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Abstract  

 

Most animals reproduce seasonally. They time their reproduction in response to 

environmental cues, like increasing photoperiod and temperature, which are 

predictive for the time of high food availability. Although individuals of a population 

use the same cues, they vary in their onset of reproduction, with some animals 

reproducing consistently early or late. In avian research, timing of reproduction often 

refers to the laying date of the first egg, which is a key determinant of fitness. 

Experiments measuring temporal patterns of reproductive hormone concentrations or 

gonadal size under controlled conditions in response to a cue commonly assume that 

these proxies are indicative of the timing of egg laying. This assumption often 

remains untested, with few studies reporting both reproductive development and the 

onset of laying. We kept in total 144 pairs of great tits (Parus major) in separate 

climate-controlled aviaries over 4 years to correlate pre-breeding plasma luteinizing 

hormone (LH), prolactin (PRL) and gonadal growth with the timing of laying. 

Individuals varied consistently in hormone concentrations over spring, but this was 

not directly related to the timing of gonadal growth, nor with the laying date of the first 

egg. The timing of gonadal development in both sexes was similarly not correlated 

with the timing of laying. This demonstrates the female’s ability to adjust the onset of 

laying to environmental conditions irrespective of substantial differences in pre-laying 

development. We conclude that stages of reproductive development are regulated by 

different cues, and therefore egg laying dates need to be studied to measure the 

influences of environmental cues on timing of seasonal reproduction. 
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1. Introduction 

 

Seasonal timing of reproduction is a key life-history trait with a large impact on 

reproductive output. A mismatch between reproduction and seasonal high food 

abundance leads to fewer surviving, and lower quality offspring, or lower winter 

survival of the parents [7, 24, 32, 39, 40, 42]. In avian research, timing of 

reproduction often refers to the laying date of the first egg in spring [41]. However, 

the initiation of gonadal growth and the underlying activation of the reproductive 

endocrine system is also part of the timing mechanism [5, 8, 13, 14, 17, 20, 23, 34, 

37]. This dual vision originates from the fact that evolutionary ecologists are more 

concerned with behavioral decisions and their fitness consequences, while 

physiologists are by definition more interested in the proximate mechanisms 

underlying a certain phenotype, such as gonadal growth and ovulation. Experimental 

studies combining ecological and physiological approaches to the timing of 

reproduction have increased understanding of this life history trait  [e.g. 4, 5, 27, 43, 

46] and are thus especially valuable. 

 

In temperate zone birds, the actual process of egg laying is preceded by a 

physiological cascade mediated by neuroendocrine responses to environmental 

cues. Egg laying is preceded by the (re-) activation of the hypothalamic pituitary-

gonadal axis by short photoperiods during fall causing the dissipation of 

photorefractoriness and increased GnRH-I gene expression [36]. During winter and 

early spring the increase in day length stimulates increased secretion of GnRH-I, 

leading to a release of luteinizing and follicle stimulating hormone (LH and FSH) from 

the pituitary and a period of gonadal development that lasts several weeks. LH and 

FSH act synergistically to facilitate gonadal maturation and spermatogenesis: at the 

level of the gonads FSH affects Sertoli cell function in males and granulosa cell 

function in females and stimulates growth of immature follicles in the ovary. LH 

affects Leydig cell function and stimulates the secretion of androgens in males, while 

an acute surge in LH triggers ovulation in females. These photoinduced processes, 

culminating in the laying of the first egg, are fine-tuned by supplementary cues, 

including temperature, and possibly other climatic and phenological cues, including 

the seasonality of prey items [9, 47, 51].  

 

Due to the difficulties in measuring laying dates in captivity in response to a likely 

cue, manipulative experiments make use of proxies that are presumed to indicate the 

timing of egg laying, but are also studied for their own sake [e.g. 11, 15, 18, 30, 33, 
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38, 48-50]. Ideally for getting independent data points, pairs of birds would be kept in 

isolated aviaries, in which environmental variables can be individually regulated. 

However, this is often not feasible and in many manipulative experiments, the 

shortcut of examining reproductive physiology instead of a laying date allows for a 

larger sample size, e.g. many animals (of only one sex) per room or cage, as well as 

for shorter and less complex experimental designs, as the laying stage does not have 

to be reached. The most widely used proxies in avian research are, on one hand, 

gonadal growth, which means the increase in volume of the male left testis, or, more 

rarely [2] the development of the largest follicle in the female ovary, as well as 

plasma concentrations of gonadotropins, prolactin, or sex steroids, measured either 

in the blood or in feces. These measures can be taken at regular intervals during 

different reproductive stages. More recently, also processes higher upstream in the 

hypothalamo-pituitary-gonadal (HPG) axis have been added to the physiologist’s 

toolbox, including the release of GnRH-I [20, 36], or even gene expression [19, 22]. 

