0 & gloucs，hayley \\
\hline \multirow[t]{2}{*}{c} & v & 0 & \[
\begin{aligned}
& \text { TEVIOT, GG } \\
& \text { WARWKS }
\end{aligned}
\] \\
\hline & & & GLoucs \\
\hline R & v & & \\
\hline c & v & & NORFOLK，TEVIOT \\
\hline R & v & & \\
\hline c & CUT & 0 & 5 \\
\hline c & v & 0 & 5 \\
\hline \multirow[t]{2}{*}{0} & v & & 5 \\
\hline & v & & \(3{ }^{3}\) \\
\hline \(\mathrm{R}, \mathrm{L} \times \mathrm{R}\) & R & & \\
\hline R，Sc．r & v & & \\
\hline
\end{tabular}
Species
NAT

\(\stackrel{\text { B }}{\text { ㄴ }}\)
公 空安安安穵
\(\stackrel{\underset{Z}{\mathrm{~K}}}{\mathrm{~K}}\)
\(\stackrel{\mathrm{H}}{\mathrm{K}}\)
空空空

\footnotetext{
 Vacciniwn vitiaidaea
Vibumum lantana

Vihurnum opulata
Vinca najor

Vitis vinifera
Sorbua laneastri
Sorbus lancastriensis
Vacoinum oxycoccus
}
FORBS

FORBS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & Status & Life Cycle & Frequency Recorded During Survey & Habitat & VC Records & Flora Records \\
\hline Anthemis arvensis & & A & 0 & V/C & & 4 \\
\hline Anthemis cotula & & A & 0 & v/c & & S. LANCS, MORAY \\
\hline Antherris cupiana & INT & A & R (WR) & V/c & & \\
\hline Anthemis tinctoria & & B/P & & & & 5 \\
\hline Anthemis tinctoria var discoidea & & B/P & & & & SURREY \\
\hline Anthriscue caucalis & & A & R (ER) & B & & 5 \\
\hline Anthrisous cerefoliwm & NAT & A & & & & BERKS \\
\hline Anthrisuss sylvestris & & B/P & vC & V, EMB & & 9 \\
\hline Anthyllis vulneraria & & P & C & \(v\), CUT & & \\
\hline Antiny?lis vulneraria ssp vulgaris & & P & & & & S. LANCS \\
\hline Anthyllis vulneraria ssp vulneria var vulneraria & & P & - . & & & MORAY \\
\hline Anthyllis vulneraria ssp carpatica var pseudovulneraria & & P & & & & MORAY \\
\hline Anthullis vulneraria ssp lapponica var lapponica & & P. & & & & MORAY \\
\hline Antirrhinum majus & & P & 0 & V & & 13 \\
\hline Aphanes arvenois ss & & A & 0 & V & 0 & 5 \\
\hline Aphanes microcarpa & & A & 0 & V & 0 & MDDX, MORAY \\
\hline Apion graveolens & & B & & & & S. LANCS \\
\hline Apizul nodiflorum & & P & 0 & DIT & & DERBYS, RUTL \\
\hline Aquilegia vulgaris & NAT & P & C & V & 0 & 12 \\
\hline Arabidopsis thaliana & & A & vC & c/v & 0 & 22 \\
\hline Arabis canvasica & NAT & P & 0 & C/v & & 3 \\
\hline Arabis hirsuta & & B/P & C & C/V & 0 & 7 \\
\hline Arctivm lappa & & B & 0 & V/EMB & & \\
\hline Arctium minus al & & B & C & V/EMB & & TEVIOT \\
\hline Arctiwn minus csp minus & & B & R & V/EMB & & RUTL, MDDX \\
\hline Arctiwn minus ssp pubens & & B & R & EMB & & RUTL \\
\hline Areriaria leptoclados & & A & 0 & C & 0 & 18 \\
\hline Arenaria serpyllifolia & & A & c & C/V & 0 & 13 \\
\hline Armeria m maritima & & P & 0 & R/M & & BEDS \\
\hline Armoracia rusticana & NAT & P & C & V & & 11 \\
\hline Artemisia absinthium & & P & 0 & C/V & & 11 \\
\hline Artemisia biennis & INT & B & & & & WILTS \\
\hline Artemisia maritima & & P & R & C & & \\
\hline Artemisia verlotorum & INT & P & & & & \\
\hline Artemisia vulgaris & & P & C & C/V & & 11 \\
\hline Ar:um maculatwn & & P & c & V & & RUTL, HAYLEY \\
\hline Arsomens sp & INT & P & & & & GG \({ }^{\text {G }}\) \\
\hline Asparagus officinalis & & P & 0 & V & & 8 \\
\hline Asphodelua tenuifolius & INT & P & & & & DEVON \\
\hline Aster Laevis & NAT & P & R & V & & MORAY \\
\hline Aster lanoeolatus & NAT & P & R & YDS & & \\
\hline Aster macrophyllus & NAT & P & R & v & 68 & CLYDE \\
\hline Aster novae-angliae & NAT & P & 0 & V & & ESSEX \\
\hline Aster novi-belgii & NAT & P & C & V & 0 & 12 \\
\hline Aster tripolium & & P & R (LMR) & EMB & & \\
\hline Astragalus cicer & INT & P & & - & & GG \\
\hline Astragaius danious & & P & R (ScR) & V & & \\
\hline dstragalus glycyphyllos & & P & R & CUT & & 3 \\
\hline Astrajulus odoratus & INT & P & & & & NOTTS \\
\hline Astruntia majur & NAT & P & & & & DERBYS, MDDX \\
\hline Asmaria balearioa & NAT & P & R & M & & SUSSEX \\
\hline
\end{tabular}

\section*{FORBS}

FORBS

FORBS

艺





















\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{INT} & \(\Lambda / \mathrm{B}\) & R & c/v & & 4 \\
\hline & A/B & R & c/v & & \\
\hline \multirow[t]{2}{*}{INT} & \(\wedge\) & & & & 3 \\
\hline & \(\wedge\) & R & v & & ESSEX \\
\hline Nat & A & 0 & V & & MDDX \\
\hline INT & P & & & & LONDOS \\
\hline \multirow[t]{5}{*}{INT} & P & & & & BEDS \\
\hline & B & c & v & 44 (2) & 9 \\
\hline & A & c & c/v & & 12 \\
\hline & A & & & & LEICS \\
\hline & A & & & & moray \\
\hline \multirow[t]{2}{*}{INT} & B & & & & WARWKS, RUGBY \\
\hline & P & R (ScR) & v & & teviot \\
\hline INT & A/B & & & & LEICS \\
\hline \multirow[t]{2}{*}{INT} & B & c & v & 0 & 18 \\
\hline & P & & & & SUSSEX \\
\hline \multirow[t]{3}{*}{NAT} & P & C & V & & KIRK \\
\hline & P & 0 & v & & 7 \\
\hline & A & R & V & 27 & BEDS \\
\hline \multirow[t]{9}{*}{NAT} & P & C & R/M & & 3 \\
\hline & B & 0 & \(\checkmark\) & & ESSEX, SUSSEX \\
\hline & P & c & v/CuT & & \\
\hline & P & & & & s. LANCS \\
\hline & p & C & v & & \\
\hline & P & 0 & v/CuT & & gloucs, teviot \\
\hline & P & 0 & v/CuT & 0 & MDDX \\
\hline & P & 0 (ScR) & v/CuT & & \\
\hline & p & & & & teviot \\
\hline \multirow[t]{2}{*}{NAT} & P & & & & 3 \\
\hline & B & vc & v & 75,78, 0 & 15 \\
\hline nat & P & 0 & v & 0 & \\
\hline \multirow[t]{3}{*}{1NT} & , & R & v & & BERKS \\
\hline & A & R & c/v & & 4 \\
\hline & A/B & R ( \(\mathrm{WR}, \mathrm{L} 1 / \mathrm{R}\) ) & c/v & & 4 \\
\hline INT & P & R & v & & LONDON \\
\hline \multirow[t]{3}{*}{NAT} & P & . & & & KIRK \\
\hline & & & & & SUSSEX, TEVIOT \\
\hline & P & & & & Gloucs \\
\hline NAT & P & & & & gloucs \\
\hline INT & \(\wedge\) & & & & CLYDE \\
\hline \multirow[t]{2}{*}{int} & & & & & SURREY \\
\hline & B & c & v & & 7 \\
\hline nat & A/P & 0 & CUT/R & & 26 \\
\hline \multirow[t]{4}{*}{NAT} & A/P & & & & 4 \\
\hline & P & R & v & & 15 \\
\hline & B & c & v & & 6 \\
\hline & B & & & & MONM \\
\hline \multirow[t]{5}{*}{INT} & P & R (LMR) & v & & 4 \\
\hline & B/P & R (LMR) & & & \\
\hline & A/B & 0 (ScR) & c & & 4 \\
\hline & \(\stackrel{\mathrm{P}}{ }\) & 0 (ScR) & v & & \\
\hline & P & 0 (ScR) & v & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & Status & Life & Cycle & Frequenc During S & ecorded ey & Habitat & VC R & Flora Records & \\
\hline Echinops bannaticus & INT & P & & & & & & & \\
\hline Echinopa exaltatus & INT & P & & & & & & & \\
\hline Echiwn vulgare & & B & & 0 & & V \({ }_{\text {DIT }}\) & 0 & 21 & \\
\hline Eleocinaris palustris & & P & & R & & DIT & & & \\
\hline Eleogiton fluitans & & P & , & & & & & DERBYS & \\
\hline Elodea canadonsis & NAT & A & & & & & & YORKS & \\
\hline Elshaltzia cristata & INT & ? & & & & & & \({ }_{3}\) & \\
\hline Endymium hispanious & NaT & P & & 0 & & V & & 3 & \\
\hline Endymion non-scriptus & & p & & C & & V & 0 & 3 & \\
\hline spilobium adenoculon & INT & P & & C & - & \(V\) & 0 & & \\
\hline Epilodium ciliatum & Nat & P & & C & & \(\checkmark\) & 0 & KIRK & \\
\hline Epilobitun oiliatum \(x\) E montanum & & P . & & & & & & KIRK & \\
\hline Epilobiwn ciliatwm \(x\) E obscurwn & & P. & & & & & & & \\
\hline Epilobium \(x\) aggregatwn & & P & & & & & & & \\
\hline Epilobium brunnescens & INT & P & & 0 & & R/CUT/EMB & & & \\
\hline Epilobium hireutwn & & P & & \({ }_{\text {C }}^{\text {c }}\) (WR) & & C/V & \[
45
\] & & \\
\hline Epilobium lancoolatum & & P & & C (WR) & & & & WARWKS & \\
\hline Epilotium \(x\) limosum & & P & & vC & & V & & 6 & \\
\hline Epilolium montanum & & P & & vc & & \(v\) & & LOND, MDDX & \\
\hline Epilobium \(x\) mutabile & & p & & & & & & 6 & \\
\hline Epilobium nertcrioides & INT & P & & & & & & 4 & \\
\hline Epilobium obscurwn & & P & & 0 & & V/DIT & & TEVIOT & \\
\hline Epilobium palustre & & P & & 0 & & V/DIT & 0 & 6 & \\
\hline kpilolium parviflorwm & & P & & 0 & & V/DIT & 0 & GLOUCS & \\
\hline Epilobium par 2 E, raseum & & P & & & & & & 11 & \\
\hline Epilobium rosewm & & P & & c & & V & 0 & 8 & \\
\hline Epilobium tetragonwm
Epipactis atrorubens & & & & R (LMR) & & V & & & \\
\hline Epipactis atrorubens & & P & & R & & V & & DERBYS, GLOUCS & \\
\hline Epipastis hellebomine & & P & & R & & V & & 3 & \\
\hline Epipactis palustmis
Erigeron acer & & A/B & & 0 & & V/C & 0 & 17 & \\
\hline Erigeron annuus & INT & A & & . & & & & RUTL & \\
\hline Erigeron bonariensis & INT & A & & & & & & BEDS & \\
\hline Erigeron canadensis & INT & A & - & 0 (LM) & & V/C & 0 & 18 S ANCS YORES & \\
\hline Erinus alpinus & HAT & P & & R (LMR) & & R & & S. LANCS, YORKS & \\
\hline Eriophorwn angustifoliwn & & P & & 0 (ScR) & & V & & LONDON, RUGBY & \\
\hline Ericphorwn vaginatum & & P & & C (ScR) & & V & & TEVIOT & \\
\hline Erodiunt cioutarium & & A & & C & & V & & GLOUCS & \\
\hline Erodium cygnorwm & 1NT & A & & & & & & BEDS & \\
\hline Erodium moschatum & & A & & & & & & WILTS, MDDX & \\
\hline Erophila spathulata & & A & & VC & & V/C & 0 & 19 & \\
\hline Eropiala verna
Eruca sativa & INT & P & & & & & & & \\
\hline Erucastrum gallicum & INT & A & & & & & & SOMERSET & \\
\hline Eryngiom campestre & & P & . & & & & & & \\
\hline Erysimwn cheiranthoides & INT & A & & R & & V & & YORKS & \\
\hline Erysimum virgatum & INT & A & & & & & & WILTS & \\
\hline Eupatorium cannabinum
Euphorbia anygdaloides & & p & & C & & V & 52 & CARMS & \\
\hline Euphorbia anygdaloides
Euphorbia cyparissias & & p & & 0 & & & & & \\
\hline Euphorbia cyparissias
Euphorbia esula sl & NAT & p & & 0 & - & c/V & & 12 & \\
\hline Euphorbia esula sl
Euphorkia exigua & Hat & P & & R & & \({ }_{c}\) & & 6 & \\
\hline Euphortia exigua
Euphorbia cxigua var retusa & & A & & R & & & & SUSSEX & \\
\hline Euphorbia cxigua vor retusa
Exphorbia helioscopia & & A & & & & C & & TEVIOT & \\
\hline Sphorbia heliosocupza
Euphorbia lathyrue & & \({ }_{B}\) & & R & & V & & RUTL & \\
\hline Euphorbia peplu? & & \(\Lambda\) & & 0 & & c/v & & RUTL & \\
\hline
\end{tabular}
0
000
\(0 \stackrel{60}{8}\)
\(0 \quad 0\)
00
0
N
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & Status & Life & Cycle & Frequenc During S & ecorded ey & Habitat & VC R & Flora Records & \\
\hline Echinops bannaticus & INT & P & & & & & & & \\
\hline Echinopa exaltatus & INT & P & & & & & & & \\
\hline Echiwn vulgare & & B & & 0 & & V \({ }_{\text {DIT }}\) & 0 & 21 & \\
\hline Eleocinaris palustris & & P & & R & & DIT & & & \\
\hline Eleogiton fluitans & & P & , & & & & & DERBYS & \\
\hline Elodea canadonsis & NAT & A & & & & & & YORKS & \\
\hline Elshaltzia cristata & INT & ? & & & & & & \({ }_{3}\) & \\
\hline Endymium hispanious & NaT & P & & 0 & & V & & 3 & \\
\hline Endymion non-scriptus & & p & & C & & V & 0 & 3 & \\
\hline spilobium adenoculon & INT & P & & C & - & \(V\) & 0 & & \\
\hline Epilodium ciliatum & Nat & P & & C & & \(\checkmark\) & 0 & KIRK & \\
\hline Epilobitun oiliatum \(x\) E montanum & & P . & & & & & & KIRK & \\
\hline Epilobiwn ciliatwm \(x\) E obscurwn & & P. & & & & & & & \\
\hline Epilobium \(x\) aggregatwn & & P & & & & & & & \\
\hline Epilobium brunnescens & INT & P & & 0 & & R/CUT/EMB & & & \\
\hline Epilobium hireutwn & & P & & \({ }_{\text {C }}^{\text {c }}\) (WR) & & C/V & \[
45
\] & & \\
\hline Epilobium lancoolatum & & P & & C (WR) & & & & WARWKS & \\
\hline Epilotium \(x\) limosum & & P & & vC & & V & & 6 & \\
\hline Epilolium montanum & & P & & vc & & \(v\) & & LOND, MDDX & \\
\hline Epilobium \(x\) mutabile & & p & & & & & & 6 & \\
\hline Epilobium nertcrioides & INT & P & & & & & & 4 & \\
\hline Epilobium obscurwn & & P & & 0 & & V/DIT & & TEVIOT & \\
\hline Epilobium palustre & & P & & 0 & & V/DIT & 0 & 6 & \\
\hline kpilolium parviflorwm & & P & & 0 & & V/DIT & 0 & GLOUCS & \\
\hline Epilobium par 2 E, raseum & & P & & & & & & 11 & \\
\hline Epilobium rosewm & & P & & c & & V & 0 & 8 & \\
\hline Epilobium tetragonwm
Epipactis atrorubens & & & & R (LMR) & & V & & & \\
\hline Epipactis atrorubens & & P & & R & & V & & DERBYS, GLOUCS & \\
\hline Epipastis hellebomine & & P & & R & & V & & 3 & \\
\hline Epipactis palustmis
Erigeron acer & & A/B & & 0 & & V/C & 0 & 17 & \\
\hline Erigeron annuus & INT & A & & . & & & & RUTL & \\
\hline Erigeron bonariensis & INT & A & & & & & & BEDS & \\
\hline Erigeron canadensis & INT & A & - & 0 (LM) & & V/C & 0 & 18 S ANCS YORES & \\
\hline Erinus alpinus & HAT & P & & R (LMR) & & R & & S. LANCS, YORKS & \\
\hline Eriophorwn angustifoliwn & & P & & 0 (ScR) & & V & & LONDON, RUGBY & \\
\hline Ericphorwn vaginatum & & P & & C (ScR) & & V & & TEVIOT & \\
\hline Erodiunt cioutarium & & A & & C & & V & & GLOUCS & \\
\hline Erodium cygnorwm & 1NT & A & & & & & & BEDS & \\
\hline Erodium moschatum & & A & & & & & & WILTS, MDDX & \\
\hline Erophila spathulata & & A & & VC & & V/C & 0 & 19 & \\
\hline Eropiala verna
Eruca sativa & INT & P & & & & & & & \\
\hline Erucastrum gallicum & INT & A & & & & & & SOMERSET & \\
\hline Eryngiom campestre & & P & . & & & & & & \\
\hline Erysimwn cheiranthoides & INT & A & & R & & V & & YORKS & \\
\hline Erysimum virgatum & INT & A & & & & & & WILTS & \\
\hline Eupatorium cannabinum
Euphorbia anygdaloides & & p & & C & & V & 52 & CARMS & \\
\hline Euphorbia anygdaloides
Euphorbia cyparissias & & p & & 0 & & & & & \\
\hline Euphorbia cyparissias
Euphorbia esula sl & NAT & p & & 0 & - & c/V & & 12 & \\
\hline Euphorbia esula sl
Euphorkia exigua & Hat & P & & R & & \({ }_{c}\) & & 6 & \\
\hline Euphortia exigua
Euphorbia cxigua var retusa & & A & & R & & & & SUSSEX & \\
\hline Euphorbia cxigua vor retusa
Exphorbia helioscopia & & A & & & & C & & TEVIOT & \\
\hline Sphorbia heliosocupza
Euphorbia lathyrue & & \({ }_{B}\) & & R & & V & & RUTL & \\
\hline Euphorbia peplu? & & \(\Lambda\) & & 0 & & c/v & & RUTL & \\
\hline
\end{tabular} I

