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Abstract 

The River Kennet in southern England has exhibited excessive benthic algal growth and associated 

ecological problems, such as loss of macrophytes and invertebrates, since the 1980s.  These ecological 

problems were attributed to regular peaks in phosphorus concentration, which were widely attributed 

to intermittent failures of the Marlborough sewage treatment works (STW).  This study deployed 

high-frequency phosphorus auto-analysers to monitor the total reactive phosphorus (TRP) 

concentrations of Marlborough STW final effluent and the downstream River Kennet at hourly and 30 

minute resolution respectively, between 2008 and 2009.  This monitoring confirmed that the 

Marlborough STW was operating well within its 1000 µg l-1 annual mean total phosphorus consent 

limit, with mean total P and soluble reactive P concentrations of 675 and 345 µg l-1 respectively.  

There were two occasions where effluent TRP concentration exceeded 1000 µg l-1, and only one of 

these resulted in a peak in TRP concentration of over 100 µg l-1 in the River Kennet at Mildenhall.  

The other nine peaks of over 100 µg l-1 in the River Kennet during the monitoring period were 

associated with storm events, indicating that diffuse-source inputs and remobilisation of stored within-

channel phosphorus were the cause of the peaks in river concentration, rather than Marlborough STW.  

The value of high-frequency environmental monitoring and the problems associated with using 
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nutrient auto-analysers in the field are discussed.  Seasonal phosphorus consents for STWs could 

provide a useful and cost effective means to improve both water quality and river ecology in the upper 

River Kennet. 
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1 Introduction 

Elevated river nutrient concentrations have been shown to cause reductions in ecological status, often 

resulting in excessive phytoplankton and periphyton growth, and can lead to the loss of plant, 

invertebrate and fish communities 1-3.  Across Europe, much effort is being focussed on reducing 

nutrient (and in particular phosphorus (P)) loadings to rivers in recent years, in an effort to comply 

with the European Union’s Water Framework Directive. This has been tackled by introducing 

improved sewage treatment processes 4, and changing agricultural practices and land use to reduce 

diffuse-source inputs 5-6.  

It is imperative that the relative contributions from point and diffuse sources of phosphorus are known 

for a given catchment, so that resources can be most effectively targeted to reduce trophic status and 

improve aquatic ecology.  A range of source apportionment methodologies have been developed to 

determine the relative loads from sewage and agriculture, using standard water-quality datasets 7-10, 

sewage tracers such as boron 11-12 and land use data 13-15.  However, using these existing standard 

water-quality datasets (which are often monthly sampling interval, or, at best, weekly), it is difficult to 

identify the presence of sporadic nutrient pollution episodes 16, and very difficult to establish the 

source of these phosphorus peaks.  These largely-undetected, short-duration periods of elevated 

phosphorus concentration could be having a major impact on river ecology 17.  If episodic peaks in P 

concentration are occurring in rivers, phosphorus analysis at sub-daily resolution would be required to 

determine both the magnitude and duration of these peaks 18-19.  Analytical field monitors are now 
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becoming commercially available, which will allow this high-frequency phosphorus monitoring of 

rivers at a resolution required to identify the presence of such pollution incidents 19-21.   

The River Kennet in southern England has exhibited excessive benthic algal growth and associated 

ecological problems, such as loss of macrophytes and invertebrates, since the 1980s 22-23.  To try to 

improve river ecology, phosphorus removal was introduced at all large sewage treatment works 

(STW) discharging into the River Kennet, resulting in a 72% reduction in SRP concentration from ca. 

548 µg l-1 to 126 µg l-1 in the upper reaches of the river, downstream of the town of Marlborough, in 

the late 1990s 24.  Despite this major improvement in water quality (and others throughout the 2000s, 

due to the introduction of more stringent STW phosphorus consents 25), excessive benthic periphyton 

growth has persisted. Weekly water quality monitoring during the early 2000s highlighted that there 

were regular peaks in phosphorus concentration in the upper Kennet, and these peaks appeared to be 

correlated to the occurrence of epiphytic algal blooms.  It was postulated that the ecological system 

had become sensitised, following the reduction in phosphorus loading, and these peaks in soluble 

reactive phosphorus concentration (above 100 µg l-1) could be sustaining the high periphyton biomass 

present in stretches of the upper Kennet 26.  The Marlborough STW was implicated as the most likely 

source of these episodic phosphorus peaks27. 