Emphasis has been placed on photic cues, which determine a broad window for egg 

laying [10, 29], whereas the influence of supplementary cues has been largely 

neglected. Conversely, interest in processes closely associated with late reproductive 

stages, such as the exponential growth phase of the follicle, is increasing, using yolk 

precursors such as vitellogenin or very low density lipoproteins as proxies [6, 26]. 

This avenue also investigates supplementary cues that might be taken into account 

in the last days before the actual egg laying takes place.  

 

In studies concentrating on the regulation of the reproductive development by its own 

means, observations should be made in the context of their adaptive value, most 

importantly relating to the optimal timing of laying. The way in which an individual 

female responds to environmental cues affects selection pressures acting on both 

reproductive physiology, as well as timing of laying [41]. Evolution therefore 

optimizes both the systems of physiological regulation themselves, as well as the 

behavioural traits that they precede. For example, birds presumably regress their 

gonads outside the breeding season, because flying with heavier body weights year-

round is costly and thus selected against. This makes a phase of gonadal growth in 

early spring necessary. Also, even though early laying is generally advantageous, as 

it results in more surviving offspring in that particular year, advancing the 

physiological development early in spring when food availability is low may impede 

fitness costs that counterweight these advantages. 
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The responsiveness to cues might change over developmental stages. It is 

convenient to assume that a cue, like temperature, which advances the underlying 

hormonal and gonadal development would also advance egg laying. Indeed, it has 

often been postulated that temperature influences the timing of reproduction because 

of an effect on the gonadal development [8, 48]. However, Schaper et al. [27] 

showed that in climate-controlled aviaries, moderate spring temperature patterns 

influenced laying dates of great tits (Parus major) without affecting the timing of 

gonadal growth or increase in LH concentration. 

 

The assumption that an early rise in gonadotropins would directly translate to early 

gonadal development, which again would lead to an early onset of laying, has, to our 

knowledge, never been explicitly tested under controlled conditions. This is basically 

due to the fact that few experimental studies that report laying dates also measure 

reproductive physiology, and studies that evaluate reproductive development seldom 

keep pairs of birds to obtain independent laying dates. In addition, individual variation 

in physiological measurements is seldom explored in detail, as physiologists mostly 

report mean values per treatment group in response to environmental stimuli [45]. 

 

The aim of this study was to use breeding pairs of great tits to investigate if the 

relationship between the timing of individual early reproductive development and egg 

laying is as tight as assumed, or alternatively regulated by different processes, 

resulting in substantial variation in the interval between, for instance, full gonadal 

development and laying date. Although the prime objective of the experiments 

presented here was to show the influence of temperature cues on avian physiology 

and the onset of laying, the setup allows us to relate the timing of the individual rise 

in LH, PRL, as well as the growth of testes and ovarian follicles to laying date. This 

study does not include measurements of late stages of the reproductive maturation, 

such as yolk precursors. These changes, which are connected to an increase in 

estradiol following gonadal maturation, are tightly correlated with the laying date 

decision and most likely happen during the last days pre-laying. In the current setup 

we cannot comment on the feasability of using these measures as proxies. We were 

interested in physiological mechanisms that determine the individual variation in the 

onset of laying in response to environmental cues perceived well in advance of the 

laying date, which in wild great tits varies by up to one month between individual 

females and can therefore not be significantly regulated by differences in late 

reproductive maturation. 
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If predictive supplementary cues affect reproductive physiology, and consequently 

egg laying via early reproductive development in early spring, we expect a 

relationship between the timing of a rise in LH, gonadal development and laying date. 

In contrast, if physiological processes are fine-tuned by different cues, we expect 

only a loose relationship between these reproductive components and the timing of 

laying. In addtion, it was suggested that variation in pre-laying PRL titers was 

associated with laying dates in house sparrows, Passer domesticus [21] and with egg 

laying rate in chicken, Gallus gallus domesticus, and thus would play a stimulatory 

role in gonadal development [16], We therefore tested for a correlation between 

plasma PRL concentrations pre-laying and laying dates.  