\section*{I} I I I \(=\) I I
（
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\] & U & & 吕 & 0
0
0 & & & \％ \\
\hline \[
\begin{aligned}
& \text { 萑 } \\
& \text { 坒 }
\end{aligned}
\] & H
－
岕 & \[
\begin{aligned}
& \text { 空荡 } \\
& \text { 总岕 }
\end{aligned}
\] &  & vin
पौu
Hitom & \[
\begin{gathered}
\text { 葿 } \\
\text { nin }
\end{gathered}
\] & \[
\begin{aligned}
& \times \\
& \omega \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  \\
\hline
\end{tabular} （ （ （ （ （ （ （
FORBS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & Status & Life Cycle & Frequency Recorded During Survey & Habitat & VC Records & Flora Records \\
\hline Galium spuriven var vaillanti & & A & & & & Sussex \\
\hline Galiwn tricornutwen & & \(\wedge\) & & & & \\
\hline Calizm uliginosum & & P & & & & teviot \\
\hline Galium verwn & & P & c & v & & \\
\hline Gentianella amarella 83 & & B & c & v & & 3 \\
\hline Gentianella campestris & & A/B & 0 & \(v\) & & MONM \\
\hline Geranium columbinum & & A & R & V & 0 & 11 \\
\hline Geranium dissectum & & A & c & v & & 8 \\
\hline Geramiven endressii & nat & P & & & & TEVIOT \\
\hline Geranivon endressii \(x\) g veraicolor & nat & P & & & & TEviot \\
\hline Geranium lueidum & & A & c & v & & BERKS, TEVIOT \\
\hline Geraniton molle & & A & c & v & 0 & 5 \\
\hline Geramium phaeum & NAT & P & R & \(v\) & & \\
\hline Geranivon pratense & & P & C & v & & 14 \\
\hline Geraniven pusillun & , & A & R & v & & 4 \\
\hline Geranium pyrenaicwn & & P & 0 & v & 0 & 20 \\
\hline Geranium pyrenaicum var pallida & & P & R & v & & NORFOLK \\
\hline Geraniven robertianum & & A/B & vc & v/c/B & & 9 \\
\hline Geranium rotundifolium & & A & 0 & c/v & & 7 \\
\hline Genmiven sanguineven & & P & 0 & \(\stackrel{\text { v }}{ }\) & 0 & 3 \\
\hline Geramiun sylvaticum & & P & c & v & 0 & 3 . \\
\hline Geranium versicolor & INT & P & R & V & & \\
\hline Geion \(x\) intermedium & & P & R & v & & teviot \\
\hline Gieum rivale & & P & c & v & & \({ }_{5}^{\text {TEVIOT, }}\) GG \\
\hline Geun urbanw & & P & C & v & & 5 \\
\hline Gladiolus segetwm & INT & P & R & V & & \\
\hline Glaucium corniculatum & INT & A & & & & 3 \\
\hline Glaucium flavwn & & \({ }_{p}^{B / \mathrm{p}}\) & R & \(\stackrel{\mathrm{V}}{ }\) & & SUSSEX \\
\hline Glaux maritima
Glechoma hederaca & & P & R & v & & \\
\hline Glcehoma hederaoca
Goodyera repens & & P & C & v & & 6 \\
\hline Goodyera repens
Groenlandia densa & & P & R & v & & LEICS \\
\hline Gumera tinctoria & INT & P & & & & teviot \\
\hline Gyrnadenia conopsea & & P & 0 (LB) & v & 0 & 5 \\
\hline Helianthemwn canum & & & R (LMR) & , & & \\
\hline Helan themum numulariven & & P & & v & & \(4{ }^{4}\) \% \({ }^{\text {a }}\) \\
\hline Helianthus annuus & \({ }_{\text {INT }}\) & \({ }_{\text {A }}\) & R & v & & ESSEX, LOND \\
\hline Helianthue decapetatus
Heliantius diffusus & \({ }_{\text {INT }}\) & P & & & & essex
s. LANCS \\
\hline Heliantikus diffusus
Helianthus rigidus & INT
INT & P & & & & ESSEX, MDDX \\
\hline Helianthus tuberosus & INT & P & & & & LOND \\
\hline Helleborus foetidus & & P & & & . & WILTS, DEVON \\
\hline Helleborus viridio sap occidentalis & & P & & & & TEviot \\
\hline Hemerocallis sp & & P & R & v & & \\
\hline Hemerocallis fulva & INT & P & & & & SUSSEX \\
\hline Heraclewn mantegazuianum & NAT & \({ }^{\text {B }}\), & 0 & V/EMB & & \\
\hline Heracloum aphondylium
Heraolevm aphondyliven var angustifolium & & \({ }_{\text {B }}{ }^{\text {a }}\) & U & V/EMB & & \({ }^{10}\) ESSEX, SUSSEX \\
\hline Herniaria cinerca & INT & A/P & & & & Staffs \\
\hline Herniaria glabra & & A/P & & & & ESSEX \\
\hline Herniaria hireuta & INT & A/P & & & & CHESHIRE \\
\hline Hesperis matronalis & NAT & B/P & - & & & 5 \\
\hline Hibiscus trionum & INT & P & & & & CHESH, YORKS \\
\hline
\end{tabular}

劳空
艺

公 点

Species
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Species & Sta & & Life & Cycle & Frequen During & Recorded vey & Habitat & VC Records & Flora Records \\
\hline Hierveiim agg & & & P & & VC & & V & & 5 \\
\hline Hiemaium arplexicaute & & & P & & & & \(\checkmark\) & & S．Lancs \\
\hline Himaciun calsaricota & & & P & & R & & V & & SURREY \\
\hline Hiuraviwn cambricogothicum & & & P & & & & & & CSABF \\
\hline änoraciwn cheriense & & & P & & & & & & CSABF／SUSSEX \\
\hline \＃ieraciur chloranthwn & & & P & & & & & & MOPAY \\
\hline Hieracium cinderelıa & & & P & & & & & & CSABF \\
\hline Hieracium decolor & & & P & & & & & & STAFFS \\
\hline Hicracium diaphanoides & & & P & & R & & V & & NOTTS，GLOUCS \\
\hline Rierucium diapiaamm & & & P & & R & & V & & 11 \\
\hline Hieracium euprepes var glabratum & & & P & & & & & & YORKS \\
\hline Wierceium exotedrioum & INT & & P & & R & & C & & \[
7
\] \\
\hline Hicracium grandidens & INT & & P & & & & & & SORERSET \\
\hline Hieracium hjeltii & & & P & & & & & & CSABF \\
\hline Bieracium latobrigomon & & & P & & & & & & MORAY \\
\hline liieracium lepidulum & & & p & & & & & & 3 \\
\hline Hieraciun maculatwn & & & P & & R & & C & & \[
10
\] \\
\hline Hieraciuen pashyphylloides & & & P & & & & & & CSABF \\
\hline Hisuraiwn patale & & & P & & & & & & CSABF \\
\hline Hiemaiun pellucidum & & & P & & & & & & BEDS，SUSSEX \\
\hline Hieraciun perprop inquum & & & P & & R & & V & & 11 \\
\hline literacium praecox & & & P & & & & & & LOND \\
\hline licraciun pulmonarioides & & & P & & & & & & S．LANCS \\
\hline Hieracium migere & & & P & & & & & & 4 \\
\hline Hieracium salticola
Hieracium veotostichum & & & P & & & & & & 6 \\
\hline Hieracium vcotostichum
Hievaciow aevericeps & & & P & & R & & V & & SURREY，SCABF \\
\hline Hiesuci：m aevcriceps
Hierrcium strictiforme & & & P & & R & & V， & & CHESHIRE \\
\hline Hieracium stmetiforme
Hieragium strumosum & & & P & & & & & & MORAY \\
\hline Hierasium strumosum
Hieracium subarplifolium & & & P & & 0 & & v & & 15 \\
\hline Hiteracium subarplifoliwn
Hienaciun subcrocatun & INT & & P & & & & & & SOMERSET \\
\hline Hieraciun subcrocatwn
Hieracium sublepistoides & & & P & & & & & & MORAY \\
\hline Hieracium sublepistoides
Hierracium trichocaulon & & & P & & & & & & 3 \\
\hline Hieracium trichocaulon
Hicracium wrbellatun & & & P & & R & & V & & 5 \\
\hline Hicraciun urbellation
Hieraciun vagwn & & & P & & R & & CUT & & 8 \\
\hline Hieraciun vagum
Hivraaism vulgatum & & & P & & R & & V & & 12 \\
\hline Hivaraoivm vulgatum
Hienveiwn zugopiorwm & & & P & & 0 & & V & & 10 \\
\hline Hienveiwn zygophorwm
Himantoglosoun hircinum & INT & & P & & R & & C & 1 ST UK RECORD & \\
\hline Himantogloseum hircinum
Hippoorepis comosa & & & P & & & & & & WILTS，SUSSEX \\
\hline Hippoowepis eomosa
Hirschineldia ineana & & & P & & R（LMR） & & V & & \\
\hline Hirschfeldia inuma
Homungia petraea & INT & & \(\wedge\) & & 0 & & V／C & & BEDS，SUSSEX \\
\hline Hormungia petraea
Horiknya peploidss & & & A & & R & & V & & DERBYS，PEMBS \\
\hline Horkenya peploidss
Huttoria palustris & & & P & & R & & V & & \\
\hline Hutsomia palustris
Hydronotyle vislgaris & & & P ． & & & & & & SUSSEX \\
\hline Hycirocotyle vislgaris & & & P & & 0 & & V／DIT & & \\
\hline Hyosoyumus niger
Hispericum androsaermm & & & A／B & & & & & & 6 \\
\hline Hypericum androsaemum
ïvpericum \(x\) desetangsii & & & P & & 0 & & V & & \\
\hline nupericum \(x\) decetangsii
llupericwn hirnutum & & & P & & & & & & TEVIOT \\
\hline Hypericwn hirautum & & & \(p\) & & C & & V／DIT & & 8 \\
\hline hypericun humifusum & & & P & & C & & V／C & & 6 \\
\hline Hypericwm maculatum ssp obtuaiusculwn & & & P & & C & & V & & 7 \\
\hline hypericwm montanwn & & & P & & 0 & & V & & 5 \\
\hline Hypericum perforatum & & & P & & VC & & V & & 14 \\
\hline Hypericum perforatum var angustifolium & & & P & & & & & & YORKS \\
\hline Hypericum pulchrum & & & P & & C & & V & & 4 \\
\hline Hypericum tetrapterum & & & P & & C & & V & & 8 \\
\hline
\end{tabular}
FORBS

Species
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & Status & Life Cycle & Frequency Recorded During Survey & Habitat & VC Records & Flora Records \\
\hline Lathyrus grandiflorus & INT & P & & & & SURREY \\
\hline Lathymus hirsutus. & & A & & & & \\
\hline Latioyrus iatifolius & NAT & P & C & V/C & 0 & 23 \\
\hline Lathyrus montanus & & P & 0 & V & 0 & \\
\hline Lathyrus ocioratus & INT & P & R & V & & \\
\hline Lathyrus niesolia & & A & 0 & V & & 9 \\
\hline Lathyrus paluetrie & & P & R & V & & \\
\hline Lathyrus pratensis & & P & U & V & & 13
11 \\
\hline Latinyrus sylvestris & & P & 0 & V & & 11 \\
\hline Lathyrue tuberosus & NAT & P & R & V & & 9 MERION \\
\hline Lavatera arcorea & & B & 0 & V & 0 & MERION \\
\hline Legousia hybrida & & A & & & & RUTL \\
\hline Lerna minor & & A & 0 & DIT & & \\
\hline Lerna polyrhiza & & A & & & & GLOUCS \\
\hline Lema trisulca & & A & R & DIT & & \\
\hline Leontodon autwrnalis & & P & C & V & & \\
\hline Leontodon hispidus & & P & c. & V & 0 & 11 \\
\hline Leontodon taraxacoides & & P & C. & V & & \\
\hline Lepiailen carpestre & & A/B & 0 & V & & s. LANCS \\
\hline Lepidium graminifolium & INT & P & & C/V & 0 & 16 \\
\hline Lepidiwn heterophyllwn & & P & C & c/v & 0 & BEDS \\
\hline Lepidiun hyssopifoliwn & & P & & & & 4 \\
\hline Lepidium latifoliwn & & P & R & V & & GLOUCS \\
\hline Lopidium neglectum & INT & A/B & & & & 8 \\
\hline Lepidium ruderale & & \({ }_{\text {A }} \mathrm{A} / \mathrm{B}\) & R & V & & BEDS, STAFFS \\
\hline lepidiwn sativwn
Levidiur virginicum & INT & A/B & & & & S. LANCS, SUSSEX \\
\hline Lepidiur virgimicum
Leveanthemen maximun & INT & \({ }_{\mathrm{P}}\) & R & YDS & 0 & \\
\hline Leucanthemum vulgare & & P & vC & V & 0 & 25 \\
\hline Lilium ep & NAT & P & R & V & & \\
\hline Liliwn pyrenaciuwn & NAT & P & R & V & & TEVIOT \\
\hline Limonium hwile & & P & R & V & & \\
\hline timarium vulgare & & P & R & V & & \\
\hline Limaria daimatica & & P & R & V & & S. LANCS \\
\hline Linaria \(x\) dominii & INT & P & & & & S. Lancs \\
\hline iinaria piopurea & INT & P & 0 & \(\mathrm{V} / \mathrm{V}\) & & \\
\hline Linaria repens & & P & C & C/V & 0 & \\
\hline Linkria \(x\) sepium & & P & 0 (WR) & \(\mathrm{V} / \mathrm{V}\) & & \\
\hline Linuria supina & & A & R (WR) & C/v & & \[
\begin{aligned}
& \text { DEV } \\
& 28
\end{aligned}
\] \\
\hline Linaria vulgaris & & P & vC & C/V & 0 & PEMBS \\
\hline Linaria vulgaris var peloria
Linamia vulgaris var prostrata & & P & & & & DEVON \\
\hline Linaria vulgaris var prostrata
Linum bienne & & P/p
A & & & & WILTS \\
\hline Linum bienne
Linum catharticum & & A/P
A & \(\stackrel{R}{\text { c }}\) & \(\mathrm{C} / \mathrm{V} / \mathrm{R}\) & 0 & 10 \\
\hline Linkm atharticom
Linuen usitatissimun & NAT & A & c & & & 3 \\
\hline Linten usitatissimun
LEstera ovata & & P & C & v & 78, 0 & 8 \\
\hline Lithoopernm arvense & & A & & & & 5 \\
\hline Lithoopermen offiainale & & P & 0 & V & & 3 \\
\hline Lobularia maritima & NAT & A/P & R & V & & 7 \\
\hline Logfia minima & & A & \(\stackrel{R}{\mathrm{R}}\) & V & & \({ }^{7}\) \\
\hline Lotus cormiculatus & & P & vC & V & & 12 \\
\hline Lotus tenuis & & P & \({ }^{\text {- }}\) & & & 12 \\
\hline Lotus uliginosus & & P & C & V & 0 & ESSEX \\
\hline Linnaria annua & INT & B & R & \(V\) & 0 & EsSEX \\
\hline
\end{tabular}
 Species


艺 荎
影荅
昡

FORBS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Species & Status & & Life Cycle & Frequency Recorded During Survey & Habitat & VC Records & Flora Records \\
\hline Picris hiemaciodes & & & B/P & 6 & V & 68 (2), 0 & 19 \\
\hline rilosella aurantiaca sl & NAT & & P & 0 & YDS & & \[
4
\] \\
\hline Pilocella aurantiaca ssp aurantiaca & NAT & - & P & & & & 6 \\
\hline Pilosella aurantiasa osp brunnecrocea & NAT & & F & 0 & C & 93, 0 & 13 \\
\hline Pilosellu caespitosa & NAT & & P & 0 (SR) & C & & MORAY \\
\hline pilosella caespitosa ssp colliniforme & NAT & & P & 0 (SR) & C & & CSABF \\
\hline Filocella flagellaris & NAT & & P & & & & CSABF, GG \\
\hline Pilcsella officinarm & & & P & C & V & & \\
\hline Pilosella officinamen var concinnatum & & & P & & & & LEICS \\
\hline Pilosella offininarum var nigresaens & & & P & & & & GLOUCS \\
\hline Pilosella offioinamon ssp mierudenia & & & P & & & & MORAY \\
\hline Fillosella ojficinarum esp trichostoma & & & P & & & & moray \\
\hline Piloselia officinarum ssp trichoscapa & & & P & & & & MORAY \\
\hline Pilcsella praeal ta & & & P & & & & CSABF \\
\hline Pilosella praealta ssp arvorum & NAT & & P & & & & BERKS, WILTS \\
\hline Pilocella praealta sep spraguei & NAT & & P & & & & HERTS \\
\hline Piiosella stolonifera & & & P & & & & MORAY \\
\hline Pimpinella major & & & p & 0 & V & 68 & 3 \\
\hline Pimpirella eaxifraga & & & P & C & V & 0 & 11 \\
\hline Pinguicuia lusitalica & & & p & & & & \\
\hline Pinguicula vulgaris & & & P & 0 & V & & teviot \\
\hline Elantago coronopus & & & B & 0 & C & 0 & LONDON, MDDX \\
\hline Piartago indica & INT & & P & & & & S. LANCS, Gloucs \\
\hline P! witago lanceolata & & & P & U & & & \\
\hline plantage major & & & P & 0 & B & 0 & \[
4
\] \\
\hline Plantago maritira & & & P & R & CUT & & \\
\hline ilantago inedia & & & P & 0 & CUT & & 4 \\
\hline Piatanthera bifolia & & & P & & & & SUSSEX \\
\hline piantunthera enlorantha & & & P & 0 & CUT & & \\
\hline Folemcrivn caemuleum & & & P & & & & DURH, MORAY \\
\hline Polygzza calcarea & & & P & R & & & \\
\hline Folysala serpeilifolia & & & P & 0 & \(v\) & & 3 \\
\hline Foiyngla vuigaric & & & P & 0 & V & & \\
\hline Polygonatur \(x\) hybridum & INT & & P & & & & KIRK, GG \\
\hline Eatiff Matum mati flormom & & & P & R & \(v\) & & DURHAM, NORAY \\
\hline inlug, miem wribibuiwn & & & P & 0 & DIT & & ESSEX, SURREY \\
\hline Ealygonum ampitibiwn var terrestre & & & P & & & & WILTS \\
\hline Foipgonum arenastrum & & & P & 0 & YDS & 0 & 4 \\
\hline Polyzonum avicuLare es & & & A & 0 & B & 0 & 5 \\
\hline Tolygunum bistorta & & & p & 0 & V & & 6 \\
\hline Folygonw burgeanwn & INT & & p & & & & YORKS \\
\hline rolygonum conivolvulus var aub ilatum & & & A & . & & & LOND \\
\hline Polygonim cormaction & & & P & & & & MORAY \\
\hline Polygonum hydropiper & & & A & 0 & DIT & & TEVIOT \\
\hline Polygonam lapathifolium & & & A & R & B & & RUTL, GLOUCS \\
\hline Foilygonum minus & & & A & & & & S. LANCS \\
\hline Poly,ymum nodosven & & & A & R & \(B\) & & \\
\hline Fcilytonam persicaria & & & A & 0 & B & & 6 \\
\hline Toliggonen persicaria var rudemle & & & A & & & & SUSSEX \\
\hline Polygenum polystachywn & NAT & & A & R & YDS & & DEVON, DURHAM \\
\hline Polygonum raii & & & \(\wedge\) & . & & & S. LANCS \\
\hline Palygonum rurivagum
Eotamogeton friesii & & & \({ }_{\text {A }}\) & & & & BERKS \\
\hline Eotamogeton frissii
Potamogeton natans & & & P & R & DIT & & \\
\hline Potamogeton natans
Potamogeton polygonifolius & & & P & R & DIT & & DERBYS \\
\hline Potanogeton polygonifolvus
Potentilla anglica & & & \(\stackrel{\mathrm{P}}{\mathrm{P}}\) & R
0 & \({ }_{\text {c }}^{\text {DIT }}\) & & 7 \\
\hline
\end{tabular}