This study aimed to use in-situ, high frequency nutrient auto-analysers to determine if these regular 

peaks in phosphorus concentration were still occurring in the upper River Kennet in 2008-2009, and if 

so, what were their frequency, magnitude and duration.   This study also aimed to determine if peaks 

in river phosphorus concentration coincided with peaks in the P concentration of the final effluent 

from Marlborough STW, thereby establishing if they were caused by intermittent failures of the 

sewage treatment process, or were related to river flow, which would imply that the source of the 

phosphorus spikes was due to diffuse inputs.  Additional weekly monitoring was employed in the 

upper Kennet catchment to identify if peaks in river phosphorus concentration downstream of 

Marlborough STW originated in the headwaters. 
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1.1 Study area 

The River Kennet is one of the largest tributaries of the River Thames, with a total catchment area of 

ca. 1200 km2 (Figure 1).  It rises near the village of Avebury in Wiltshire, and flows in a southerly, 

then easterly direction to discharge into the River Thames at the town of Reading, ca. 30 km west of 

London.  The land use of the upper River Kennet is predominantly grassland and arable.  The only 

significant town in the upper catchment is Marlborough, served by a STW (population estimate = 

9250) employing phosphorus removal by iron dosing.  There are also two STW at Fyfield (population 

estimate of 1580) and Broad Hinton (population estimate of 540), serving some of the dispersed 

villages in the upper Kennet catchment.  The catchment geology is principally Cretaceous Chalk, and 

therefore the River Kennet is predominantly groundwater fed, with a very high baseflow index of 0.94 

at Marlborough 28.  A more detailed description of the River Kennet catchment can be found 

elsewhere 27, 29. 

This study employed high frequency monitoring of the final effluent stream of the Marlborough STW 

(grid reference SU200693) and the River Kennet at the village of Mildenhall (grid reference 

SU212694), approximately 2 km downstream of the sewage treatment works.  Previous studies had 

shown the presence of intermittent spikes in phosphorus concentration in the Kennet at Mildenhall in 

the early 2000s 26, and subsequent high frequency (hourly) monitoring in 2004 to 2006 showed that 

there were still substantial phosphorus peaks occurring 20.  This section of the river was particularly 

badly affected by excessive benthic algal growth, and the majority of the river bed was covered in a 

thick layer of periphyton throughout the spring to autumn period in both 2008 and 2009.  The study 

reach had very low macrophyte biomass (mainly Callitriche platycarpa) and an almost complete 

absence of Ranunculus; a key macrophyte for chalk rivers.  The river width at Mildenhall was 9 m, 

and average depth was 0.5 m.  The mean annual river flow at the site (from 1972 to 2005) was 1.2 m3 

s-1, with an annual average rainfall at Marlborough of 828 mm 28.  The River Og tributary enters the 

River Kennet ca. 300 m upstream of the STW discharge point.  The River Og catchment is almost 
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entirely rural, with a few dispersed small villages, and has no STW discharges. The mean annual flow 

of the River Og was 0.32 m3 s-1.     

2 Methodology 

2.1 High frequency phosphorus monitoring 

Two high-frequency phosphorus auto-analysers were installed within insulated metal cabinets 

adjacent to the River Kennet at Mildenhall and the final effluent discharge channel of Marlborough 

sewage treatment works.  The total reactive phosphorus (TRP) concentration (determined using the 

same methodology as for soluble reactive phosphorus analysis, but carried out on an unfiltered, rather 

than a filtered sample) of the River Kennet at Mildenhall was monitored using a Systea Nutrient 

Probe Analyser (Systea, Anagni, Italy).  The river was monitored at a 30 minute sampling interval, to 

allow short-duration pollution incidents to be detected, and their duration and maximum concentration 

to be quantified.  The monitoring period extended from the 31st March 2008 to 24th August 2009.  