 

 

2. Materials and Methods 

 

2.1 Birds 

This study used 144 first-year breeding pairs of great tits spread over four years. 

Birds were offspring of known wild parents at the Hoge Veluwe National Park (the 

Netherlands), and were taken to captivity as complete broods in 2006 to 2009, 

respectively. On day 10 post-hatching, chicks were taken to the Netherlands Institute 

of Ecology (Heteren) for hand-raising [12]. 

 

After independence, fledglings were transferred to single-sex groups in open outdoor 

aviaries (2 x 4 x 2.5 m), where they were housed until December. Breeding pairs 

were formed randomly, avoiding sib-matings. Due to fatalities in the young birds, we 

formed some pairs by using 29 additional spare birds over 4 years, which were hand-

raised in the same fashion. On the 1st of December the pairs were placed in climate-

controlled aviaries to breed in the next year. 

 

2.2 Aviaries 

Breeding pairs were housed in 36 separate indoor aviaries (2 x 2 x 2.25 m) under a 

light regime mimicking the natural photoperiod, which was adapted twice weekly (i.e. 

for 52°N increasing from 7.45L:16.15D at the winter solstice to 16.30L:7.30D at the 

summer solstice). Birds were exposed to the same seasonal variation in photoperiod 

in all four experimental years. Light sources were three high frequency fluorescent 

light tubes, complemented with an 8 W bulb providing an additional half hour of dawn 

and dusk. A shaft from the roof (SolaTube), whose opening was synchronized with 

the light schedule, allowed for supplementary daylight. 
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The birds were fed ad libitum with a constant daily amount of food, consisting of a 

mixture of minced beef, proteins and vitamin and mineral supplements (Nekton S and 

Nekton Bio, NEKTON GmbH, Pforzheim), completed by sunflower seeds, fat balls, a 

mix of dried insects (Carnizoo, Kiezebrink International, Putten), calcium and water 

for drinking and bathing. Nesting material was provided from March onwards. Birds 

could choose between two nest boxes, which were inspected for eggs from outside 

the aviary without disturbance. 

 

2.3 Temperature treatments 

Over four experimental years, four times 36 pairs of birds were exposed to varying 

temperature regimes. Each season, a different experimental setup of four 

temperature treatments was used, each treatment being replicated in a regular 

design. For a rationale and thorough description of temperature treatments, see 

Visser et al. [43] and Schaper et al. [27]. 

 

In 2007, the great tits were divided into two groups that differed in the ambient 

temperature to which they were exposed, with the high temperature treatment set to 

be always 4°C higher than the cold temperature. From 1st December to the end of 

February temperatures were kept constant at 4 and 8°C, respectively, after which 

temperatures gradually increased by 0.65°C per week up to 1st July, reaching 15 and 

19°C, respectively (Fig. 1A). This setup was chosen to identify if a difference in mean 

temperature comparable to the difference between a natural cold and warm year 

leads to a difference in the onset of egg laying (see [43] for a more detailed 

rationale). 

 

In 2008, all pairs were exposed to a constant temperature of 15°C from December 

onwards until summer. In three groups, this temperature was lowered to 7°C in either 

February, March or April for a month, before it was increased to 15°C again, except 

for the latest cold period (April), which was maintained until the female initiated laying 

under cold conditions (Fig. 1B). This setup was chosen to identify if the 

responsiveness to temperature cues increased over time and thus temperature 

changes close to the onset of laying has a larger influence on laying dates than 

changes early in the season (see [27] for a more detailed rationale). 

 

In 2009, there was no seasonal temperature pattern, but a temperature change over 

the day. Each treatment was composed of a high or low mean with either a high or 
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low day-night amplitude. The two warm treatments were fluctuating around a mean of 

14°C (11-17°C, high amplitude, or 13-15°C, low amplitude), while the two cold 

treatments were fluctuating around 8°C (5-11°C, high amplitude, or 7-9°C, low 

amplitude) In all cases the lowest daily temperature was reached at 3 am (Fig. 1C). 

This setup was chosen to identify if the daily variation in temperature, which 

seasonally increases in spring, has an influence on the onset of laying (see [27]). 