\footnotetext{
Flora Records



vC Records


Species
}
FORB
VC Records Flora Records
药 m
Species

VC Records Flora Records


\author{

}
FORBS


Flora Records
BEDS
5
16
MORAY
WARWKS
MORAY
MORAY
MORAY
MORAY
MORAY
MORAY
HAYLEY，MORAY
MORAY
HAYLEY
6
MORAY
MORAY
MORAY
MORAY
MORAY
MORAY
I2
MORAY
HAYLEY，MORAY
MORAY
TEVIOT
MORAY
MORAY
MORAY


○
0
vC Records

Life Cycle \(\begin{aligned} & \text { Frequency Recorded } \\ & \text { During Survey }\end{aligned}\) Habitat


会空
0
\(\rangle\)
\(>\quad>\)
\(>\)
\(v \gg \infty\)
寻：
岂 \(\qquad\)
0
.

00 ๙～～～ロ

安 号 穵
尤空
艺艺

\section*{\(\widetilde{3}\)
0
0} Tragopogon pratensis spp minor Tragopogon pratensis ssp orientalis
Tragupogon prutensis ssp pratensis Trientalis europaea
Trifoliwn angustifolium
FORRS

FORBS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & Status & Life Cycle & Frequency Recorded During Survey & Habitat & VC Records & Flora Records \\
\hline Veronica agrestis & & A & R & B & & WARWKS, TEviot \\
\hline Veronica anagallis-aquatica & & P & R & DIT & & teviot \\
\hline Veronica arvensis & & A & c & c & & 9 \\
\hline Veronica arvencis var nana & & A & & & & SUSSEX \\
\hline Veronica beecabunga & & P & R & DIT & & teviot, Gc \\
\hline Veronica chamaedrys & & P & vc & V & & \\
\hline Veronica filiformis & NAT & P & R & v & & \\
\hline Veronica longifolia & NAT & P & R & CUT & & \\
\hline Veronica montana & & P & 0 & v & & teviot \\
\hline Veronica officinalis & & P & 0 & v & & \\
\hline Verorica persica & & A & 0 . & B & & 3 \\
\hline Veronica polita & & A & R & B & & 3 \\
\hline Veronica prascox & & A & 0 & V & & NORFOLK \\
\hline Veronica soutellata & & P & & & & pembs \\
\hline Veronica serpyllifolia & & P & R & v & & \\
\hline Veronica spicata ssp hybrida & & P & & & & s. Lancs \\
\hline Veromica sublobata & & A & c & v & & \\
\hline Vicia bithynica & & P & & & & CLYDE \\
\hline Vicia orasca & & P & vc & v & & \\
\hline Vicia ervilia & INT & A & & & & LEICS \\
\hline \(V \mathrm{Veia}\) hirsuta & & A & c & V & 0 & 19 \\
\hline Vicia hybrida & & A & & & & LOND \\
\hline Vicia lathyroides & & A & 0 & c & & 3 \\
\hline Vicia lutea & & A & , & v & & 3 \\
\hline Vicial sativa sep nigra & & A & c & , & 0 & 17 \\
\hline Vicia s extiva & & A & R & v & & 7 \\
\hline Vicia sepiven & & P & c & \(v\) & & 6 \\
\hline Vicia sepium var ochroleuca & & P & & & & wil.ts \\
\hline Vivia sylvatica & & P & 0 & cut & & 3 \\
\hline Vicia tenizifolia & NAT & P & & & & 3 \\
\hline Vioia tenuissima & & A & & & & gloucs \\
\hline Vicia tetrasperma & & A & R & v & 67, 0 & 15 \\
\hline Vicia villooa & INT & P & & & & beds, Herts \\
\hline Viola arvensis & & A & R & \(\stackrel{\text { B }}{ }\) & & 9 \\
\hline Viola canina & & P & R & V & & \\
\hline Viola cormuta & NAT & \({ }_{\text {P }}\) & & & & \({ }_{11}^{\text {GG, MORAY }}\) \\
\hline vicla lutea & & \({ }_{\text {P }}\) & R & cur & 0 & \\
\hline Viola odorata \({ }^{\text {Viola }}\) odorata var dunetorwn & & P & 8 & v & & 7 \\
\hline viola odorata var praecox & & P & & & & DEvON \\
\hline Viola \(x\) permixta & & P & & & & ESSEX \\
\hline Viola paluetris & & & 0 & v & & \\
\hline Viola reichenbachiana & & P & c & \(\checkmark\) & & \\
\hline Vioza riviniana & \(\cdots\) & P & vc & v & 0 & 9 \\
\hline Viola riviniana ssp minor & & P & & & & MORAY \\
\hline Viola tricolor & & A/P & R & v & & \\
\hline Viola trioolor ssp curtisii & & p & R & v & & NORFOLK \\
\hline Viola \(x\) wittrockiana & INT & P & & B & 0 & \\
\hline Whthenbergia hederacea & & \(p\) & R & v & & gloucs \\
\hline Xanthiwn spinosum
Yanichellia palustris & nat & A & & & & heref, cloucs \\
\hline Yanichellia palustris & & p & . & & & GLOUCS, YORKS \\
\hline
\end{tabular}

\section*{TABLE 2.4 Cryptogams on BR land}

The Table combines information from a literature search with a complete list of bryophytes and pteridophytes found growing during the survey. Lichens and algae were not systematically recorded and are not included. Keys to abbreviations and to the literature searched will be found following this Table.
BRYOPHYTES
\begin{tabular}{|c|c|c|c|}
\hline Frequency Found During Survey & Preferred Habitat & Literature Source & \\
\hline C & V & & \\
\hline 0 & V & & \\
\hline & & & \\
\hline R & R/M & ESSEX/NORFOLK & \\
\hline C & V & & \\
\hline C & E & BEDS, WARWKS & \\
\hline R & V & & \\
\hline 0 & V & & \\
\hline 0 (ScR) & M/R & & \\
\hline 0 & V & & \\
\hline c & C/V & WARWKS & \\
\hline C & V & BEDS, WARWKS & \\
\hline 0 (ScR) & v & & \\
\hline VC & C & B EDS, WARWKS & \\
\hline 0 & C & HAYLEY & \\
\hline C & C & & \\
\hline C & CV & & \\
\hline & & \[
3
\] & \\
\hline C & C/V & NORFOLK, S. LANCS & \\
\hline 0 & k/M & s. LANCS & \\
\hline \({ }^{\mathrm{R}}\) & M/R & & \\
\hline \[
\begin{aligned}
& \text { yc } \\
& 0
\end{aligned}
\] & \({ }_{\text {C }}\) & HAYLEY & - \\
\hline 0 (ScR) & V & & \\
\hline 0 & V & & \\
\hline 0 & V & & \\
\hline R (ScR) & C & & \\
\hline C & V & WARWKS & \\
\hline R (LMR) & V & WARWKS & \\
\hline 0 (ScR) & DIT & & \\
\hline 0 & V & WARWKS & \\
\hline 0 & DIT & & \\
\hline U & V & BEDS, WARWKS & \\
\hline 0 & v & WARWKS & \\
\hline C & V & BEDS & \\
\hline C (ScR) & V & & \\
\hline 0 & V & & \\
\hline 0 & R/CUT & & \\
\hline U & C & 4 & \\
\hline C & C & & \\
\hline 0 & C & WARWKS & \\
\hline vc & C & WARWKS & \\
\hline VC & C & \({ }^{3}\) BEDS, HARLKS & \\
\hline VC & C/V & BEDS, WARWKS & \\
\hline 0 (WR) & V & ESSEX
WARWKS & \\
\hline 0 & V & WARWKS & \\
\hline 0 & V & \begin{tabular}{l}
WARIKS \\
S. LANCS
\end{tabular} & \\
\hline 0 & c/v & & \\
\hline
\end{tabular} Brigum intarme
Br'jum pallens
BRYOPIIYTES

\(\underset{\sim}{\sim} \underset{\sim}{z}\)
空 \(\ggg \ggg \ggg>\Rightarrow\) 台 V
E
E ○ \(\underset{\sim}{2} \underset{\sim}{2}\)
r／CuT R／CUT氛苞莒 WARIVKS WARWKS S．LANCS
S．LANCS
uniosolea badonois Jungermannia atrovirens
Jungornannia gracillima Hypnum cupresoiforne var aupressiforme
Hypnion cupressiforme var lacunoswn
Hyprum cupresciforme var resupinatum
Hypnum jutlandicum
Hypnwm namilzatwn：
Hypnum lindbergii
Isopterygiven elegans
Isothesium myosuroides
Ivothecium muros Hypnum cupresoiforne var aupressiforme
Hypnion cupressiforme var lacunoswn
Hyprum cupresciforme var resupinatum
Hypnum jutlandicum
Hypnwm namilzatwn：
Hypnum lindbergii
Isopterygiven elegans
Isothesium myosuroides
Ivothecium muros Hy lyohyprum locomiun splerdens
hypnum cupressiforme at
Hookeria lucens
Hygrohyprum luridum
Homalotheciun lutescens
Homalo theciun sericewn
Gymnomitrion obtusum
Gymnostomon aeruginoswn
Gyrowisia tenuis
Hebsigia ciliata
Homzlia trichomanoides
Encalypta streptocarpa tphenarum recurvifolium Eucladiun vertioillatum Eurynchiven praclongwn
Eurynchivn praelongon var praelongwn
Eurynchium striatum
Eurlyychiven puovilum
Evphynchiwn ewartzii
Fissidens bryoides
Fissidens incurvus
Fissidens taxifolius
Fontinalis antipyretica
Fossonbronia caespitiformis
Fossombronia pusilla
Frullania dilatata
Frullania tcumarisci
Funaria fascicularis
Funaria hygrometrica
Grinmia donniana
Grimmia pulvinata
Gymocolea inflata
Gymomitrion crenulatwo
Hypnum cupressiforme al
Hypnam cupresoiforme var oupressiforme
Hypnion cupressiforme var lacunoswn
Hyprion cupresciforme var resupinatum

ESSEX
WARWKS
HAYLEY
S. LANCS
S. LANCS
S. LANCS
WARWKS, HAYLEY
NORFOLK
WARWKS, HAYLEY
BEDS

S. LANCS
S. LANCS
WARWKS
S. LANCS
BEDS
BEDS
BRYORIIYTES

\footnotetext{

}

S．LANCS
NORFOLK
S．LANCS
S．LANCS
NORFOLK
HAYLEY
S．LANCS
ESSEX
S．LANCS
S．LANCS
NORFOLK
HAYLEY
ESSEX
BEDS，WARWKS

\footnotetext{
Polytrichum commone
polytrichwm formoswn
Folytrichum juriperinwm
Polytrichom piliferwm
Pottia intermedia
Postza lanceolata
Preiecia quadrata
Ftilidiwn ciliare
Ptilidium puccherrimum
Fiseudoscleropodium purvom
Pterygoneurum ovatum
Racomitrium aciculare
Racomitrium carescens
Racomitrium fascioulare
Racomitriven heterostichwm Racomitrium laruginoswn

Rucuminium laruginoswn
Rhizomium punctatum
Rhoaobryum rosewll
Rhinchostegiella tenella
Rihunchostegium confertum
R＇yt idiadelphus loreus
Rinytidiacdalphus squarro
Riytidiade lphus triquetrus
}


I
PTERIDOPHYTES


KEY TO ABBREVIATIONS

STATUS
NAT : NATURALISED (following Clapham et al. 1962)
INT : INTRODUCED

LIFE CYCLE
\begin{tabular}{lll} 
A & \(:\) & ANNUAL \\
B & \(:\) & BIENNIAL \\
P & \(:\) & PERENNIAL
\end{tabular}

FREQUENCY RECORDED DURING SURVEY
\begin{tabular}{lll}
R & \(:\) & \(<1 \%\) \\
O & \(:\) & \(1-2 \%\) \\
C & \(:\) & \(>2-5 \%\) \\
VC & \(:\) & \(>5-20 \%\) \\
U & \(:\) & \(>20 \%\)
\end{tabular}

BRITISH RAIL REGIONS
\begin{tabular}{lll} 
LiUR & \(:\) & LONDON MIDLAND REGION \\
SCR & \(:\) & SCOTTISH REGION \\
SR & \(:\) & SOUTHERN REGION \\
ER & \(:\) & EASTERN REGION \\
WR & \(:\) & WESTERN REGION
\end{tabular}

HABITAT PREFERENCES OBSERVED DURING SURVEY
\begin{tabular}{lll} 
V & \(:\) & VERGES GENERALLY \\
C & \(:\) & CINDER \\
B & \(:\) & BALLAST \\
YDS & \(:\) & RAILIFAY YARDS \\
CUT & \(:\) & CUTTINGS \\
EMB & \(:\) & EMBANKMENTS \\
DIT & \(:\) & DITCHES \\
M & \(:\) & MASONRY \\
R & \(:\) & ROCK \\
E & \(:\) & EPIPHYTIC (CRYPTOGAMS ONLY)
\end{tabular}

RECORDS
\begin{tabular}{|c|c|c|}
\hline N & : & FIRST RECORD FOR NUASBERED VICE COUNTY \\
\hline \(N\) (x) & : & SECOND OR SUBSEQUENT VICE COUNTY RECORD \\
\hline 0 & : & ONE OR MORE \(10 \mathrm{~km}^{2}\) RECORDS \\
\hline
\end{tabular}

KEY TO LITERATURE SEARCHED

CARMS .
May, R.F. (1967) A list of the flowering plants and ferns of Carmarthenshire. West Wales Naturalists' Trust, Haverfordwest.

CHESH.
Newton, A. (1971) Flora of Cheshire. Cheshire Community Council, Chester.
CLYDE
Lee, J.R. (1933) The flora.of the Clyde area.
C.S.A.B.F.

Perring, F.H. (1968) Critical supplement to the atlas of the British flora. Nelson, London.

BEDS .
Dony, J.G. (1953) Flora of Bedfordshire. Luton, Museum.
BERKS .
Bowen, H.J.M. (1968) The flora of Berkshire.
DERBYS .
Clapham, A.R. (1969) Flora of Derbushire. County Borough of Derby Museum and Art Gallery.
Patrick, S. and Hollick, K.m. (1974) Supplement to flora of Derbyshire.
\(\cdots\) Derby Borough Council.
DEVON
Martin, W.K. and Frascr, G.T. (1939) Flora of Devon. Buncle, Arbroath.
DURHAM
Graham, G.G., Sayers, C.D. and Gaman, J.H. (1972) A checilist of the vascular plants of County Durham. Durham University.

ESSEX
Jermyn,. S.T. (1974) Flora of Essex. Essex Naturalists' Trust.
GG.
Beattie, E.p. (1972) Survey of Gorebridge to Galashiels railucay.
GLOUCS .
Riddelsdell, H.J., Hedley, G.W. and Price, W.R. (1948) Elzon of Gloucestershire. Buncle, Arbroath.'

\section*{HAYLEY}

Rackham, 0. (1975) Hayley Wood: its history and ecologi. Cambridgeshire and Isle of Ely Naturalists' Trust.

HEREF
Whitehead, L.F. (1976) Pilants of Herefordshire. Herefordshire Botanical Society.

HERTS .
Dony, J.G. (1967) Flora of Hertfordshire. Hitchin Museum.
KIRK
Ballantync, G.H. (1970) The flowering plants of Kirkcaldy and district. Kirkcaldy Naturalists' Society.

LEICS.
Horwood, A.R. and Gainsborough, C.W.F. (1933) The flora of Leicestershire and Rutiond. Oxford University Press, London.
Ratcliffe, D. and Conolly, A.P. in Pye, N. (ed) (1972) Leicester and its region. Leicester University Press.

LINCS .
Gibbons, E.J. (1975) The flora of Lincolnshire. Lincolnshire Naturalists' Union, Lincoln.

L'POOL
Green, C.T. (1933) Flora of Liverpool, (2nd ed.).
LOND.
Fitter, R.S.R. (1945) London's natural history. Collins, London.
Kent, D.H. and Lousiey, J.E. (1951-7) A handlist of the plants of the London area. London Naturalist 30-36 (Supplement).

\section*{MERION}

Benoit, R.M. and Richards, M. (1963) A contribution to the flora of Merioneth. West Wales Naturalists' Trust, Haverfordwest.

MIDDX.
Kent, D.H. (1975) The historical flora of liddlesex. Royal Society, London.

MONM.
Wade, A.E. (1970) The flora 0 Monmouthshire. National Museum of: Wales, Cardiff.

MONTS .
Hignett, M. and.Lacey, W.S. (1977) Plants of Montgomeryshire. The field records of Janet Macnair. Montgomeryshire Field Society and North Wales Naturalists' Trust.
Wade, A.E. and Webb, J.A. (1943) Montaoneryshire plant records. North Vales Naturalist XVIII, 52.