Further details of the monitoring infrastructure at this study site and operation of the Nutrient Probe 

Analyser can be found in Palmer-Felgate et al., (2008).  The TRP concentration of the Marlborough 

STW final effluent was monitored at hourly interval from 8th June 2008 to the 13th August 2009, using 

a Systea Micromac-C auto-analyser (Systea, Anagni, Italy).  Samples were taken from the final 

effluent channel, just before it discharged into the River Kennet.   

The Nutrient Probe Analyser and the Micromac C auto-analysers both operate in a similar manner.  

Both instruments use an internal peristaltic pump to take a sample of water through a 1.5 mm internal 

diameter black (to exclude light and minimise algal growth) vitron tubing, positioned in the main flow 

of the river channel or effluent stream.  A pre-filter unit, consisting of a 1 mm mesh inlet was attached 

to the end of the sample tube, to stop large particles of debris entering (and potentially blocking) the 

instruments’ colorimetry system.  The TRP concentration of each sample was quantified by 

spectrophotometry, using a modified version of the  method of Murphy and Riley 30.  Each instrument 

carried out a daily self-check, using a quality control check-standard, to confirm that they were 
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operating correctly.  In addition, the instruments were visited every two weeks, to carry out a 

calibration and instrument check, general maintenance, and to renew the chemical reagents and check-

calibration standards.   

The raw, high-frequency data were processed using WISKI (Water Management Information System; 

Kisters Inc., California, USA) to remove negative data and outliers that consisted of a single data 

point.  These spurious data points are common when using this type of auto-analyser, and can be 

caused by a variety of problems, such as the presence of air bubbles within the spectrophotometer 

cuvette, or sample line blockages resulting in sampling failure.  This removal of ‘single’ peaks from 

the data set was considered justified, as it was assumed that a STW failure would last longer than 1 

hour (especially as the Marlborough STW is largely unmanned).  Also, any large, short-duration 

phosphorus peak that was discharged from the STW would become a broader, longer-duration peak 

by the time it had been transported to Mildenhall, due to advection / dispersion processes, and so the 

30 minute monitoring interval at Mildenhall would pick up multiple points through the pollution 

incident.   

2.2 Manual water quality sampling 

Water samples were collected by the Environment Agency from the River Kennet at Clatford and 

Mildenhall (upstream and downstream of the town of Marlborough), and from the final effluent 

stream of Marlborough STW (Figure 1), at weekly intervals between 11th March 2008 and 27th 

October 2009 25.  Additional samples were taken by the Centre for Ecology and Hydrology at 

fortnightly intervals from Marlborough STW final effluent and the River Kennet at Mildenhall, and 

these data were directly used to check the data generated by the high-frequency auto-analysers.  

Samples from the River Og at Poulton Farm (50m from the confluence with the River Kennet) were 

also taken at fortnightly intervals to confirm that peaks observed in the Kennet at Mildenhall were not 

due to phosphorus pollution incidents within the River Og catchment.   

Aliquots of these water samples were immediately filtered in the field through a 0.45 µm cellulose 

nitrate filter membrane (Whatman International Ltd., Maidstone, UK).  The samples were returned to 
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the Centre for Ecology and Hydrology’s nutrient laboratory for analysis. The unfiltered and filtered 

samples were analysed for total phosphorus (TP) and total dissolved phosphorus (TDP respectively, 

by digesting with acidified potassium persulphate in an autoclave at 121oC for 40 minutes, then 

reacting with acid ammonium molybdate reagent to produce a molybdenum-phosphorus complex.  

This intensely coloured compound was then quantified spectrophotometrically at 880 nm 31.  The 

filtered water samples were also analysed for SRP concentration.  SRP was determined 

spectrophotometrically, using an adapted phosphomolybdenum blue method 30, 32.   