 

In 2010, the setup of the experiment combined two consecutive temperature rises, 

one during early gonadal development, the other shortly before breeding. All birds 

were kept at 6°C from December until February. On 8th February, the first two groups 

experienced a rapid increase in temperature from 6 to 16°C over a course of two 

weeks, then stayed at 16°C for three or five weeks. On 15th or 29th March, 

respectively, temperature was increased to 20°C and stayed high during egg laying 

and molt. Starting on 22nd February, the other two groups were exposed to a more 

gradual increase in temperature from 6 to 11°C over a course of two weeks, thus 

experiencing a lower increase rate. These groups then stayed at 11°C for one or 

three weeks. On 15th or 29th March, respectively, temperatures increased to 15°C for 

egg laying and molt. Superimposed on the temperature profiles was a day-night 

rhythm of ± 1°C (Fig. 1D). This setup was chosen to identify if temperature increases 

close to laying have a higher impact on laying dates than temperature increases in 

early spring and furthermore if differences in the rate of temperature increase or the 

timing of the increase in early spring influence laying dates (see [27]). 

 

As shown in Visser et al. [43] and Schaper et al. [27], temperature treatments 

affected neither the increase in plasma luteinizing hormone, nor the development of 

female or male gonads, while it affected the onset of laying in 2008 and 2010, but not 

in 2007 and 2009. 

 

2.4 Data collection 

A blood sample of 100 μl was taken monthly from the jugular vein. Samples were 

kept on ice until centrifugation, plasma was separated from red blood cells and 

stored at -80°C. In 2007, blood samples were analyzed for prolactin (PRL), in 2008-

2010 for luteinizing hormone (LH). No blood sample was taken in January and 

February 2010 prior to the assessment of gonadal size. Plasma LH concentrations 

were determined using a chicken LH radioimmunoassay [31] validated for use in blue 

tits [5]. Plasma PRL concentrations were determined using a recombinant derived 

starling prolactin radioimmunoassay [3]. The reaction volume was 60 μl comprising 
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20 μl of plasma sample or standard, 20 μl of primary antibody (rabbit anti-LH or PRL), 

and 20 μl of 125I-labeled LH or PRL. The primary antibody was precipitated to 

separate free and bound 125I label using 20 μl of donkey anti-rabbit precipitating 

serum and 20 μl of non-immune rabbit serum. All samples from each year were 

measured in a single assay, in duplicate. The intra-assay coefficient of variation for 

LH was 6.4% for a high value pool and 8.1% for a low value pool, the minimum 

detectable dose 0.15 ng/ml. The intra-assay coefficient of variation for the prolactin 

assay was 6.5%, and the minimum detectable dose 1.6 ng/ml. 

 

Alternating in two-week intervals with the blood sampling, a laparotomy was 

performed monthly to measure gonadal development in 2008-2010. Males were 

laparotomized from January to July and females up to April in order not to interfere 

with the laying process. However, in 2009 females were not laparotomized in April, 

with no apparent effect on the onset of laying, and in 2010 both sexes were not 

laparotomized in January, as previous years showed little variation in gonad sizes 

during winter. Birds were unilaterally laparotomized under anesthesia with isoflurane 

(Forene, Abbott, Hoofddorp, The Netherlands). Left testis dimensions and diameter 

of the largest developing follicle in the ovary were measured to the nearest 0.1 mm, 

using a scale engraved in the ocular of a binocular microscope. Testis volume was 

calculated as: V = 4/3 a2b, where a is ½ width and b is ½ length, follicle volume as: 

V = 4/3 a3, where a is ½ width. In April 2008, three females with complete nests 

were not laparotomized in order not to interfere with the laying decision. Assuming a 

maximum follicle size of 7 mm3 for them and including them in the dataset did not 

qualitatively change the results. Data are not available for all individuals each month 

due to sampling or assay failure. In total, 17 measures of male and female gonads 

each, and 34 LH values are missing. 

 

After nest building was observed, nest boxes were checked daily for eggs. The day 

that the first egg was found is referred to as the laying date or date of onset of 

reproduction. 

 

2.5 Statistics 

The influence of LH concentrations in 2008-2010 on gonadal sizes were analyzed 

with mixed models [procedure lmer, package lme4 in R 2.10.0, 25]. Data on gonadal 

maturation and LH concentrations were natural log-transformed and analyzed per 

month from February to April. Family was fitted as a random effect and LH of the two 



 10 

previous months as fixed effects. Models also included year as a factor, and a 

variable indicating if a pair was laying afterwards or not. To correct for body size 

differences in gonadal sizes, tarsus length was included. In 2010, no LH sample was 

taken in January and early February, hence the effect of LH on gonadal development 

in February/March was tested in only two years. An alternative analysis in March 

including all years, so only LH concentrations in March, did not show significant 

correlations (data not presented). As LH in January was correlated with follicle 

growth in February, it was additionally included in the model for March. Follicles were 

not measured in April 2009, restricting this analysis to two years.  