\section*{MORAY}

Webster, M. McCallum (1978) Flora of lioroy, Nairn and East Inverness. Aberdeen University Press.

NORFK.
Petch, C.P. and Swann, E.L. (1968) Flora of Norfolk. Jarrold, Norwich. Swann, E.L. (1975) Supplement to the flora of Norfolk. F. Crowe, Norwich.

NOTTS .
Howitt, R.C.L. and Howitt, B.M. (1963) A flora of ilottinghamshire.
PEMBS .
Davis, T.A.W. (1970) Plants of Pembrokeshire. Haverfordwest.
Rees, F.L. (1950) List of Pembrokeshire plonts. Haverfordwest.
RUGBY
Allen, D.E. (1957) The flora of the Rugby district. Rugby School N.H.S. RUTL.

Messenger, K.G. (1968) A railway flora of Rutland. Proceedings Botarical Society British Isles. Vol. 7 (3) 325-344.
Messenger, K.G. (1971) Flora of Rutland. Leicester Museums.

SOMERS
noe, R.G.B. (1931) The flora of Somerset. Somerset Archaeological. and - Natural History Society, Taunton.
S. LANCS.

Savidge, J.P., Heywood, V.H. and Gordon, V. (ed) (1963) Travis's flora of South Lancashire. Liverpool Botanical Society.

\section*{STAFFS}

Edees, E.S. (1967) The wild orchids of Staffordshire. Morth Staffordsinire Joumal of Field Studies, 7, 4-26.
Edees, E.S. (1972) Flora of Staffordsitire. David and Charles, Newton Abbott.
SURREY
Lousley, J.E. (1976) Elora of Surrey. David and Charles, Newton Abbott.

\section*{SUSSEX}

Hall, P.C. (1980) Sussex plant athis. Booth Museum of Natural Mistory, Brighton.
Wolley-Dod, A.H. (1937) Flora of Sussec.
TEVIOT
Braithwaite, M.E. (1976) A railway flora of Teviotdale. Hawick Archeological. Buccleuch Printers.

WARWI CKS .
Cadbury, D.A., Hawkes, J.G., Readett, A.C. and Lafinn, T. (1971) A computermopped flona. A study of the cownty of Warilickshire. Academic Press, London.
Readett, H.C., Hawkes, J.G., Cadbury, D.A. and Laflin, T. (1975) Check líits of the vascular plants and bryophytes of wanickshire and surrounding vice-counties. Proceedings Birmingham Matural iistory Society 20 (4) 1-64.

WESTM.
filson, A. (1938) The flora of Westmorland. Buncle, Arbroath.

WILTS.
Grose, D. (1957) The flora of Wiltshire. Wiltshire Archaeological and Natural History Society.
Stearn, L.F. (1975) Supplement to the flora of Wiltshire. Wiltshire Archacological and Natural History Society.

\section*{YORKSHIRE}

Cheetham, C.A. and Sledge, W.A. (ed) (1942) A supplement to the Yorkshire floras.

\section*{OTHER SOURCES NOT INDIVIDUALLY QUOTED}

Allen, D.E. (1969) The flowering plants and ferns of the Is te of Nan. The Manx Museum and National Trust.

Anthony, J. (1976) John Anthony's flora of Sutherland. Botanical Society Edinburgh.
Gilbert, J.L. (1965) Flora of Huntingdonshire: wildflowers. Peterborough Museum Society.

Good, R. (1948) A geographical handbook of the Dorset flora. Dorset Natural History and Archaeological Socicty, Dorchester, Addenda 1955, 1961, 1970.
Hyde, H.A. and Wade, A.E. (1957) Welsh flowering planis. National Museum of Wales, Cardiff.

Lloyd, L.C. and kutter, E.M. (1957) Handlist of the Shropshire flora. Caradoc and Severn Valley Field Club.

Perring, F.H., Sell, P.D., Walters, S.M. and Whitehouse, H.L.K. (1964) 4 flona of Cambridgeshire. Cambridge University Press.
Wade, A.E. (1952) A sipplemeni to Dr J H Salters. Tine floweming plants and ferns of Cardiganshire. University of Wales Press, Cardiff.

VEGETATION

\subsection*{3.1 Sampling}

Oijjective vegetation sampling was based on a stratification of all rural BR. land (Sargent 1983). The approach has been discussed in some detail in previous interim reports (Sargent \& Mountford 1979, 1980) and is described only briefly here.

The rural railway network was divided into 893 measured 10 mile units. Selected geographic mapped attributes were scored, for each of these units, where they abutted on to, or were crossed by, the railway line. The information was classified using Indicator Species Analysis (Hill et al. 1975), a polythetic divisive method based on correspondence analysis. After inspection and some modification, the classification yielded 26 track classes (ie groups of 10 mile units). The distribution of classes within each-Region is shown on the maps following page 68. Constant attributes, which are present in more than \(80 \%\) of members of each track class, are given in Table 3.1. The Table is ordered using an index derived from the relative representativeness of each attribute within each track class, and is designed to show relationship between classes. There is an evident gradient between lowland south eastern and upland north western classes.

The number of units in each track class is given in Table 3.2, together with the verge arca (excluding track, yards, etc). Verge width was measured at cach site visited, enabling the area of each track class to be calculated. The total area of rural BR verge is \(30678 \pm 4524 \mathrm{ha}\).

A total of 480 sites was distributed proportionately according to the number of members within each track class. Members to be sampled were randomly selected, and measured 100 m sampling sites (Figure 3.l) located at randomly chosen \(B R\) mile posts within the selected members. For practical purposes, sites were restricted to areas of convenient access. Four transects were measured at each site at right angles to the track, the direction which, within a short stretch of track, usually includes most variation. A number of \(4 \mathrm{~m}^{2}\) (nested 4 and \(25 \mathrm{~m}^{2}\) in woodland) quadrats, strictly proportional to the width of the verge, were distributed along each transect. Species, cover and height were recorded, and pH , slope, aspect and certain other environmental measurements taken. Species lists for entire sites were made and qualitative descriptions written. Some sites were adjudged to be of particular biological and conservation interest, and for these site files have been opencd (Section 4).

\subsection*{3.2 Classification and ordination}

From within the random stratified survey, data from 3502 stands ( \(4 \mathrm{~m}^{2}\) quadrats) for 667 vascular plant species were collected. Bryophytes were not recorded during the first 2 years of the survey and are therefore not included in the analysis. Plant cover was estimated visually in the field to the nearest \(5 \%\), with discrete categories being given to scores of \(<1 \%\) and \(<2 \%\). For analysis, the information was reduced to 5 possible cover abundance states for each species.
\begin{tabular}{|c|c|}
\hline  & South Eastern \\
\hline ．．．．．．．． & Weald \\
\hline －－－ーーー－ & Southern Chalk Uplands \\
\hline －．－． & Chilterns \\
\hline & South Western \\
\hline  & Central Southern \\
\hline －ーーーーー－ & South Coastal \\
\hline & South Midlands \\
\hline ．－．．．．．．．．．．．．．．．． & Midlands and East Anglia \\
\hline －ーーー－ & Eastern Lowlands \\
\hline －－－－－－．－－．－．－．－ & Fens \\
\hline & Pennine Coal Measures \\
\hline & Northern Sandstones \\
\hline － & West Coastal \\
\hline & Lancashire Plain \\
\hline － & Pennines \\
\hline & Western Coal Measures \\
\hline －ー & Midland Hills \\
\hline & North Coast Carboniferous \\
\hline & Scottish Lowlands \\
\hline －ーーーーーー－ & North West Coastal \\
\hline & Highland Coastal \\
\hline ． & West Highlands \\
\hline ーーーーーーーー & Central Highlands \\
\hline & Welsh Uplands \\
\hline － & Igneous Coastal \\
\hline
\end{tabular}

SAMPLING SITES
\begin{tabular}{ll}
\(\boldsymbol{\nabla}\) & Random \\
\(\circ\) & Biological Interest \\
\(\square\) & Cutting／Embankment \\
\(\boldsymbol{\nabla}\) & Random－revisited during 1981
\end{tabular}
\begin{tabular}{cl} 
SITES OF PARTICULAR BIOLOGICAL INTEREST \\
\(\nabla\) & Random \\
\(\circ\) & Biological Interest \\
\(\square\) & Cutting／Embankment \\
\(\nabla\) & Random－revisited during 1981
\end{tabular}






The constant (occurring in more than \(80 \%\) of aenbers) attributes of the railway track classification. The classification depends on the distribution of 83 geographic attributes within the 899 , \(16 \cdot 1 \mathrm{~km}\) ( 10 mile ) units of rural railway verge in Britain

\(<7.0 C\) January
hell drained calc.-soils
\(>6\). 0 hrs sun July
Chzik and.oolites
< 10 days snow cover
Electrified
\(<400^{\circ}\) ASL
\(<2 S^{\prime}\) ASL
Alluviua
Drift
St:2fnogleys
\(<6.0\) incs sun July
\(<20\) days snow cover
\(<100^{\prime}\) ASL
Sait marsh.
Buncer
Cozl measures
\(<200^{\prime}\) isL
\(<30\) days snow cover
\(<6\).OC January
Non-calc. brown earths
\(<5 . j\) hrs sun July
- <6.5C January

Carboniterous \& magnesian
is:ecous \& incrusive
入: OU' ASL
Becider ciay

化, : a! : :ưgi: pasture

St:2:-1morgitit

\[
-\infty-
\]

\(\mathbf{x}:\)

TASLE 3.2 Area of rural railway verges by track class
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trac & ck Class & & Area & (ha) & No. Units \\
\hline 1 & South Eastern & & 1386 & \(\pm 136\) & 41 \\
\hline 2 & Southern Chalk Uplands & & 1536 & \(\pm 167\) & 40 \\
\hline 3 & Chilterns & & 1429 & \(\pm 110\) & 32 \\
\hline 4 & South Western & & 960 & \(\pm 141\) & 40 \\
\hline - 5 & Central Southern & & 1292 & \(\pm 339\) & 28 \\
\hline 6 & South Coastal & & 104 & \(\pm 3\) & 6 \\
\hline 7 & South Midlands & 3 & 3710 & \(\pm 603\) & 70 \\
\hline 8 & Midlands and East Anglia & 1 & 756 & \(\pm 143\) & 70 \\
\hline 9 & Eastern Lowlands & 1 & 774 & \(\pm 367\) & 28 \\
\hline 10 & Fens & 1 & 205 & \(\pm 307\) & 33 \\
\hline 11 & Pennine Coal Measures & 1 & 890 & \(\pm 225\) & 51 \\
\hline 12 & Northern Sandstones & & 899 & \(\pm 99\) & 42 \\
\hline 13 & West Coastal & 1 & 012 & \(\pm 140\) & 29 \\
\hline 14 & Lancashire Plain & & 559 & \(\pm 120\) & 15 \\
\hline 15 - & \(\cdots\) Pennines & 2 & 217 & \(\pm 235\) & 51 \\
\hline 16 & Western Coal Measures & & 840 & \(\pm 126\) & 36 \\
\hline 17 & Midland Hills & & 916 & \(\pm 489\) & 29 \\
\hline 18 & North Coast Carboniferous & & 759 & \(\pm 78\) & 28 \\
\hline 19 & Scottish Lowlands & 1 & 729 & \(\pm 141\) & 56 \\
\hline 20 & North West Coastal & & 276 & \(\pm 31\) & 16 \\
\hline 21 & Highland Coastal & & 879 & \(\pm 102\) & 26 \\
\hline 22 & West Highlands & & 594 & \(\pm 103\) & 24 \\
\hline 23 & Central Highlands & '1 & 140 & \(\pm 82\) & 38 \\
\hline 24 & Welsh Uplands & & 507 & \(\pm 91\) & 18 \\
\hline 25 & Igneous Coastal & & \(407 \pm\) & \(\pm 46\) & 16 \\
\hline 26 & Weald & & \(902 \pm\) & \(\pm 100\) & 30 \\
\hline & Total & & \(678 \pm\) & \(\pm 4524\) & 893 \\
\hline
\end{tabular}

PIGURE 3.1 Generalised site diagram. The random sites are 100 m long and tied to \(B R\) mile posts. The arrows indicate the direction in which recorders walked, facing, for safety reasons, oncoming rail traffic.

\begin{tabular}{ll}
\(<1 \%\) & \(=1\) \\
\(-1-5 \%\) & \(=2\) \\
\(>5-20 \%\) & \(=3\) \\
\(>20-50 \%\) & \(=4\) \\
\(>50 \%\) & \(=5\)
\end{tabular}

The scale is weighted toward the lower end where variability is likely to be-most relevant.

During classification and evaluation, these cover states were treated as "pseudospecies", Arrhenatherum elatius, at level 2 , for example, being considered a distinct species from. A. elatius at level 4. This gave a raw data array-of \(3502 \times 667 \times 5\), or 11679.170 components, a number too large for processing with available software and computing facilities.

Astep-wise classification was therefore devised in which it was intended first to classify astratified (by track class) random subset of data, then to ascribe the remaining data to the classification by virtue of a derived key, and subsequently to re-sort resulting major vegetation groups.

A subset of 937 -samples and 442 species was taken and classifled with TVINSPAN (Hill. 1979a); a polythetic divisive method which groups both stands-andspecies. The programe defines and divides with respect to a number-of indicators:. .These indicators effectively form a key (Figure 3.2) -which-may-be used to ascribe further information to the classification. With the data subset used, it was-found that the maximum number of indicators allowed for in the programme (15) gave the least amount of -misclassification (ie samples recognised by the programme as occurring in the wrong category).

The indicator species key shown in Figure 3.2 was tested by returning the 937 samples used to erect the classification through the key. Only \(78 \%\) of samples went back to their original position, and the key was discarded.

A preferred method of ascribing information was found with the Czekanowski similarity coefficient. \(90 \%\) of samples returned to their original or next closest position, and the remainder of the data set, 2565 samples, was ascribed to the initial TWINSPAN classification using this coefficient.

A dendrogramshowing between-group similarities with the Czekanowski coefficient is given in Figure 3.3 , group average linkage is shown in the left-hand.margin. At=a.-linkage of \(0.25,4\) major vegetation groups are distinguished:
1. Heath-and-base-poor associations
2. Grasslands
3. Tall herb and bramble
-. 4: Scrub-and-secondary woodland
At a linkage of 0.3 , the grasslands separate into fine leaved noda (2A) and the railway Arrhenatherwm elatius (2B). The data set of each of these 5 major vegetation groups was reclassifted with TWINSPAN, and the results of these classifications used to produce the phytosoctological tables given below. Discrete vegetation-groups, linking at less than 0.15 , are treated independently under the heading 'miscellaneous'.

Classification of 937 samples and 442 species. The key
depends on the indicators defined at each level of
division by the programme. See text for discussion.


Kubus fruticosus 2
Hedera helix
Crataexus nozogyna 2
Critica dlolea
Arrhmatherus elatius
Festuca rubra
Dacty:is giozerata
Equisutua arrease
Poa prateasis
Eeracleua spbandyliuz
Plaatago lanceolata
Centauraa nigra
Lathyrus prateases
fiolcun lasatus
Agropyroa repens

Arrbonatherin olacius Cirsium arvease Urtica diolea Equisetua arvense Agropyron repeas Dactylis glowerata

Agrostis tenuis Anctoxartaw odoratuz Poten:Illa erecta Teucilua scorodonia Dosçapsia flexuosa Calluaa vulgare
\(\qquad\)

poa pratenser
Agrostis tonuly 2
Pestuca rubra 3 Holcus lanatus 2

Dactyils gloas
hicta craces Cectsurea nlgra
nelcui lasatus Dolcu* lasatus Puatx acotosa Pon argustifolia

Foucriva ncorodonia Dryoptarts fllis-nws Miercua potraen Пyporicua pulchrua Eric cineron Cx!iuna vulgars


Calluan valraze
Eriea sincioa 2
Denchwobla ilexuaxa Be:u: = pendula Erica tet:alix


アにじに 3.4
95\％confidence ellipses enclosing the datum points of the 1 major vegetation groups on BR land as ordinated with DECORANA．The first axis（ \(x\) ）of ordination shows a trend of decreasing disturbance away from the origin，whilst the second（ \(y\) ）gives a gradient of diminishing pH and nutrient availability．The vegetation groups are：

1 Heaths
2 Grasslands
3 Tall herb and brambie
4 Scrub and secondary woodland．Data from subset of 937 ．samples


Ordination of the subset (937 samples) data with DECORANA (Hill 1979b) gave an extremely complicated plot, which is not reproduced here. A simplified version, showing the 4 major groups linking at 0.25 , is given in Figure 3.4. \(95 \%\) confidence ellipses enclose each set of datum points. Disturbance diminished away from the origin parallel with the first (x) axis of ordination. The second (y) axis shows a gradient of falling pH and nutrient availability. Other trends are obscured by the diversity of the datum set.

\subsection*{3.3 BR vegetation noda}

Vegetation noda occurring on rural BR verges are defined with the help of 6 synoptic tables. Each table covers one of the major groups described above. The grasslands are subdivided into fine-leaved and false-oats, and the miscellaneous noda (having an average similarity coefficient of less than 0.15,. Figure 3:3) are grouped in one Table.

The format of the Tables follows, essentially, that to be used by the National Vegetation Classification (NVC, Hodwell in preparation) and is designed to make comparison practical. Certain differences will, however, be found.

The constancy classes are equivalent:
\[
\begin{aligned}
V & =\text { present in } 80 \% \text { of samples } \\
\text { IV } & =>60 \% \\
\text { III } & =>40 \% \\
\text { II } & =>20 \% \\
I & =\varsigma 20 \%
\end{aligned}
\]

However, category I ( \(£ 20 \%\) has not been used at all in the construction of the Tables, because a large number of vascular plants were recorded, many occurring only casually in the more disturbed railway vegetation types. Inclusion of such information would produce extremely long and complicated Tables, or would mask trends defined where the particular species occurs in greater abundancy in a related nodum. Use of this category has been made by the NVC, and this may be because of the comparative smallness of the datumsets used to define some noda. Within the Centaurea nigra subcommunity (ci Page.1980) of the Arrhenatheretum elaticinis for example 10 samples are used by the NVC, whilst the BRS includes 859 stands. Similarly, 735 stands here define the Urtica dioica subcommunity, whilst 118 are grouped in that nodwn by the NVC. Clearly the BRS is more specialised than the NVC, but the greater weight of information in some areas should be taken into account•when strict comparisons are made.

A simplified cover/abundance ratio of 5 states was used here. Use of the Domin Scale, preferred by the NVC, would have given a raw data array of \(>23 \times 10^{6}\) components (see above), and the increased problems of data handling were considered to outweigh the finer definition given by the latter scale.

For comparison, the following categories are broadly equivalent:

NVC (DOMIN)
\[
1-2
\]

3
4-5
6-7
8-10
3.3 The distribution of vegetation noda within track classes on \(B R\) land. 3497 sampes are listed, the remaning supported bryophytes on \({ }^{\prime} y\) and were not classified.

\section*{TRACK CLASSES}


\section*{KEY}

Vegetation: 1.Holinia-Murica nodum; 2. Callunetum vuicaris 1; 3. Callurztum
 7. Agrostis-iestuca nodum; 8. Potentilla erecta variant; 9. Achiliea mil ?éolium variant; 10. Chalk grassland; 11. Brachijpodium pinnatuen !rassland; 12. PC: anqustifolia variant; 13. Anthoxanthum odoratum variant; 14. :/icia cracca variant; 15. Alopecurus pratensis variant; 16. Equisetum arvense variant; 17. Chariv:-on angustifoliwn variant; 18. Holcus mollis variant; 19. Carex miparia nodum; 20. Heraclenir-Arthriscus nedwn; 21. Chamerion angustifolium nodum; 22. Urtica-ivbus nodun; 23. Ulwis ulabra nodum; 24. Arum maculatwn nodium; 25. Prions spinos: nonium; 26. Clematis-liblimium nodum; 27. Querceto-Fagetea; 28. Onbrogenous mire; 29. Rhododendion ponticum stands; 30. Reed beds; 31. Seneoio viscosus nocty; 32 . intricarici mari亡iria nodum.
Track classes: 1. South Eastern; 2. Southern Chalk Uplands; 3. Chilterns; 4. South:
 East Anglia; 9. Eastern Lowlands; 10. Fens; ll. Pennine Coal leasures; l2. Northern Sandstones; 13. West Coastal; 14. Lancashire Plain; 15. Pennines; 16. Western Coal ileasmres; 17. Midldiad. Hills; 18. North Coast. Carboniferous; 19. Scottish Lowlands; 20. Nurtin Vest Coastal; 21.. Hirghland Coastal; 22.. West lifghlands; 23. Cent:al ríghlands.: 24. Velsh. Upland:i; 25. IGneous Coastal; 26\%. Weald.

The distribution of BKS vegetation types is given by track class. In Table 3.3, the number of samples of each defined nodum in each track class is given. The distribution of track classes is shown on the maps following page. 68 .

The vegetation types are described below, and habitat information is given about each nodum.

\subsection*{3.3.1 Heath and fern associations}

Heath and fern associations cover approximately 1870 ha of \(B R\) verge, and, with the exception of the Ptcridietum (nodum 5), which is widely distributed, are restricted to base-poor soils along lines. in northern and western Britain.

The synoptic Table (3.4) given is based on 212 samples and 226 vascular species; 5 noda are distinguished. The first 3 are heath and mire communities restricted to Scottish Region, and broadly comparable to noda defined by McVean and Ratcliffe (1962). Constant species for this group are Callwna vulgaris, Erica cinerea, Potentilla erecta and Deschampsia flemusa. Nodum 4 is essentially a woodland type. Dryopteris filix-mas and Teucrium scorodonia are constant, and, together with other forbs, occur with or without a canopy of ash, birch, sallow, larch or sessile oak. This vegetation is found in Scottish and upland areas of London Midland and Eastern Regions. The P=eridietum (nodum 5) is distributed throughout BR on freely-draining acid soils.
a. 1. Molinio-Callionetum*, Molinia-Myrica nodum

160 ha, West Highlands
This is very close to the Molinia myrica nodwn defined by McVean and Ratcliffe (1962), although Erica cinerea and Oreoptemis limbosperma are constant members (11) of the railway type and Descharmsia flexuosa was found more frequently.

The swards are dominated by Moliilia caerulea which occurs in the highest constancy. and cover/abundance states. Potentilla eirecta and lymica gale are consistently associated, whilst Erica tetraliz andor Calluna :ulgaris are sometimes co-dominant. Carpylopus pyriformis, fypnum cupressiforme var. ericetorwn and Dicranum scoparium were recorded frequently within this nodwn. The number of vascular species in each sample ( \(4 \mathrm{~m}^{2}\) ) varies between 4 and. 15 ( \(\bar{x} 7\) ), whilst from between 0 and 9 ( \(\bar{x} 3\) ) bryophytes were recorded.

This vegetation has a very limited distribution on \(B R\) land occurring mainly between Lochs Shicl and Ailort on the West Highland (Inverness to Mallaig) line. It occurs on flat or moderately sloping verges, on peat or peaty soil, with a pH range of 3.8-5.7 (x 4.4 ). Very little management, tipping or disturbance was recorded.

\footnotetext{
* An ombročnousmire related to this community, but with an average similarity of less than 0.15 (Figure 3.3), is described with the miscellaneous nocin.
}

b. 2. Callunetum vulgamis, nodum 1

360 ha, Scottish Refion
Two noda showing affinities with the Callionetum vulgaris described by McVean and Ratcliffe (1962) or the dry Calluna moor of Birse (1965) are recognised from railway land in Scottish Region.

The first (Table 3.5, nodum 2) is characterised by abundant Molinia caerulea, possibly reflecting a history of verge burning (Muirburn Research Group 1978), and by birch, sallow and rowan, with bracken and some bramble. These may be more recent colonists of the comparatively ungrazed and now less intensively managed verges. From 5-19 (x 10 ) vasculav species were recorded in each sample, and from l-12 ( \(\bar{x} 5\) ) bryophytes. Most frequent amongst these were \(H\). cippessiforme var. ericetoilim, Dicranclla heteromalla and Hylocomium spiendens. Breutelia chrysoconn occurred: occasionally and: Pohlia drumonaiti was recorded from one site (R323, Glenfinnan).

The vegetation occurs on flats and cuttings with moderate to steep slopes and more or less podsolised soils. The pH range is 3.8-6.1 ( \(\bar{x} 4.6\) ), and very little management or tipping was recorded.
c. 3. Callunetum vulgaris, nod̉um 2 |

390 ha, Scottish Region
The second nodum recognised within the Callunetum is distinguished by the virtual absence of \(\%\) caerviea, bracken, bramble and most nonericaceous woody species. C. vilgaris is more consistently dominant, and \(D\). flexuosa and Festuca ovina are frequent associates. Vaccinium vitis-idaea occurs occasionally (II), as do Anthomintom odoratum and Agrostis copillaris. The most common bryophytes are biv locomium splendens, Pleuroaium schreberi, Polytrichum conmune, Pseudosaleropodium purum and il. cupressiforme var. ericetorum. Racomitmium iannsinosum, Barbilophozia floerkei and lophozia ventricosa were recorded from some rather better drained samples, whilst Sphagnum palisine, Riccardica chanedryfolia and Odontoschisna sphagni occurred at the other end of the range. The number of bryophytes recorded from each sample was from 4-7 ( \(\bar{x} 6\) ), whilst \(3-12(\bar{x} 7)\) vascular plants were found.

The samples are mainly from steeply sloping. cuttings on base-poor soils ( pH 3.7-5.4, \(\overline{\mathrm{x}} 4.6\) ). No management, tipping or railway disturbance was recorded.
d. 4. lnyopteris filix-mas nocium
\(320 \mathrm{ha}, \mathrm{Scottish}\) Region and Pennines
This nodum is based on a woodland ground flora dominated by Dryopteris jilix-mas and restricted to Scottish Region and carboniferous limestone sites in the Pennines. Affinity is with the Queroe iva iobori-petmade (Braun-Blanquet \& Tuxen 1943) or, more closely, with Tansley's (19:i9) Qurceiturn potrueace, or McVean and Ratcliffe's (1962) "mixed deciduous woodland". Subcivision by canopy specics, which include in addition to Q. petraea, Framinua excelsior, Betula pubesceris, ionix decidua and

Salix spp., produces recognisable forms, there being, for example, a strong correlation between birch and raspberry, and between ash and Disyopteris dilatata. The latter vegetation is particularly characteristic of the Glasgow-Oban line. The nodum also exists without a tree canopy; however, with a datum set of only 42 samples, splitting seemed unwise.

Constant ground flora species include Blechnum spicant, Acrostis canina, Deschampsia flexuosa, Teucrium scorodonia, Solidago virgaurea and Pteridium aquilinum. Trientalis europaea and Goodyera repens occurred in one or two samples, whilst elsewhere Hycelis muralisand Gymocarpium dryopteris were found. An average of 13, and range between 9 and 14, vascular spectes were recorded at each stand, whilst between. 3 and 13. ( \(\bar{x} 6\) ) bryophytes occurred. Particularly frequent amongst the bryophytes were Thuidium tamariscinium, Dicranum scoparium, Dicranella heteromalla, Polytrichum formosum, Eurynchiumpraelongum and Lophocolea bidentata. Less common were Ctenidium molluscum on carboniferous. limestone and Or:thodontium ineare on peat. Not surprisingly, the pH range recorded, 5.2-7.8 (x̆ 6.4 ), was, wide.

The vegetation occurs on moderately to steeply sloping formations, with cuttings being rather better represented than embankments. Underlying strata include. calcareous, and siliccous rocks, and some tipping of spent ballast was recorded. In high rainfall areas; Dryopteris filix-mas is a very common plant of railway tip, and observations suggest that it also shows resistance to herbicides commonly sprayed along verges by BR (Table 2.1). This may account for its more consistent inclusion in the railway facies described, than in comparable forms elswhere.

\section*{e. 5. Pteridietum aquilinum}

590 ha, all Regions
Communities dominated by Pteridium aquilinum are widespread on BR land. The nodum described here is broadly comparable with the association defined by Tansley (1949). P. aquilinum and \(R\). friticosis occur consistently, whilst Digitalis purpurea, Holcus mollis, i. lanatus, A. elatius and Chamerion angustifolium are amongst frequent (11) associates. Commonly occurring bryophytes include .?nyticiadelphus squarrosus, Lophocolea bidentata, Erachythecium ruiziulum, Pseudoscleropodium purum, Thuidium tamariscirum and Hylocomium splerciens. The number of vascular plants in each sample is between 4 and 20 ( \(\bar{x} 14\) )
- and of bryophytes 0 and 7. ( \(\bar{x} 3\) )..

The Pteridietum occurs mainly on freely-draining embankments with moderate inclines and some ballast tipping. Few samples occurred in the north-facing quadrant of the compass. Although little management was recorded, the widespread distribution of this vegetation type may be due, in part, to earlier verge-burning regimes.

\subsection*{3.3.2 Fine-leaved grasslands}

The synoptic phytosociological table (3.5) of fine-leaved grasslands found on BR verges is based. On 388 samples and 354 vascular species; 6 nodia are recognised, varying in species composition between grass henth and chalk and limestone swards. These grasslands cover approximately 3400 ha , and are distributed throughout BR. They occur

388 samples， 354 species
\begin{tabular}{|c|}
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
Fiscuca rubra \\
Fou protensis \\
irrieunatharum elatius \\
ESctyiis glomsrata \\
Psits fruticosus agg． \\
Pumez aoetosa \\
cianerion angustifolium \\
piantago Zarceolata \\
Rinter acetosella
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{rrr}
10 & 11 \\
\(V(1-5)\) & & \\
\(V(1-5)\) & IV \((1-3)\) \\
III \((1-4)\) & III \((1-5)\) \\
& III \((1-5)\) \\
IV \((1-2)\) & & \\
II \((1)\) & II \((1-2)\)
\end{tabular}

II（1－2）
\(111(1-3)\)
II \((1-2)\)
11 （1－5）
I］\((1-2)\)
\(11(2-2)\)
IJI \((2-5)\)
\(11(2-2)\)
1）（2．\＆）
I）\((1-5)\)
2）（1－2）
IJ \((1--1)\)

II（1－5）
II \((1-2)\)
II \((1-5)\)
I）\((1-2)\)
II \((1-2)\)
\[
\begin{aligned}
& \text { IV }(3-2) \\
& \text { IV }(1-3) \\
& \text { II }(1) \\
& \text { II }(1) \\
& V \\
& \text { V }(1-4) \\
& \text { II }(1-3) \text { III }(1-4) \\
& V(1-5) \text { II }(1-4) \\
& \text { IV }(1-3 \text { II }(1-3) \\
&
\end{aligned}
\]

IV（1－2）
IV（1）
\(11(1-3)\)
II \((1-2)\)
II \((1-2)\)
I1（1）
V \((1-2)\)
l］\((1-2)\)
III（1－2）
\(11(1-2)\)
\(11(1-2)\)
\(111(1-2)\)
III \((1-2)\)
II（1－2）
II（1－5）
II \((2-3)\)
II \((1-2)\)
III \((1-3)\)
II \((1-3)\)
II \((1-3)\)
\(11(1-2)\)

II（2）
IV（3－5）
II \((1-3)\)
II \((1-5)\)
III \((1-4)\)
III（ \(1-5\) ）
II \((1-4)\)
\(11(1-3)\)
at extremes of pli, in upland areas, and on unstable slopes (eg chalk cuttings), where the Arrhenatheretum elatioris characteristic of BR verges does not compete successfully. Fine-leaved grasslands are also found where small mammal grazing is sufficient to inhibit coarser grasses, and along browse margins, where livestock from adjacent pasture feed through or over the boundary fence, hedge or wall. This grassland is particularly interesting because, whilst being selectively grazed, it is neither dunged nor trampled. It is not well documented in the literature

Results described in Section 4 of this report, where changes in railway vegetation are considered, suggest that, in the absence of systematic, burning, and under. a: small. mammal grazing regine;, Festuca rubra may compete successfully with \(A\). elatius. The rate of increase in area of BR verge supporting a fine-leaved grassland was found to be more rapid than that where an Arrhenatheretw grows (Figure 4.3); whilst a majority of. recently (usually accidentally) burnt swards: are dominated by-A. eiatius (Table. 4.1). Systematic verge burning was discontinued in the early 1960s.

The abundance of Holcus mollis in some of the more acid grasslands (Table 3.5) and the comparative scarcity of Festuca ovira, and absence of Cynosurus cristatus, may reflect the history: of burning. (cf Tansley :1949), whilst reduction in this method of management, coupled with increased rabbit grazing in recent (post-myxomatosis epidemic) years, has probably encouraged species diversity along verges.

Fine-leaved grasslands with Vulpia and Aira spp. are widespread on the cinder cess. They are not discussed in detail here because of the restriction of systematic sampiing to rural verges.

Descriptions of the 6 noda are given below. They are divided into bentfescue grasslands, in which a grazed type with 2 variants (7, 8, 9), and a subcomunity with Holcus mollis on peaty and humic soils (6) are recognised and distinguished from calcicolous no (10) and Brachypodium pinnatum (11) grasslands. The geographic range of each is shown in relation to the track classification (Table 3.3), the more specialised forms on peat and calcarcous substrata (6, 10, 11), which are not directly dependent on grazing; having a more restricted distribution.

\section*{a. 6. Holcis mollis subcommunity}

580 ha , Scottish, London Midland and Eastern Regions
Although this community recognisably belongs amongst the tgrostisFestuca grasslands described by Tansley (1949), the common occurrence of A. elatius and \(C\). angustifolium, together with the abundance of it. mollis (possibly in consequence of previous burning), suggests that this is.a distinct railway form of vegetation.

It is the least species-rich of the fine-leaved nocin described, having between 8-13 ( \(\bar{x} l \mathrm{l}\) ) vascular species and 0-4 ( \(\bar{x} 3\) ) bryophytes in.each. sample. The most: frequently recorded bryophytes. were Gaupulopus.
 i3rachythecium rutabuilam, the latter usually occurring on spent ballast beneath the grass canopy.

The grassland has a northern and western distribution, and was found most often on flats or south-westerly slopes with a moderate incline. The soil is humic or peaty with a low \(\mathrm{pH}(3.9-6.2, \overline{\mathrm{x}} 5.2\) ), and very commonly strewn or partially covered with old (not'recently tipped) spent ballast. In samples adjacent. to the track, some spraying was recorded; elsewhere little recent management was observed.
b. 7. Agrostis capillairis-Festuca rubra grassland
\[
1130 \mathrm{ha}, \text { all Regions }
\]

This communty is widely distributed on \(B R\) land and includes many of the cattle and sheep browsed margins, and more heavily rabbit grazed swards. In addition to the type, 2 grazed variants are recognised. One is found on more acid soils (8, Potentilla erecta variant), whilst the other (9, Achillea millefolium variant) occurs on more fertile and less freely draining soils.

The type is comparatively species-rich, with between 9 and 25 ( \(\bar{x} 18\) ) vascular species, and 0 to 5 ( \(\bar{x} 1\) ) bryophytes in each sample. Amongst the constant vascular plants are Anthoxanthw odoratw, Holcus lanatus, Poa pratensis, A. elatius and Dactylis glomerata, whilst common bryophytes include Ceratodon purpureus, Bryum capillare and Folytrichum juniperinum. acrocarpous species usually found in freely draining areas, with little -shade.

Most samples were from flats, or wide freely-draining and moderately sloping cuttings, with a pH range between 5.3 and 7.9 ( \(\bar{x} 6.4\) ). Vegetation from one siliceous stone wall rising abruptly from the cess is rather anomalously included. A majority of swards had ballast, varying from light to severe, strewn around. Little management was recorded.
c. 8. Potentilla erecta variant
\(450 \mathrm{ha}, \mathrm{Scottish}\) and London Midland Regions
This variant is confined to base-poor soils ( pH 4.0-6.2) in Scottish and London Midland Regions, with single (possibly anomalous) aliens in Eastern and Southern Regions.

The constant vascular plants of the type (above) are associated with, amongst other neath species, Calluna vulgaris, Galium samatile, Festuca ovina and Molinia caerulea. Common bryophytes include Riytidiadelpi:vs. squarrosus, lly locomium splendens and Plagiormium iniuiatim. Numbers of vascular plants range between 0 and 5 ( \(\bar{x} 3\) ) in each sample.

The grassland was found on predominantly flat formations, with some lightiballast-tipping and little management.
d. 9. Achillea millefoliwn variant

590 ha, all Regions
This variant occurs on deeper, more fertile soils with a pH between. 6.0 and 7.6 ( \(\bar{x} 6.7\) ). A majority of samples are grazed by livestock from adjacent pasture, and occur on flats along embankiment footings or at the top of cutting slopes. The increased fertility may be associated with
spray drift, or drainage into the footings, but not with dunging, as grazing is restricted to, or through, the boundary and livestock seldom escape on to railway land. Constant species which distinguish this variant are Trifolium repens, Cerastium fontanum, Luzula campestris and Acnillea millefolium. From 5-16 ( \(\overline{\mathrm{x}} 13\) ) vascular pl ants and from \(0-3\) ( \(\overline{\mathrm{x}} 1\) ) bryophytes occur, including almost consistently Rhytidiadelphus squarrosus.