 

The influences of LH concentrations and gonadal sizes in March and April on the 

timing of egg laying in 2008-2010 were analyzed in a mixed model, including year, as 

well as female family as a random effect. The influence of PRL concentrations in 

March and April 2007 on the timing of laying were analyzed in a mixed model, 

including female family as a random effect. 

 

We used a stepwise model reduction procedure to eliminate non-significant effects. If 

more than one fixed factor remained significant, mostly in combination with year, the 

interaction between the variables was additionally tested in the final model. However, 

none of these interactions were significant (all p>0.1, data not shown). We used 

Markov Chain Monte Carlo sampling to calculate p-values (function pvals.fnc from 

package languageR, in R 2.10.0). The results are presented including Bayesian 95% 

highest posterior density credible intervals, equivalent to 95% confidence intervals. 

As year is given as a multi-level fixed factor in some analyses, a p-value is created 

for every level in comparison to the year 2008. 

 

 

3. Results 

 

3.1 Relationship between individual variation in LH titers and gonadal development 

Plasma LH concentrations of females and males increased over spring and peaked 

around March/April (Fig. 2). Individuals varied consistently in hormone concentrations 

over spring (assessed via Kendall’s coefficient of concordance, females: W=0.60, 

males: W=0.69, both P<0.001, both n = 108 birds over three years). Individual birds 

showed substantial variation in the timing of the seasonal increase, leading to 

substantial differences in LH concentrations in April (Fig. 2, unlogged range females: 

0.37 to 5.89 ng/ml, males: 0.36 to 5.88 ng/ml). Especially in 2008 and 2009, few 
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individuals either increased earlier than average, or showed elevated titers in general 

(Fig. 2). Individual variation in plasma LH concentration in a given month was 

unrelated to sampling time (P=0.85 for time of day, analyzed with a generalized linear 

model including year, month and sex as fixed factors and family as a random factor). 

 

The development of the largest follicle in the ovary, which is incorporated into the first 

egg laid, followed an exponential growth pattern, with a slow maturation phase during 

January to March, well in advance of laying, and an exponential growth phase in April 

(Fig. 3). There were large individual differences in follicle volume in April (Fig. 2, 

unlogged range: 0.03 to 6.37 mm3). These were probably caused by variation in the 

timing of the onset of exponential growth, as females differed noticeably in early 

gonadal development, but the state of maturity did not progress consistently over 

time across females (Kendall’s W=0.37, p=0.042, n = 108). 

 

To investigate the causes of these individual differences, we first explored whether 

gonadal development was linked to plasma LH concentrations in the same or 

previous months. Females with high LH concentrations in January had larger follicles 

in February and March (Table 1, Fig. 4 A,B). Increased LH concentrations in 

February, March and April did, however, not relate to large follicle sizes in the same 

or the following month. Non-laying females were characterized by smaller follicles in 

April compared to females that were going to lay (Table 1). 

 

Testes increased exponentially in volume from January/February onwards, in most 

cases reaching a fully developed state around April (Fig. 3), before regressing again 

in May (data not shown). Individual males varied in the timing and speed of testis 

growth, which led to rather consistent differences in testis volume over time 

(Kendall’s W=0.52, p<0.001, n = 108), and large differences in testis volume in April 

(Fig. 3, unlogged range: 4.54 to 171.91 mm3). There was no relationship between 

plasma LH concentrations and testis volume in February to March (Table 1). In April, 

males with larger, fully developed testes had lower circulating LH concentrations than 

males with still growing testes (Table 1, Fig. 5). Testes in April were on average 

further developed in 2008 than 2009 or 2010 (Table 1, Fig. 3, 5). Testis volume did 

not differ between males paired to females that were going to lay eggs or not (Table 

1).  

 

3.2 Relationship between individual variation in PRL titers and the onset of laying 



 12 

In 2007, plasma PRL concentrations increased over spring (Fig. 6), and peak 

concentrations were reached in May (data not shown). Similar to LH, there was 

individual variation in the timing and speed of increase in early spring PRL titers, 

leading to substantial differences in PRL concentrations in April (Fig. 6, unlogged 

range females: 6.49 to 70.73 ng/ml, males: 1.82 to 103.77 ng/ml). While males 

showed rather consistent differences in PRL titers over time (Kendall’s W=0.43, 

p=0.018), this could not be confirmed in females (Kendall’s W=0.22, p=0.618). There 

was no relationship between PRL levels in March or April and the onset of laying (all 

p>0.1, data not shown).  

 

3.3 Relationship between LH titers, gonadal development and the onset of laying 

Egg laying started in mid-April, but was on average later in 2008 (Table 2, Fig. 7), 

when the variation in laying dates between females was also largest. The onset of 

laying was not related to plasma LH concentrations in previous months (Table 2). 

Neither the size of the largest developing follicle in April, nor the development of the 

partner’s testis in April predicted laying date (Table 2). However, females with large 

follicles in March, quite in advance of the rapid growth phase, laid on average earlier 

than females with less developed follicles in March (Table 2, Fig. 7 A). In addition, 

males with larger testes in March had mates that initiated laying early (Table 2, Fig. 7 

B). This was true even though females with further developed follicles in March were 

not paired to males with larger testes (linear model, t=0.33, p=0.7). Yet, especially in 

2008, the relationship between gonad size in March and laying dates was not 

particularly tight (Fig. 7). In a linear model only including follicle volume or testis 

volume by themselves, gonadal size in March only explained a small amount of the 

variation in laying dates, 1.4% in case of testes and 2.3% in case of follicles, showing 

that male and female gonad sizes cannot be indicative of the timing of the laying 

event.  

 

 

4. Discussion 

 

We kept pairs of great tits under controlled conditions to investigate if pre-laying 

endocrine changes and gonadal growth correlated with each other and whether their 

timing was related to the onset of laying. These physiological measurements, often 

used as proxies for breeding phenology, showed consistent individual variation, but 

were at best weakly correlated to each other or to the onset of laying. In 
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consequence, laying dates could not be predicted by comparing sizes of the largest 

follicles in late spring.  

 

4.1 Females adjusted their timing of laying independent of gonad development 

While some females had already functional gonads in April, they seemed to postpone 

laying in response to environmental information. Visser et al. [43] and Schaper et al. 

[27] demonstrated that while in this set of birds the pre-laying physiological 

development was not influenced by temperature treatments, females adjusted their 

laying date when the right temperature cues were provided. The disconnection 

between individual hormone levels, gonad sizes and laying dates presented here 

further validates that reproductive development is not the factor that constrains 

laying. The ability to fine-tune the onset of laying to environmental conditions 

irrespective of large differences in developmental state emphasizes the importance 

of supplementary cues close to laying. Variation in testis size of their mates predicted 

female laying dates equally little, which is less surprising, as a laying date is primarily 

a female-driven trait [4]. In comparison, in one of the few field experiments measuring 

endocrinology and reproductive physiology in combination with laying dates, Caro et 

al. [5] showed that two blue tit (Cyanistes caeruleus) populations breeding 1 month 

apart only showed a two-week asynchrony in the seasonal patterns of plasma LH 

and testosterone, and a comparably small difference in the timing of testis growth. 

Our standardized aviary setup did specifically not provide the complex of correlated 

cues that are available for birds in nature, e.g. photoperiod, temperature, visual, 

olfactory and seasonal food cues, which in combination might result in the closer 

relationship between the timing of endocrine and gonad development and laying 

date. Our findings, pointing at the disconnection between the timing of gonadal 

development and laying dates under standardized conditions, have implications for 

physiological studies traditionally concentrating on male reproductive development to 

determine the effect of environmental cues on timing of reproduction. Herewith we 

emphasize once more the importance of measuring laying dates complementary to 

reproductive physiology to make inferences about seasonal timing of reproduction.  

 

4.2 Individuals showed unexplained variation in pre-laying physiology 

Plasma hormone concentrations, as well as gonadal development of females and 

males showed phenotypic variation, even under controlled conditions of ad libitum 

food, natural photoperiod and standardized social cues, e.g. keeping birds in 

individual pairs. Only a small part of the variation in hormone titers could be due to 

differences in sampling time of day, which is however not responsible for the 
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consistent individual variation found here. Additional to individual differences within a 

given year, both hormone titers and gonadal sizes showed between-year variation in 

some months. Different temperature treatments within a year did not affect 

reproductive physiology [27, 43] and these between-year differences are more likely 

the effect of a slight deviation in sampling date between years. It could also reflect 

that birds from different families were used in different years. For example, the onset 

of ovarian follicle development showed a heritable component (S.V. Schaper, 

unpublished data). It is thus possible that family differences, which are taken into 

account as a random effect in the model, lead to the observed variation between 

years.  