Little management or tipping was observed.
e. 10. Chalk grassland

180 ha, Southern;, and Western Region
This grassland clearly falls within the Festuco-Brometea of BraunBlanquet and Tuxen (1943) or thermophilic dry grassland defined by Wolkinger and Plank (1981)..

On BR land, it is restricted to steeply sloping; unstable; chalk cuttings in Southern and Western Regions.

The community is extremely species-rich with from between 22 and 28 ( \(\overline{\mathrm{x}} 26\) ) vascular•plants in each \(4 \mathrm{~m}^{2}\) sample. Clino perennis and fypericum perforatum are the most constant distinguishing. species. Amongst bryophytes, only Brachythecium nutabulum was occasionally recorded.

The samples were on calcarcous soil of \(\mathrm{pH} 7.3-7.7\) ( \(\overrightarrow{\mathrm{x}} 7.5\) ). No tipping or management was recorded, and the instability of the slopes probably discourages colonisation by woody species.
f. 11. Brachypodium pinnatum grassland

470 ha, Southern and Eastern Regions
These grasslands also have a limited distribution, occurring on moderately sloping calcareous cuttings in Southern and Eastern Regions. The soil is often. clay and the pH varies between 7.2 and 8.2 ( \(\overline{\mathrm{x}} 7.8\) )..

The swards are comparatively coarse and only moderately species-rich, with from 9-15 ( \(\overline{\mathrm{x}} 12\) ) vascular plants and 0-5 ( \(\overline{\mathrm{x}} 2\) ) bryophytes in each stand. Constant species include Cirsium arvense, Convolvulus arverse, Poa angustifolia. and Bromus erectus., and. the community is distinguished: from drier members in this group by the virtual absence of Festuca riepra: At one site, Ophrys apifera occurs abundantly, whilst at others Cirsium eiriophorum and Genista tinctoria are interesting associates. Amongst bryophytes, Homaliothecium lutescens, Campylium ciresophylfum and Eurynchium striatum are important.

Although-littlemanagement and no tipping was recorded, it is likely that burning has, in the past, played some role in the development of the sward.

1594 samples, 461 species


\subsection*{3.3.3 Arrhenatheretum clatioris}

13730 ha , throughout BR
The railway Arrhenatheretum may be strictly compared with the irrhenatheretum elatioris defined by Rodwell for the NVC. A prepublication copy of the chapter concerning mesotrophic grasslands has been distributed within the NCC and kindly made available.

The Arrhenatizeretwn is almost ubiquitous on railway land, occupying about 13730 ha , and absent only from track class 24, Welsh Uplands, where the narrowness of randomly chosen verges may have led to undersampling. In. Table 3.6., 7 noda are. recognised based on: ample of. 1594 stands and 461 species.

The first 3 of these are considered variants of the Centaurea nigra subcomminty defined by, the. NVC, but are not directly identifiable with noda described. The remaining 4 fall within the Urtica dioica subcommunity. The \(C\). nigra members are here distinguished by that species. and by Holcus lanatus, Rumex acetosa and Taraxacum officinale. Character species for the socond subcommunity are Urtica dioica and Cirsium arvense, which is also distinguished by having rather more bramble (Rubus fruticosus agg.) and rather less. Festuca rubra. The C: niera. noda are characteristic of disturbed: cuttings, whilst. the: U. dioica roca: more-frequently occur on the deeper soils of embankments and slopes.

The most consistent floristic differences between the railway Arrhenatheretum and that defined by the NVC from data collected from other (non-railway) habitats are the complete absence of Cynosurus ciristatus (recorded in species lists but not stands, from 3 random sites only), and the general and widespread occurrence of \(E\). arvense and C. angustifolium (present in all noda, at level \(l\) where not otherwise marked; Table 3.7).

Poa angustifolia is not described in the NVC Arrienatheretum but gives its name here to a variant based on consistent occurrence (215 samples) and association with other species of well drained slopes with sunny aspects. Poa angustifolia is present at level I (not tabulated) in all members of the \(C\). \(n i g r a\) subcommunity.

The comparative species paucity of the railway Archenatheretum is more apparent than real. The large number of samples gives constancy values here considerable weight when. compared, for example, with: the values givenin the NVC. An inspection of NVC tables suggests greater diversi.ty, but. this is due to the rather smaller datum set (one tenth) used. Mean species/sample are approximately equal, although the maximum number of species/sample recorded tends to be much higher in the railway datum set, where casual and adventive plants occur frequently. Acanthus moli: Kniphopiora sp. and Triticum aestivum are amongst more interesting species found.

The 7 railway noda are described below. The \(C\). nigra variants are Poa angustifolia (12), Anthosanthum odoratum (13) and. Vicia cracca (14), whilst the \(l l\). dioica variants are Alopecurus pratensis. (1:5), Equic: armense (16), Chanerion angustifolium (17) and Holcus: mollis: (18)..: The: distribution of these noda with respect to track classes is shown in Table 3.3.
a. 12. Poa angustifolia variant

1890 ha, all Regions
The Poa angustifolia variant occurs on disturbed flats and south facing cutting slopes. Moderate to heavy ballast tipping, recent burning and scrub cutting were frequently recorded. The pH . range is wide, \(5.0-8.2\) ( \(\bar{x} 7.0\) ), and probably not as critical to the nodium as the freely draining character of the soil.

Constant associates which distinguish this variant are Vicia sativa ssp. nigra, Potentilla reptans and Leucanthemum vuigare. Whilst Cerastium fortanum is a constant member of the NVC Arrhenatheretum, on railways it is only present with any consistency in this nodum. 'the number of vascular plants in each stand varied between 1 and 42 ( \(\bar{x} 19\) ), and the species richness and diversity is almost certainly associated with disturbance. Bryophytes are less abundant, and between 0 and 4 ( \(\bar{x} 1\) ) were recorded, including particularly Brywm capililare- and. Brachythecium rutabulum. Amongst the more interesting species recorded were Leptodictyum riparium and Tortula ruraliformis, more comonly associated with, respectively, pond or river margins and sand dunes.

\section*{b. 13. Anthoxanthum odoratum variant}

2040 ha, all Regions except Southern
This variant occurs on rather more acid soils ( \(\mathrm{pH} 5.1-7.3, \overline{\mathrm{x}} 6.3\) ), on moderately sloping north facing formations (usually cuttings). Considerable disturbance by ballast tipping was recorded, although burning and scrub cuttings were less important than in the previous nodwn. Most samples came from rather nearer the cess, where railway influence is stronger, than the boundary.

Between 9 and 24 ( \(\bar{x} 16\) ) vascular plants and \(0-5\) ( \(\bar{x} 2\) ) bryophytes were recorded from cach stand. The constant species which distinguish this variant from other members of the subcommunity include Agrostis capillaris, Lotus corniculatus, Hieracium spp. vulgata and Angelica sylvestris, which is frequently found where spent ballast provides some light mulching of the underlying soil. Amongst commoner bryophytes were Lophocolea bidentata, Brachy thecium rutajulum, Rhytidiade Zpīi:s squarrosus and Eurynchium conferium.
c. 14. Vicia cracoa variant

3610 ha, all Regions ।
This is a coarse variant on rather deeper, circumneutral ( pH 6.1-8.3, \(\overline{\mathbf{x}} 6.7\) ) soils on flats and low cuttings or embankments. The majority of samples fell into east or west facing quadrants. Tipping, varying from light to severe, was fairly consistently recorded, whilst the most frequent form of management noted was selective spraying of scrub and woody species.

The variant is distinguished from other members of the subcomminity by the presence of \(E l y m u ;\) repeis and \(V\). cracca. It is considered the railway typr. The fewer number of selective species in part. reflects its large size. This variant is the most widely distributed vegetation on BR land, occupying approximately 3610 ha .

Individual stands are less species-rich than related noda, with from \(5-21\) ( \(\mathbb{X} 13\) ) vascular species and \(0-8\) ( \(\bar{x} 1\) ) bryophytes being recorded. B. rutabulum and Bryum capillare are the most commonly occurring bryophytes in this rather disturbed grassland.
d. 15. Alopecurus pratensis variant

3500 ha, all Regions
This is the other large and widespread variant of the frrhenatheretum occurring on \(B R\) land. It is characteristic of flats and embankments (and a few cuttings), many of which have gently ( \(<30^{\circ}\) ) to moderately \(\left(<45^{\circ}\right.\) ) inclined slopes.with a south-westerly. aspect. Tipping, of severe but: always more: or less: colonised (old), was consistently recorded, and the majority of samples came from closer to the cess than the boundary. Soil.pH varied between 4.8 and 8.4 ( \(\bar{x} 6.9\) ).

The variant shows character species with both the Centaurea nigra community (Lathyrusi pratensis and: Poa pratensis) and the nodur with which it is included (Cirsium arvense and Urtica dioica). It is essentially intermediate, occurring on warmer ( \(s w\) ) and better drained embankments, as well as on some cuttings. The Centaurea nigra subcommuni.ty is characteristic of cutting.slopes, whilst. the- U. dioica nodum is virtually restricted to the: of ten more disturbed embankment slopes, with comparatively deeper soils.
E. repens-and. Equisetum arvense occur at a high constancy level in this nodum, which is distinguished from related variants by \(A:\) pratensis, Poa trivialis and Anthriscus syluestris. The average number of vascular species in each stand is 13 (range 3-42), whilst from \(0-8\) ( \(\bar{x} 1\) ) bryophytes were recorded. Frequently occurring species included B. rutabulum, Fimaria hygrometirica and B. capillare.
e. 16. Equisetum arvense variant

760 ha; all Regions
This is a comparatively species-poor variant ( \(\bar{x} 11\), range \(2-21\) ) which includes recently colonised ballast tips. Bramble (Rujus fruticosus agg.) is ubiquitous and horsetail (E. arvense) a common associate.

The nodum occurs on embankment slopes, many of which have a southeasterly aspect; and on: most of which spentballast has been tipped. Little other management was recorded.. The pH is circumneutral (4.58.0, \(\bar{x} 6.9\) ), and the most frequently associated bryophytes are B. rutabuiwn and Eurynchium praelongum.

\section*{1. 17. Chamerion angusiifolium variant}

1040 ha, all Regions
Closely related to the previous nodum, this variant is distinguished by the constant occurrence of Chamerion angustifolium. It occurs on embankments (and occasional cutting) slopes.with. variable, but consistently colonised; tipping. The pH ranges. between 5.2 and 7.6 : ( \(\bar{x} G .5\) ), and no preferred aspect or particular form of management was recorded

TABLE 3.7 Tall herb and bramble
791 sampies, 349 species


There are an average of 12 vascular species ( \(8-16\) ) and fewer than 1 (0-3) bryophytes in each sample, with only \(B\).. rutabulum occurring commonly.
g. 18. Holcus mollis variant

890 ha, all Regions except Southern
The distribution of this nodum seems largely determined by soil pH and ballast.tipping. The soil was recorded as considerably more acid, \(\bar{x} 5.5\), wi.th a narrower range, 4.3-6.7, than found in other members of the railway Arrhenatheretum. Tipping was consistently recorded, and varied from recent and heavy to old and ligh.t.

Although no preferred aspect or formation was noted, the nodum was not found on steep inclines, and only occurred close to the cess in cuttings.. Management was minimal.

The variant is distinguished.by the presence of Holcus mollis and is not particularly species-rich ( \(\bar{x} 13\), range \(8-21\) ). No bryophytes were recorded.

\subsection*{3.3.4 Tall herb and bramble}
\[
6930 \text { ha, all Regions }
\]

The phytosociological position of these noda is not entirely clear. They are probably intermediate between. the Arrhenatheretur already defined, and the woodland edge communities (Rinarmo-prunetea, Westhoff \& den Held 1969). They are particularly characteristic of mid and lower embankment slopes, where a thin layer of, or scattered, spent ballast mulches the underlying soil, which is usually damp and organic. Nitrophilous and oily wastes from trains, and runoff from the cess drain into these areas. Where tipping is deeper, or the soil better drained, these commities grade into the firrhenathereium. Where unmanaged, they give way to sallow, and alder scrub, or, in drier areas, ash or blackthorn.

The tall herb and bramble noda are characterised by \(A\). eiatius, \(U . \ddot{\sim} \underset{\sim}{\infty}\), Galiwmaparine and Cirsium arvense. Damper noda with Eilipendula
ulmaria, \(E\). arvense, \(F\). rubra and \(E\). repens are distinguished from those in which bramble becomes ubiquitous.

The phytosociological Table (3.7) is based on 791 samples and 349 vascular species. It distinguishes between the 4 communities which are described below (distribution, Table 3.3).
a. 19. Canex mpania nodum

780 ha , all. Regions
This and the following nodum show strong affinities with the Filivミr.aition (Segal 1966) of the Molinio-Arrienatheretea as defined by Westhoff and. den Held (1969). They differ. in the constant occurrence of \(E\). \(P=\) and bramble, which appear to berailway attributes. Little similari:ty to the Caricetiim ripamiae of Soo (1928) is found.

The vegetation occurs in ditches, along embankment footings and on some poorly drained flats. On embankments, tipping was recorded. The pH range is 5.2-7.7 ( \(\bar{x} 6.7\) ), and cutting and spraying of woody vegetation was frequently noted, in accordance with BR policy of keeping drainage ditches clear.

Constant species, which distinguish this nodum are Carex riparia, Lathyrus pratensis, Dactylis glomerata, Angelica sylvestris and Vicia cracca. The mean number of vascular species in each sample is ll (6-17) and of bryophytes \(1(0-3)\), of which only \(B\). rutabulwm and Lophocolea bidentata occurred frequently.
b. 20. Heracleum-Anthriscus nodun

2470 ha, all Regions
This is similar to the lleracleetosum (Zonneveld 1960, in Westhoff \& den. Held 1969.), but distinguished by coarse railway-species, eg \(E\). arvense, (r. opamine and E. repens, as in the previous nodum.

The community is found on ballast-mulched embankment slopes, of gentle to moderate incline and no preferred aspect. The pH varies between 5.4 and. 7.8 ( \(\bar{x} 6.8\) ). Little management was recorded.

Constant species which distinguish this nodum are \(H\). spinoncij liwm, A. sylvestris and \(C\). angustifolium, and frequently occurring bryophytes include. \(B\). rutabulum and \(L\). bidentata. The mean number of vascular species is \(10(5-30)\) and bryophytes \(1(0-3)\).
c. 21. Chomerion angustifolium nodum
\[
1630 \mathrm{ha} \text {, all Regions }
\]

This nodum occurs on rather better drained, although still ballast tipped, slopes. There is some bias towards a southerly aspect. Soil pH varies widely between 4.4 and 9.0 ( \(\bar{x} 6.3\) ), and it is likely that warnth and drainage are more important to the distribution of this vegetation.

The C. angustifolium nodum is species-poor ( \(\bar{x} 9,1\) 1-18) with much, often dominant, bramble and some Drojopteris filix-mas. Between 0 and 7 ( \(\bar{x} 3\) ) bryophytes were recorded in each stand, with \(B\). ritaíulum, L. bidentata, E. praelongum, Plagiothecium denticulatw, Anjlystegium serpens and Plagiomium mdulatum occurring fairly consistently.

This and the following nodum, both with much bramble, almost certainly belong close to the Rhamo-Prumetea (Westhoff \& den Held 1969) in European classification.
d. 22. Urtica-Rubus nodum

2050 ha, all Regions
This very coarse, species-poor ( \(\bar{x} 8,3-18\) ) vegetation is widespread on BR land on all formations. Some preference is shown for moderately inclined cmbaniments, and tipping was fairly consistently recoived. Soil pH is variable, with a wide range of 4.9-8.6 (X6.8), and is: probably not very influential.


There are no constant differentiating vascular species, and, although from between 0-7 ( \(\bar{x} 2\) ) bryophytes were recorded in each stand, the list of those occurring frequently is identical with the previous nodum.

\subsection*{3.3.5 Secondary woodland}

The majority of woodland samples are included in this Section, although the Quercetum sessiliflorae and some noda with Betula and Salix spp. showed greater similarity (Czekanowski coefficient) with the heaths (Section 1), whilst bramble and Finododendron poniticum thickets are described with Sections 3 (tall herb and bramble) and 5 (miscellaneous) respectively.

Information for the synoptic table (3.8) defining this group, is from analysis of 474 stands and 277 species. Constant members are Fraxinus excelsior, Crataegus monogyna, Rubus fruticosus agg., Rosa canina, Hedera helix and Arrhenatherum elatius.

The placing of secondary woodland in existing classifications is not entirely straightforward. Distinction here has been made between ash/ hawthorn, in which 4 noda (23-26) are recognised, and oak/hazel woodland (nodum 27). In-European nomenclature, noda 23,24 and 25 show affinity with the Dryopterido-Fraxinetum (Klotzli 1970), whilst noda 26 and 27 may be placed with some confidence in the Querceto-Fagetea (BraunBlanquet et al. 1937), although identification to a finer level is not possible.

The largely immature soils, disturbance and occurrence of numerous casual species lead to a comparatively heterogencous secondary woodland, which is particularly rich in ash, bramble, and, more locally, birch and sallow. Hawthorn and blackthorn scrub are widespread. Ash saplings were frequently found on spent ballast tips, whilst birch and sallow colonise cindery areas and flats where drainage becomes impeded. More mature stands and oak or beech woodland tend to occur preferentially on cutting slopes.

A working nomenclature is adopted below, which may later be revised to coincide with, or complement, the NVC. The distribution of the 5 noda in relation to track classes is given in Table 3.3
a. 23. Ulmus glabra nodum

220 ha, London Midland and Scottish Region
This is a mixed deciduous woodland with a north-westerly distribution. A single outlier occurs in Southern Region. The woodland is found on embankments, and occasionally cutting slopes, with a moderate incline and preferential north aspect. Ballast tipping was frequently recorded over soil with a mean pH of 6.5 (4.7-8.2).'

Ash and sycamore occur at their most constant in this nodwn, which is characterised by wych elm and Viola riviniana. The ground flora also includes Dryopteris filixi-mas, Urtica dioica and iacreurialis perenmis. Amongst bryophytes, Eurhynchium praelongum and fiyprum cunressiforme occurred frequently. The mean number of vascular plants in each stand was 9 (2-16) and of bryophytes was. \(2(0-3)\) :.