 

On top of the individual variation within a given year, a linear relationship between 

plasma hormone concentrations and effector systems can only be assumed within 

certain limits [1]. Downstream responses will be modified by individual variation in, for 

example, the amount of hormone receptors. It would be very worthwhile to further 

explore causes and mechanisms of the unexplained plasticity in endocrine systems 

and reproductive physiology, as well as its functional significance, heritability and 

adaptive value [1, 45]. 

 

4.3 Variation in gonadal growth was not related to variation in LH titers in most 

months 

Follicle growth was more closely linked to LH concentrations in January than in 

subsequent months. LH levels are known to rise after photostimulation in spring [29], 

and in this setup, day length was increased following a seasonal pattern, leading to a 

natural increase in LH concentrations. At the time of measurements in January, birds 

were exposed to ca. 9:15 h of light, including dawn and dusk, likely not enough to 

fully photostimulate the birds. However, there was remarkable variation in LH levels 

at this point. We can only speculate that these were (genetic) differences in 

sensitivity to the seasonal increase in day length, which subsequently affected initial 

gonadal growth rates. The relationship between increasing LH levels and gonadal 

growth was less tight in the following months, which could mean that gonadal growth 

was fine-tuned by other internal or external cues not integrated via the LH pathway. 

Currently it is impossible to measure avian follicle stimulating hormone (FSH), which 

could likely form the link between environmental cues and gonadal development. In 

general, when we assume that cues affect gonadal growth also via different 

pathways, we expect the relationship between any gonadotropin and gonadal 
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development to be less tight in the late stages of gonadal development when 

supplementary cues become more influential.  

 

The negative relationship between LH levels and testis size in males in April 

exemplifies the difficulty to draw conclusions from punctual or stochastic samples. In 

this case, high levels of LH were related to small testes, presumably because in 

males with fully-grown testes LH concentrations decreased already before April due 

to steroid feedback. Caro et al. [5] found in Corsican blue tits that at the time of 

laying, when males had fully functional testes, plasma LH levels were similarly 

decreasing as shown here.It also has to be cautioned here that gonad size does not 

directly indicate functionality in terms of gametogenesis, again pointing towards the 

importance of making behavioral observations to complement physiological 

measures.  

 

4.4 Variation in pre-laying prolactin titers was not related to timing of laying 

A stimulatory role of prolactin (PRL) on ovarian follicular development and egg laying 

was suggested previously, as chicken hens (Gallus gallus domesticus) immunized 

against PRL showed a lower egg laying rate compared to control hens [16]. 

However, in the present study PRL concentrations were not elevated in female great 

tits that were closer to laying or in their mates, in contrast to a recent study showing 

such a correlation in house sparrows [21]. We therefore do not find support for a 

stimulatory role of PRL on gonadal growth. PRL is generally associated with 

incubation and parental behavior, and thus exploring the individual variation in PRL 

levels close to laying in combination with reproductive performance or the timing of 

incubation behavior would be most interesting, but goes beyond the scope of this 

paper.  

 

4.5 Approaches to variation in pre-laying reproductive endocrinology and physiology 

It is crucial to investigate, under controlled conditions, the variation in endocrine and 

physiological mechanisms that cause individual variation in the onset of reproduction. 

For this, there are four complementary avenues that need to be explored.  

 

Firstly, we need to find out in how far non-photic cues regulate reproductive 

pathways from an early stage onwards. For example, it has been shown that LH 

levels in male songbirds, even though primarily regulated by photoperiod, increase in 

response to environmental stimuli, such as the onset of rain [35], or the presence of 

leafing birch branches [44], but see [28]. Furthermore, if LH plasma concentrations 
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are only loosely regulating gonadal development, the question remains which 

external or internal information is reflected in elevated LH concentrations, and which 

mechanisms might be affected further downstream.  

 

Secondly, we need to acknowledge more the plastic interplay between a hormone 

signal and its influence on effector sytems. Mechanisms like synergistic or 

antagonistic effects of hormones acting in concert, but also the role that binding 

globulines and hormone receptors play in mediating the strength of a hormone signal 

should be more in the focus of future research. This, however, asks for refined 

techniques that might not be currently available. 