TABLE 3.9
Miscellaneous associations

68 samples， 175 species

Nolinia carmilea EctertílZa erecta itymica gale
Suirpus caespitosus Hartheciun ossifnagun Eriophorum angustifoliun Viola palustris Succisa pratersis Erica tetralix Goliun saratile Agrostis canina Ju：cus effusuz

Rhododendron ponticur
\(\gamma(2-5)\)
IV \((1-2)\)
III \((2-5)\)
II \((1-3)\)
II（1－4）
II \((1-5)\)
II \((1-2)\)
II（1－2
II（I－6）
IT \((1-4)\)
II（2．5）
II（1－5）

Rubus fruticosus agg．
Priragmites oustralis Urtica Gioica Equi゙setium arvense Arrhenatherum elatius

V（5）
数（1－2）
111（3．－5）

V \((2-5)\)
III \((1-5)\)
II \((i-5)\)
III（2－5）
Senecio viscosus
Teucrium scorodorium
Serecio jacobcea
Y \((1-2)\)
IV \((1-4)\)
III \((1-3)\)
II \((1-2)\)
II \((1-4)\)
II（2－3）
Nutricizia marizims
Cochievria donica
ïatimione irutivacoices
Jurcus garuג \(2 i\) i
Spartinaz a 士oumaendii
Pwocircllia maritima
Triglochin maritima
Folygortut aviculare

The nodion is probably best considered a variant of ash woodiand with wych ela, as defined by Ratcliffe (19.77).
b. 24. Arum maculatum nodum

1350 ha, all Regions, but local in Eastern and Scottish
This is more strictly ash wood (sensu Ratcliffe 1977); occurring on calcareous ( \(\mathrm{pH} 6.3-8.1, \overline{\mathrm{x}} 6.9\) ) slopes with some bias toward a western distribution (Table 3.3). It is not found in the large eastern lowland classes, and has a fairly restricted distribution in Scottish Region. The vegetation grows most frequently on moderately inclined north facing embankments. Tipping was often recorded, although little evidence of recent'management was found.

Constant, and particularly abundant, amongst the species recorded were Crataegus monogyna, Hedera helix and Galium aparine. Arwm maculatum is a differential species. Of the bryophytes, B. rutabulw and E. praelongum were prominent, whilst Fissidens taxifolius was often found. From between 7 and 13 ( \(\bar{x} 9\) ) vascular plants and \(0-2\) ( \(\overline{\mathrm{x}} 1\) ) bryophytes occurred in each sample.

\section*{c. 25. Prunus spinosa nodum}

820 ha, all Regions
Distribution is similar to the Arum maculatum nodum. Floristically, this vegetation is distinguished by comparative species paucity (3-13. 88 ) and by more consistent bramble. Ash and sycamore were less frequently recorded. The nodur occurred on flat, and gently to moderately sloping, formations with no preferred aspect. Scrub cutting, spraying or disturbance was recorded from most stands, and it is likely that this is a deflected (managed or disturbed) facies of the previous nodum. pH (6.3-7.5, \(\bar{x} G .9)\), tipping, and numbers ( \(0-4, \bar{x} 1\) ) and kinds of bryophytes are comparable.

\section*{d.. 26. Clematis-Viburnum nodum}

190 ha, Southern, Western and London Midland Regions
This nodum is virtually restricted to chalk flats and cuttings in Southern Region, although one or two outliers in the Chilterns (LMR) and Western Region occur. It grades into the becch woods included in nodum 27.

It occurs on calcareous soils of \(\mathrm{pH} 7.2-8.1\) ( \(\bar{x} 7.7\) ), and usually shows some signs of management or disturbance. Recent tipping on flats adjacent to the cess was recorded, although the nodun is more characteristic of the flat fenced safety area along the top of steep cuttings.

Of the character species, Ros a canina agg. is particularly abundant, whilst Chamerion angustifolium, Prunus avium, Veronica chamaedmys and Glechoma nederacea, in addition to Clematis vitalba and Viburnum lantana, are differential. A mean of \(10(1-17)\) vascular species was recorded. The vegetation was sampled during 1977, before bryophyte recording was introduced to the survey.
e. 27. Querceto-Fagetea

1570 ha , all Regions

This large woodland group occurs predominantly on base-poor soils in southern Britain; \(75 \%\) of stands occur in 4 track classes, South Eastern (1), South Western (4), Central Southern (5) and South Midlands (6). It is virtually absent from Eastern Region, and occurs only locally in Scottish Region.

The woodland is found on all formations, although the sample shows some slight preference for embankments. Recorded slope and aspect were variable, although in the latter a small. south-western bias was observed. The stands are comparatively undisturbed', with light tipping and some. scrub clearance and felling. The mean soil pH is 5.3 (4:0-7.1).

Constant differential species include Quercus robus, Cory tus avellana and Betula pendula, and from. between 4-28 ( \(\overline{\mathrm{x}} 10\) ) vascular. plants were recorded in each stand. Bryophytes were not adequately sampled, but amongst those found were Atrichum undulatum, Eurynchiumi praelongum, Aulacomnium undulatum, Plagionmium hormum, Dicranella neteromalla, and, slightly more interestingly, Plagiothecium succiitentium.
3.3.6 miscelianeous associations

550 ha , throughout
A group of miscellaneous associations with a similarity coefficient of: less than 0.15 (average linkage, Czekanowski coefficient, Figure 3.3) is described here (Table 3.9; 68 samples, 175 species).
a. 28. Ombrogenous mire

210 ha, Scottish Region
This nodum occurs on poorly drained flats along railways in upland and highland areas of Scottish Region. It is related to the \%olinia-Myrica nodum (3.3.1.a).

Constant species include lfolinia caerulea, Potentilia erecta and Myrica gale. It is distinguished from the Molinia-Myrica noivm by Narthecium ossifragum, Eriophorum angustijolium, Viola palustris and Scirpus caespitosus. Bryophytes included Sphagnum papillosum, S. russowii, S. palustre, S.. subnitens, S: rubellum, Campylopus y mitormis: and Calypogeic fissa. The mean number of vascular species in each sample: is. \(10(3-20)\), and of bryophytes is \(4(0-7)\).

Recorded soil pH varied between 3.8 and 9.1 ( \(\bar{x} 5.2\) ), and no signs of management or tipping were obscrved.
b. 29. Rinododendron ponticum stands

Southern and Scottish Regions
Four stands. supporting a thicket of Rhododendron po: bramble were recorded: Mean soil pHi was 5.4, and. no. tipping or management was recorded.
c. 30. Reed beds

250 ha, all Regions
Reed (Phragmites australis) beds were found in ditches and along embankment footings in all Regions on BR, although outside Southern and Eastern Regions distribution was very local.

Constant species include \(P\). australis, bramble, nettle and false oat grass. A mean number of \(6(2-10)\) vascular plants was recorded from each stand. Bryophytes werc not adequately sampled.

The reed beds occurred in ditches on wet soils of \(\mathrm{pH} 5.3-7.7\) ( \(\overline{\mathrm{x}} 6.9\) ). Very little management or disturbance was noted.
d. 31. Senecio viscosus nodum

90 ha, Southern, Eastern and London Midland Region

This is an ephemeral association on cinder and recently tipped, spent ballast. It is widespread on the railway cess and is entirely undersampled because of the BR safety constraint'to examine systematically only rural verges..

Constant species are mainly annuals and inciude Senecio viscosus, Cerastium fontanum, Sagina procumbens and Poa annua. Teucrium scorodonia and Senecio jacobaea also differentiate this nodum. Bryophytes are almost strictly acrocarpous, and include Bryum argenteum, B. caespiticium, B. bicolor agg., Funaria hygronetirica and Ceratodon purpureus. Marchantia polymorpha occurs in damper stands. The average-number of vascular and bryophyte species in each stand respectively are \(10(1-17)\) and \(2(0-4)\). Recorded mean pH was 6.7 (5.6-7.7).
e. 32. Matricaria mamitima nodum

London : Midland Region
Two stands of littoral vegetation including Matricaria maritima, Juncus gerardii and Puccinella maritima were recorded. The pH was high at 9.5, and no disturbance or tipping was noted.

\subsection*{4.1 Introduction}

The intention of this work has been to provide an inventory of railway species and vegetation on which a general strategy for conservation and management of railway verges could be based. Some preliminary value judgements were made by us, and, in addition to the documentation of species and vegetation, 185 sites of particular biological interest ( \(B I\) ) have been identified.

There are 5 appendices to this report, listing the BI sites by BR Region; and describing: briefly the importance and interest of railway vegetation. Suggestions for general and local management are made. The appendices, which supplement the detailed site listings prepared for the NCC (Sargent and Mountford 1979; 1980; 1981), are for distribution within BR, and are intended to provide a basis for discussion between. BR and: NCC.

In this Section, the implications for conservation of the relationship between sites of interest and the railway network as a whole, are considered. Information collected in Southern and Western Regions during 1977 and 1981 is then described, and a Markov model, predicting vegetation population changes, is given.. The: Section concludes with a discussion about. changing vegetation structure in relation to conservation and management.

\subsection*{4.2. Biological Interest sites}

In order to increase the chance of visiting as many 'better' sites as possible, the random survey was supplemented with visits to areas of known or likely interest. Sites of particular biological interest (BI) were selected from within random and subjective surveys in the following proportions:
\begin{tabular}{lccc} 
& SUBJECTIVE & RANDOM & TOTAL \\
Eastern Region & 31 & 35 & 66 \\
Southern Region & 1 & 10 & 11 \\
Western Region & 15 & 12 & 27 \\
London Midland. & 32 & 12 & 44. \\
Scotish Region & 19 & -18 & 37. \\
Total BI sites & -98 & 480 & 185 \\
Total sites visited & 241 & 41 & 18
\end{tabular}

Although the numbers of \(B I\) sites from within the parallel surveys are comparable, a considerably greater proportion of sites occurred in the subjective than the random survey. Identification of \(B I\) sites followed discussion and agreement between all members of the team, and depended on the following criteria:

Inclusion of rare or local species, or associations.
.Inclusion of species, associations, or habitat types not locally common.

Inclusion of many taxa - diversity.

> Area - constrained by \(\pm\) parallel boundaries and a restricted length of track in randomly visited sites; this criterion was not used except in so far as a minimum verge width, allowing for  edge effects, is found in all \(B I\) sites.

Detailed files for all these sites are lodged with the NCC, and distribution maps are given in the appendices. Nost of the \(B I\) sites are also shown in red on the maps in Section 3, although a group have been erroneously omitted from the southern part of London Midland Region, and one or two sites not included elsewhere.

The distribution of BI sites within track classes (Section 3) was examined. A direct comparison between numbers of BI sites and track classes is artificial, as all track classes are of different sizes. Correlation was therefore sought between numbers of BI sites and track class length ( \(r=0.667\) ), or verge area ( \(r=0.752\) ). The stronger correlation with area indicates that verge width is of some importance, although the contribution (mean verge width : numbers BI sites : \(r=0.351\) ) is small. Although numbers of vegetation types (preliminary classification) are correlated with track class area ( \(r=0.524\); Sargent 1983), there is little correlation between numbers of vegetation types and BI sites ( \(\quad=0.171\) ), and a diversity index, obtained by dividing area by vegetation types, gives a weaker correlation ( \(r=0.665\) ) than area alone. When the largest track class, \(S M\), is omitted from the calculation, the correlation between area and BI sites diminishes ( \(r=0.541\) ).

The regression of \(B I\) sites against track class area is shown in Figure 4.1. The classes which include proportionally more BI sites have a predominantly western distribution and are upland or coastal. The lowland southern and eastern classes support rather fewer BI sites, despite the introduction. of some bias, during the subjective survey, toward sites close to Monks Wood (Cambridgeshire) where the team is based. The inclusion of Fens (F) amongst the 'better' classes probably reflects this bias, but may also be due to the comparatively rich diversity of the railway in relation to surrounding arable land.

Pennines ( \(P\) ) and Pennine Coal Measures ( PCM ) are amongst the 'least interesting' classes, although some outstanding lines, including the Blackburn-Hellifield, and part of the Skipton-Carlisle, and some excellent sites, eg R203 Wye Dale, occur in the 'Pennines'. Pennines is the second'largest track class. Its position in the regression may be due in part to undersampling during the subjective survey. Nevertheless, in common with. 'Pennine Coal Measures', much of the track'in 'Pennines' crosses industrialised and, sometimes, derelict land, where the verges are disturbed and support tall herb, bramble and scrub (associations which are not deemed to be of particular biological interest).

Track class
area
Hectares 4000


The numbers of designated \(B I\) sites ploted against the area of the track classes in which they occur. \(\quad r=0.752\). If the larse track class, \(S!i\), is omitted from the calculation, the correlation dininishes and \(r=0.541\). Track class 6, Soutil Coastal, has no 3 I sites and is omitted from the diagram.

LEY SL \(=\) SOUTA EASTERN; \(\because=\) MEALD; SCU \(=\) SOUTHERN CHALK UPLASDS; \(C=\) ChILTERNS; SiY = SOUTH MESTERN; CS = CENTRAL SOUTHERN;
\(S H=\) SOUTH RIDLANDS; HEA = !IIDLANDS AND EAST ANGLIA; EL = EASTERN LOMLANDS; \(F=\) FELIS; PCI! = PENIINE COAL MLASURES; NS = NORTHERN SANDSTONES;
 COAL MEASURES; \(\mathrm{MH}=\mathrm{MIDLAND}\) HILLS; NCC = NORTH COAST CARBO:IFEROUS;: SL = SCOTTISA LO:LANDS \(\because \because C=\) NORTH WEST COASTAL; HC = hIGillaND COASTAL; WH = WEST IIIGiLANDS; CH = CE:STZAI. HIGHLANDS; WU = VELSH LPLANDS; IC = IGNEOLS CONSTAL.

When the distribution of BI sites against railway formations is examined, \(43 \%\) of sites are found to occur on cuttings, whilst a further \(31 \%\) are on mixed formations dominated by cuttings. The distribution is as follows:


Mineral soil and less ballast and waste tipping (Section 2.2.2), together with greater verge width (sloping formations are usually wider than flats) contribute to the strong bias towards cuttings as sites of interest.

The preponderance of upland and hilly track classes, having proportionately more BI sites (Figure 4.1), is associated with the comparatively larger numbers of cuttings these classes support.

It is apparent that-considerably more of \(B R\) land is of interest than was within the resource of the survey to record. This fact is shown both by the correlation between numbers of \(B I\) sites and track class area, the implication being that, when more area is examined, further BI sites are found, and, also by the BI designation given to \(18 \%\) of randomly visited sites, implying that almost one fifth of BR land is of local or, occasionally, national interest.

Any conservation strategy should not, therefore, rely solely on the individual site listings prepared by us, but should include a generalised management policy in which particular attention is paid to cuttings. \(A\) possible approach is outlined in each of the appendices.

\subsection*{4.3 Changes in railway vegetation}

Underlying. this work has been the concern "that much conservation interest in terms of herb rich grassland may be affected by the development of coarser vegetation and scrub in the absence of regular management" (Hay \& Sheail 1977). The idea of the loss of fine-leaved grassland was echoed by Gulliver (1980), who suggestedthat "without mowing the short, railside grasses quickly changed to tall grassland. Very soon, one or two aggressive grasses, such as false oat grass and cocksfoot came to dominate these swards".

To examine changes occurring under the present ad.hor management regime:, 30 rardomiy distributed sites in Southern and Western Regions, first recorded: during 1977, were visited again in 1981; 283 quadrats were relocated by careful measurement and scored as previously.

\section*{FICURE 4.2 Dopulation changes}
\begin{tabular}{l|c|c|c|c|c} 
& \(2 A\) & \(2 B\) & 3 & 4 & \\
\hline \(2 A\) & 24 & 4 & 2 & 1 & 31 \\
\hline \(2 B\) & 9 & 52 & 11 & 4 & 76 \\
\hline 3 & 1 & 20 & 36 & 5 & 62 \\
\hline 4 & 5 & 7 & 7 & 77 & 96 \\
\hline & 39 & 83 & 56 & 87 & 265
\end{tabular}

Transition matrix showing the movement of quadrats between the 4 major vegetation groups in Southern and Vestern kegions during 1977-1981. In row \(2 B\), for examile, 52 quadrats remained constant, 9 were lost to 2 A , and 11 anci 4 lost to 3 and 4 respectively. Increments to the population are given in column 2 B . Row totals, therefore, give the population size in 1977, whilst column totals show the population in 1981.

All data ( \(2 \times 283\) quadrats) were ascribed to the preliminary TWINSPAN classification using the Czekanowski similarity coefficient (Section 3), and the fate of each quadrat between 1977 and 1981 recorded. Data falling in cach TVINSPAN class were then referred to the appropriate larger classification unit or group. Change between such larger groups is less likely to reflect classification error, and implies real changes in vegetation structure. 265 quadrats occurred and remained arongst groups \(2 A\), fine-leaved grassland; \(2 B\), false oat grassland; 3 , tall herb; and 4 , scrub and secondary woodland. The remaining 18 quadrats were classified elsewhere, or moved in to, or out of, these groups, and were not included in the analysis. The relationship between groups is shown in Figure 3.3. The virtual absence of group 1 is due to geographic distribution.

In Figure 4.2, a matrix showing quadrat movement from 1977-1981 between the 4 groups is given. In row 1 , for example, 24 quadrats remained as fineleaved grassland, whilst 4 became false oat, 2 went to tall herb, and one is now classified as scrub or secondary woodland. Recruitment to fine-. leaved grassiand is given in column 1. The row totals, therefore, give the population in 1977, whilst the column totals describe the situation in 1981. Thus; it may be seen that there was a net recruitment of 8 quadrats into the fine-leaved grassland population during the time in question.

The information in the matrix was used to build a Markov model (Horn 1975 ; Usher 1979), which assumes that at some future time the populations will stabilise, and predicts the distribution of quadrats (ie the size) within those populations when they do so. The results are shown graphically in Figure 4.3, and it may be seen that between the years 2009 and 2013 no further change occurs.

The results are contrary to the expectations of Way and Sheail (1977) and of Gulliver (1980).

Various criticisms of the model and preliminary collection of information can be made, although use of a coarse level of classification (groupsl-5 Figure 3.3) climinates error in allocating quadrats.

The criticisms include:
(1) There were only 2 data collections and the time span between the 2 dates was short. A temporary reversal in long term trends may have been picked up.
(2) The Markov model tends, inherently, to emphasise short-term trends during projection. A minor fluctuation may become exaggerated.
(3) The information is from Southern and liestern Regions only, and so almost certainly shows a geographic bias.
(4) Although careful measurements werc made' (the position of all quadrats is recorded in relation to, and lies within, 100 m of a \(B R\) mile post), some small error will have occurred during relocation.
(5) The model assumes that the transition probabilities are stationary in both space and time.

FIGURE 4.3

:israver, the mocic. depends on what actually took place at the randomly selected sites, and, \(i \because: ?\) argument is restricted to Southern and Western Regions, and allowance made lu, wiorration and exaggeration during projection, the results lead to some interisting, if cu:iroversial hypotheses.