 

Thirdly, we need to concentrate our efforts on pathways unrelated to gonadotropins 

and gonadal growth that can accommodate the transduction of supplementary cues 

to fine-tune the onset of laying. The disconnection between relatively late stages of 

gonadal development and the onset of laying shown here exemplifies the scope for 

such a mechanism, for example accommodating temperature cues.  

 

Fourthly and finally, we need to identify genetic variation underlying both the way in 

which environmental information is integrated and transduced into a physiological 

and behavioral phenotype. The genetic mechanisms maintaining plasticity in the 

physiological phenotype need to be identified if we ultimately want to predict how fast 

and to what extend animals can adapt their timing of seasonal breeding to changes 

in their environment, including climate change.  

 

4.6 Summary 

Our findings stress that stages of avian reproductive development until egg laying are 

regulated by different processes and are likely to be responsive to different 

stimulatory cues. This calls for the investigation of causes of this intriguing individual 

variation in endocrine systems and reproductive physiology for its own sake. 

Ultimately, these processes are culminating in egg laying, and acknowledging the 

paradox of the missing connectivity between early reproductive physiology and the 

laying decision is essential to fully understand effects of environmental variation on 

timing of reproduction. 
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Fig. 1: Temperature treatments  

Temperature treatments to which pairs of great tits breeding in climatized aviaries 

were exposed in the years 2007 to 2010. For a description of the treatments, see 

text.  

 

Fig. 2: Individual patterns of plasma luteinizing hormone (LH) for male and 

female great tits kept in climate controlled aviaries in 2008-2010 

Each line represents an individual bird that was sampled once monthly from January 

until April in 2008 and in 2009 and from March until April in 2010. Each year 

comprises of 36 pairs, leading to a sample size of 108 birds. 

 

Fig. 3: Individual gonadal growth patterns for male and female great tits kept in 

climate controlled aviaries in 2008-2010 

Each line represents an individual that was sampled once monthly from January until 

April in 2008, from January until March in 2009 and from February until April in 2010. 

Each year comprises of 36 pairs, leading to a sample size of 108 birds.  

 

Fig. 4: Relationship between LH levels in January and follicle development in 

February and March 

Concentrations of plasma LH in females in relation to the volume of the largest 

developing follicle in the ovary in February (A) and March (B). Data were log 

transformed. 

 

Fig. 5: Relationship between LH levels in April and testis development in April 

Concentrations of plasma LH in males in relation to the volume of the left testis in 

April in the years 2008 (red), 2009 (green) and 2010 (blue). Data were log 

transformed. 

 

Fig. 6: Individual patterns of plasma prolactin (PRL) for male and female great 

tits kept in climate controlled aviaries in 2007 

Each line represents an individual bird that was sampled once monthly from January 

until April in 2007. The data consists of 36 pairs. 

 

Fig. 7: Relationship between gonad sizes and laying dates in 2008-2010 

Volume of the largest developing follicle in the ovary (A) and volume of the left testis 

(B) in relation to the pair’s laying date in the years 2008 (red), 2009 (green) and 2010 

(blue). Gonad data were log transformed. Laying dates are given in April days, where 

1 = 1st April. 
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Table 1: Relationship between plasma luteinizing hormone (LH) concentrations 

and gonad sizes in 2008 to 2010.  

Data on gonadal maturation and LH concentrations were log-transformed and 

analyzed in mixed models per month with family as a random effect. The results are 

presented including lower and upper Bayesian 95% highest posterior density credible 

intervals (L 95% HPD, U 95% HPD). As year is given as a multi-level fixed factor in 

some analyses, a P-value is created for every level compared to 2008. Significant 

effects are given in bold. Sample size is given for the final model. A reduction in 

sample size can be due to missing measurements in either response variable or 

explanatory variables. 

 

Table 2: Relationship between plasma luteinizing hormone (LH) 

concentrations, gonad sizes and laying dates in 2008 to 2010.  

Data on gonadal maturation and LH concentrations were log-transformed and 

analyzed in a mixed model with female family as a random effect. The results are 

presented including lower and upper Bayesian 95% highest posterior density credible 

intervals (L 95% HPD, U 95% HPD). As year is given as a multi-level fixed factor, a 

P-value is created for every level compared to 2008. Significant effects are given in 

bold. Sample size is given for the final model. A reduction in sample size can be due 

to missing measurements in either response variable or explanatory variables. 
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