Prior to 1960, verge management took the form of annual burning, grass cutting and scrub clearance. Cutting was done during early summer to prevent spread and germination of seeds on the cess. Cutting is no longer carried out, scrub and woodland clearance is on an \(a d\) hoc basis, and burning is only occasional or accidental (Section 2). BR staff have become concerned about the spread of woody species and have lately introduced more scrub clearance (C Beagley, personal communication).

It is probable that the model has picked up this increased activity; 19 quadrats were lost from group 4 (scrub and secondary woodland) between 1977 and 193l, whilst only 9 were recruited to the population. The loss is towards all other vegetation groups, and the direction is:almost certainly dependent on the original character of the scrub or woodland, together with grazing pressures and other disturbances in the intervening period. Some cleared woodland, retaining a characteristic ground flora, and woody seedlings will have continued to be classified within group 4.

In group 3 (tall herbs) \(32 \%\) ( 20 quadrats) have moved to \(2 B\) (false oat grassiand), whilst \(14 \%\) (ll quadrats) of the initial population of 2 B have moved in the reciprocal direction. Tall herbs and false oat grass include primary colonisers of recently burnt and ballasted areas. At the top of slopes, where tipped ballast is usually deepest, false oat, and sometimes bramble, colonise. Lower down, where ballast forms a thinner layer and serves to mulch the underlying soil, nettle, meadowsweet and cleevers compete (Section 2). Rosebay willow herb establishes successfully on spent material with a high proportion of cinder and small-particled material. It is less frequently associated with burnt sites (see below).

Although some noda within the tall herb and false oat groups will be comparatively stable (Section 3), those developing in response to the outlined disturbances and giving rise to the observed fluctuations between groups are clearly less so. In a recovering, or less discurbed, environment, the natural succession seems to be towards coarse (false oat) grassland, although scrub may also develop. Ash scedings and saplings were frequently noted on spent ballast tips, whilst bramble may encroach and provide a nurse crop for some woody species.

The net movement from coarse to fine-leaved grassland is, perhaps, the least expected result from this study. Whilst 4 fine-leaved grassland quadrats-went to false oat, 9 moved in the opposite direction. False oat grass withstands annual scything (Pfitzenmeyer 1962) and cessation of this activity is unlikely to have led directly to an increase in this category (although it will clearly facilitate the development of woody plants). More frequent mowing (Gulliver 1980) was an unusual management strategy, but the concomitant removal of litter may have been more important. On some railway verges, false oat has formed a tussock grassland, with very few other plants surviving in the intervening, litter-thatched troughs. This phenomenon may be more closely associated with inhibition of microbial activity by \(\mathrm{SO}_{2}\) as it was more of ten observed in'industrialised areas. (eg Derbyshire coalfields).

The recovery of rabbit populations from myxomatosis began in the early 1960s, at about the same time that verge cutting stopped. Nore recently, BR has begun to erect rabbit-proof fencing, in response to complaints from neighbouring farmers and land owners. Although false oat appears to survive vole (ificrotis agrestiv) grazing (there is abundant evidence of voles in most false oat railway swards), increased rabbit pressure is probably favouring the spread of red fescue. Ferns (1976) on the other hand has shown that red fescue may be an important component of vole diet. Land snails (Cepaea nemoralis) have a more catholic diet and enjoy both grasses (Williamson \& Cameron 1976).

Kabbit scrapes and the numerous ant hills (usually Lasius flavis). lend di versity and: provide alternative: habitats' for some: fine-leaved. ephemerals (eg \(A i n a\) caryopinyllea, Vulpia biomoides) and cess annuals under pressure from heavy chemical spraying (Section 2).

However; a more important factor in the increase of fine-leaved grasslands may be the reduction of burning.. Of 157 quadrats recorded during the random survey as 'recently burnt' (ie within the past 18 months), 111 occurred in false oat grasslands (2B), 30 ingroup 3 (tall herb), 9 in group 1 (heath and base poor), and 7 ingroup 2A (fine-leaved grasslands) (Table 4.1). These figures depart significantly from the null hypothesis that the distribution of recently burnt quadrats between groups. would be proportional to their distribution in the entire data set ( \(p<0.1\) ). The number of false oat quadrats is considerably more than expected, whilst the number of fine-leaved quadrats is fewer. Tall herb (group 3), is somewhat less than expected, whilst group lis strictly proportional. Groups 5 and 6 have no representatives amongst the recently burnt quadrats.

TABLE 4.1 The distribution of vegetation types in recently (within 18 months) burnt quadrats
\begin{tabular}{lcc} 
Group & \begin{tabular}{c} 
No. Quadrats \\
observed
\end{tabular} & No. Quadrats \\
expected
\end{tabular}

Tho distribution of vegetation types in recently burnt quadrats is not comparable with the overall distribution ( \(x^{2}=54.2, p<0.1\) ).

The foregoing suggests that burning favours the spread of false oat grassland. It is well established that Brachypodiwn pinnatun grasslands are encouraged by burning, but no reference could be found in the literature to the development of Armhenatheretum under such conditions. However, the bulbous form of false oat or 'onion couch.' (irritenatherum elative var.. julbosum (Hilld.) Spenn) is widespread on railway verges, and it is.likeiy that: this. is a response to the frequent burnings of the past, the bulb lending some resistance to burning.

Whe ther the lack of burning is advantageous to red fescue requires experimental testing. However, fescues do compete successfully with false oat in some localities. Peterkin and Rorison (1982), working with sheeps fescue (Festuca ovina), have suggested recently that one explanation could be the ability of \(F\). ovina to conitinue some metabolic processes at lower temperatures than \(A\). elatius.

The mechanisms underlying vegetation change on railway land are not fully understood. The vegetation is extremely diverse 'and the number of variables involved is very large. However, assuming some scrub control is practised, there seems, under present conditions of grazing by small mammals, and comparatively little burning, to be a gradual succession towards fine-leaved grassland. There is also some increase in coarse grasslands, but this is largely at the expense of scrub and tall herbs.

The implications of this work for the conservation of railway verges is large, and ITE (funded by Science vote) have therefore set up a number of monitoring sites distributed throughout BR land, which will enable detailed long termstudies to be made. A programme of experimental work designed to examine interactions between key railway species under disturbance (ballasting, burning,- grazing) and recovery is also being started.

\section*{ACKNOWLEDGEMENTS}

This project was begun in 1976 by Dr Michael Way (now at MAFF), and has been very ruch a question of team work on which it is my privilege to report.

Without the close co-operation of \(B R\) and especially of Mr Christopher Beagley (BRB HQ), who gave freely of his time and attention, this work would almost certainly have foundered.

Particular appreciation is felt for the enthusiasm and competence shown by Mr Owen Mountford during data collection and the documentation of sites of Biological Interest. Dr. Dorian Moss, Dr Robert. Bunce, Mr Ken Lakhani, Mr Jeff. Moller (all ITE) and Dr. Brian Huntley (Durham University): gave invaluable analytical and statistical advice and assistance with computing. Dr Steve Chapman (ITE) kindly oversaw the project during 1977, and Mr John Killick_(NERC) has given consistent encouragement. and. help.

During each field season a student was: attached to the project and: \(I\) would like to thank the following for their useful and enthusiastic contributions: Mr Ian Bolt, Bath; Mr Alan Lawes, UWIST; Mr Alan Marsden, Brunel; Mr Brendan Carleton, Bath; Mr Jonathan Harris, UVIST; Mr Jonathan Turner, Plymouth.

I am also most grateful to Mr John Jeffers and Dr Jack Dempster for critically. reading the manuscript. The..graphs and the drawings were prepared by Miss Susan Nicholson and Mr Andrew Foy, both of Luton College and the digitised maps..by Mr David Catlow at the Experimental Cartography Unit (NERC). The manuscript was kindly typed by Mrs Valerie Burton, Mrs Gaynor Pywell and Mrs Helen Wood, to all of whom my especial thanks are due.

ALMQUIST, E. 1957. Järnvagsiloristiska notiser. Ett apropos till järnvasgsjubileet. Svens \(\dot{k}\). bot. Tidskr., 5l', 223-263.
ARNOLJ, R.?. 1981. Population dynamics and seed dispersal of Chaenoritinur. mirius on railroad cinder ballast. Am. Midl. Nat., 106, 80-90.
BRANDES, D. 1979. Bahnhöfe als Untersuchungsobjekte der Geobotanik. Mitt. Tech. Univ. Carolo-wilhelmina, Braunschweig, 14 (3/4), 49-59.
BRAUN-BLANQUET, J., SISSINGH, G. \& VLIEGER, J. 1939. klasse der VaccinioFiceetea, Nadeiholi - and Vaccinien ileiden Verbände der eurosibirischnoidamerikanischen Kegion. (Prodromus der Pflanzengesellschaften 6) Montpellier.
BRAUN-BLANQUET, J. \& TUXEN, R. 1943. Ubersicht der höheren Vegetationseinheiten Mitteleuropas (Unter Ausschluss der Hochgebirge). Commin. Sïn. irit. Géobot. médit. alp. no 84.
CASPERS, N. \& GERSTBERGER, P. 1979. Floristische Untersuchungen auf den Bahnhófen des Lahntales. Decheniana; 132, 3-9..
CLAPHAii, A.R., TUTIN, T.G. \& WARBURG, E.F. 1962. Flora of the Britisin Isles. Second edition. Cambridge: Cambridge University Press.
DONY, J.G. 1955. Notes on the Bedfordshire railway flora. Beds. Nat., 9, 12-16.
DONY, J.G. 1974. Some problems of a railway flora. In: Research anis management in wildlife conservation, 2. Herts.. \& siddx Trust Symposium No 2.
FERNS, P.V. 1976. Diet of a Microtus agrestis population in south west Britain. Oikos, 27, 506-5ll.
FULLER, R.M. 1975. The Culbin shingle bar and its vegetation. Trare \(\equiv 0\). Soc. Edinb., 42, 293-305.
GRIME, J.P. 1979. Plant strategies and vegetation processes. Chichester: John Wiley.
GRIIIE, J.P. \& LLOYD, P.S. 1973. An ecological atlas of grassland plants. London: Edward Arnold.
GIMMINGHAM, C.H. .1972. ECology of heathlands. London: Chapman \& Hall.
GULLIVER, R. 1980. Once the trains have gone. Ctry life, 167, 294-295.
HILL, M.O. -1979a. THINSPAN : a FORTRAN program for arranging multivarixte data in an ordered two-way table by classification of the indivicijais and attributes. Ithica, N.Y. : Section of Ecology and Systematics, Cornell University.
HILL, M.O. 1979b. DECORAMA. A FORTRAN program for detrended correspoi:izee. analysis and reciprocal averaging. Ithica, N.Y. : Section of Ecology and Systematics, Cornell University.
HILL, M.O., BUNCE, R.G.H. \& SHAlf, M.W. 1975. Indicator species analysis, a divisive polythetic method of classification and its application to a survey of native pinewoods in Scotland. J. E'col., 63, 597-613.
HORN, H.S. 1975. Forest succession. Scient. Am., 232, 90-98.
KENT, D.H. 1957. Senecio squalidus L. in the British Isles. 3 - East dnclia. Trans Morfolk Horwich Nat. Soc.: 18 (5), 30-31.
KENT, D.H. 1960. Senecio squalidus L. in the British Isles. 2 : The spread from Oxford (1879-1939). Proc. bot. Soc. Br. Is l., 3, 375-379.
KENT, D.H. 1964. Senecio squalidus L. in the British Isles. 4 : Southern England (1940-). Proc. bot. Soc. Br. Isl., 5, 210-213.
KLÜTZLI, F. 1970. Eichen-, Edellaub und Bruchwảider der Britischen Inseln. Scineiz. 2. Forstwes., 121, 329-366.
KREH, W. 1960. Die pflanzenwelt des Guterbahnhofs in ihrer'Abhangigkeit von- Technik. und Verkehr. ititt. flor.-Sor: ArbGemeith, no 8; 86-109':

KREUTZPOINTNER，J．B．1876．Notizen zur Flora Munchens 厄̈lora，Jena，59， 77－80．
LEYMANN，E．1895．Flora von Polnisch－Livland．Arch．Natink．Liv－Est－ u．Kurlands．Ser．2．Biol．Naturk．，11，1－442．
LEJMBACH，B．，RURKA，Z．，SIEDKECJKA，B．\＆SIJKA，J．1965．The flora of the railway tracks of the Eastern Pomeranian Coast．Fragm．flor． geobot．，21，53－66．
LIENENBECKER，H．\＆RAABE，U．1981．Vegetation auf Bahnhöfen des Ost－ Munsterlandes．Ber．naturw．Ver．Bielefeld，25，129－141．
MiATTHIES，H．1925．Dic Bedeutung der Eisenbahnen und der Schiffart für die Pflanzeverbreitung in Mecklenburg．Arch．Ver．Freunde Naturg． Hecklenbirg，1，27－97．
ilc VEAN，D．N．\＆RATCLIFFE，D．A．1962．Plant communities of the Scottish highlands：a stuay of Scottish mowntain，moorland and forest vegetation．（Monographs of：the Nature Conservancy no．1）London：KllSO．．
MELLANBY，K．M．1981．Farming and wildlife．（New naturalist 67）．London： Collins．
RIESSENGER，K．G．1968．A railway flora of Rutland．Proc．jot．Soc．Br． Is Z．，7，325－344．
NEYER，K．\(\overline{1} 931\) ．Die Einschleppung von Pflanzen mit Sudfruchtsendungen． Ost．bot．Z．，80，265－270．
MUEHLENBACH，V．1979．Contributions to the synanthropic（adventive） flora of the railroads in St．Louis，Missouri，U．S．A．Ann．No．bot． \(G d n, 66,1-108\) ．
MUIRBURN WORKING PARTY．1977．A guide to good muirburn practice． Edinburgh：HMSO．
NIEMI，X．1969．On the railway vegetation and flora between Esbo and Inga， S．Finland．Acía bot．Fern．，83，1－28．
NOIRFALISE，A．\＆VANESSE，R．1976．Heathlands of westerr：Elcove．（Nature and Environment series no．12）．Strasbourg：Council of Europe．
PAGE，M．L．1980．Phytosociological classijication of nestral grasslansis． Ph．D．thesis，University of Exeter．
PARLIAMENTARY DEBATES．1961．Commons vol． 538219.
PERRING，F．\＆WALTERS，S．M．1962．Atlas of the Britis \(n_{i}\) flora．London： Nelson，for the Botanical Society of the British Isles．
PETERKEN，G．F．1981．Hoodland conservation and managemert．London： Chapman \＆Hall．
PETERKIN，J．M．\＆RORISO：J，I．H．1982．Ann．Rep．Unit compt．Plant Ecol． 1982，16－17．
PFITZENMEYER，C．D．C．1962．Arrhenatherum elatius（L）J \＆C presl． Biol．Flora．Br．Isl．，no 81.
POWELL，H．W．1931．The wanderings of plants．Country－side，N．S．9， 114.
RATCLIFFE，D．A．，ed．1977．A nature conservation review．vol． 1. Cambridge：Cambridge University Press．
RICHARDSON，D．H．1981．The biolocy．of mosses．Oxford：Blackwell Scientific．
SALISBURY，SIR E．J．1961．The biology of weeds．（New Naturalist）．London： Collins．
SARGENT，C．1983．The British Rail land survey．In：Ecological ropeive from ground，air and space，edited by R．M．Fuller（ITE sumposium no．10）． Cambridge：Institute of Terrestrial Ecology．
 Third interim report．Natural Environment Research Council contract report to the Nature Conservancy Council（CST no．248）．Banbury：NCC．
SARGENT，C．\＆MOUNTFORD，J．O．1980．British Rail land－biological si：্ジ． Fourth interim report．Natural Environment Research Council contract． report to the Nature Conservancy Council（CST no．293）．Banbury：NCC．
 Fifth interim rcport．Natural Environment Research Council contract report to the Nature Conservancy Council（CST no．．325）．Banbury ：NCC．．

SEGAL. S. 1966. Ecological studies of peat-bog vegetation in the northwestern part of the province of Overijsel (The Netherlands). Wentia, 15. 109-14.

SELL, F.D. \& WEST, C. 1930. Hieracium zygophorwn Hyl. new to the British Isles. Watsonia, 13, 27-29.
SuEAIL, J. 1979. British Rail lond-biological swive!. Interim report. The history of the railway formations. Natural Environment Research Council contract report to the Nature Conservancy Council (CST no. 276). Banbury: NCC.
SMITH, A.J.E. 1978. The moss flora of Britain and Treimd. Cambridge: Cambridge University Press.
SLOMINEN, J. 1969. The plant cover of Finnish railway embankments and the ecology of their species. Ann. bot. fenn., \(\frac{6}{7}\), 183-235.
TANSLEY, A.G. 1949. The British Islands and their vegetation. Vol. 11. Cambridge: Cambridge University Press.
THELLUNG, A. 1905. Einteilung der Ruderal; und Adventivflora in genetische Gruppen. Vjschr. naturf. Ges. Zürich, 50, 232-305.
THELLUNG, A. 1919. Beitrage zur Adventivflora der Schweiz (3). Vjschr. naturf. Ges. 2Urich, 64, 684-815.
USHER, N.B. 1979. Harkovian. approaches to, ecological succession. J. fnim. Ecol., 48, 413-426.
WOLKINGER, F. \& PLANK, S. 1981. DYy grass lands of Europe. (Nature and Environment series no. 21). Strasbourg: Council of Europe.
WALTERS, S.M. 1969. Cambridgeshire ferns - ecclesiastic and ferroviatic. Nature Cambs., 12, 22-25.
WAY, J.ir. \& SHEAIL, J. 1977. British Rail land-biologicai survey. First interim report. Natural Environment Research Council contract report to the Nature Conservancy Council. (CST no. 90). Banbury: NCC.
WAY, J.M., MOUNTFORD, J.O. \& SHEAIL, J. 1978. Britisi: Fail land - biological survey. Second interim report. Natural Environment Research Council contract report to the Nature Conservancy Council (CST no. 178). Banbury: NCC.
WESTHOFF, V. 1964. Nederlande Spoorwegen. Levende iici., 67, 104-110.
WESTHOFF, V. \& DEN HELD, A.J. 1969. Planten Gemeensafiopen in Ilederland. Zurphen: N.V.W.J. Thieme.
WILLIAMSON, P. \& CANERON, R.A.D. 1976. Natural diet of the landsnail Cepea nemoralis. Oikos, 27, 495-500.
ZONNEVELD, I.S. 1960. De Brabantse Biesbosch. Een studie van bodem en vegetatie van een zoet-watergetijdendelta. Bosiemi. Stú̃. no. 4; Belmontia Section 2 no. 6. (English summary).```


[^0]:    Huntingrdon
    October 1982