3 Results and discussion 

The high-frequency TRP concentration data from the River Kennet at Mildenhall and Marlborough 

STW final effluent are shown in Figure 2.  There are numerous data gaps, due to regular instrument 

breakdown.  Most of these were caused by fouling and blockages of the sample intake pipe and 

instrument valves by river algae / debris, particularly when sampling final sewage effluent.  There 

were also problems associated with pipes freezing during the winter period. Despite these problems, 

the Systea instruments provided periods of good-quality high-frequency data that were in close 

agreement with the phosphorus data obtained from the manual sampling / traditional laboratory 

analysis.    The high-frequency TRP data for the River Kennet at Mildenhall covered five of the ten 

high-flow storm events observed during the monitoring period (Figure 2).  The other five high-flow 

events were captured by manual sampling. 

3.1 Phosphorus concentrations of Marlborough STW final effluent. 

The monitoring programme confirmed that the Marlborough STW was operating well within its mean 

annual total phosphorus consent limit of 1000 µg l-1 between March 2008 and September 2009, with a 

mean SRP concentration (based on the manual sampling data) of 345 µg l-1 and a mean TP 

concentration of 675 µg l-1 (Table 1).  The high-frequency auto-analyser data consistently produced 

TRP results that were on average ca. 30 % higher than the corresponding SRP concentration from the 

manual sampling (Figure 2A).  This indicates that the final sewage effluent consists of a large 
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proportion of suspended, colloidal phosphorus-rich particles, greater than 0.45 µm in diameter.  The 

proportion of the mean total phosphorus concentration that was in the form of SRP was 51 %, which 

is much lower than has been observed in other UK STW effluent studies 33-34.  This increase in 

effluent particulate phosphorus is probably directly due to the iron dosing of the effluent, resulting in 

precipitation of the dissolved phosphorus coming from the secondary sewage treatment process. 

The high-frequency auto-analyser monitoring identified only two periods where the TRP 

concentration exceeded 1000 µg l-1, in September 2008 (exceeding 1000 µg l-1 for a period of 3 days, 

and reaching a maximum of 1410 µg l-1; peak L in Figure 2A) and March 2009 (exceeding 1000 µg l-1 

for 21 days and reaching a maximum of ca. 1300 µg l-1; Peak M in Figure 2A). There were also two 

additional peaks in the SRP concentration of over 800 µg l-1 identified from the manual sampling data, 

on 20th April 2008 and 24th August 2009 (labelled as peaks K and N respectively in Figure 2A), 

during periods of auto-analyser breakdown.  The other sporadic, high-resolution phosphorus peaks 

(particularly occurring in September 2008 and June 2009) consisted of only two to three data points, 

and were considered to be instrument noise, based on the shape and short duration of the peaks, and 

the lack of corroborative evidence from the manual sampling data.   

Peaks in effluent P concentration did not correlate with the typical short-term storm events (as 

indicated by the mean daily flow of the River Kennet at Mildenhall (Figure 2C)), showing that the 

Marlborough STW was able to cope with periods of high rainfall during the monitoring period.  

However, the sustained increase in P concentration in March 2009 (peak M, Figure 2A) coincided 

with a long period of sustained rainfall and high river flow, and may indicate that under these 

conditions of high volumetric throughput, the STW was less effective at P removal, or may indicate 

that untreated sewage was being released as a combined sewer overflow.   

3.2 Phosphorus concentrations in the River Kennet at Mildenhall. 

The combined phosphorus concentration results from the high-frequency auto-analyser and manual 

sampling are shown in Figure 2B.  The auto-analyser TRP results from the River Kennet at 

Mildenhall were very similar to the SRP data generated from the laboratory analysis of the manual 
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samples (Figure 2B), confirming that the Systea auto-analyser produced accurate and reliable results 

throughout the monitoring period.  The mean TRP concentrations throughout the monitoring period 

were 2 % higher than the mean SRP concentrations, showing that there was little colloidal reactive-

phosphorus within the river water column.   

The average SRP and TP concentrations during the monitoring period (based on weekly manual 

sampling data) was 67 µg l-1 and 110 µg l-1 (Table 1).  This exceeded the 50 µg l-1 SRP annual target 

for ‘High’ water quality status for chalk streams, but would still be classified as ‘Good’, in terms of 

phosphorus concentration 35.  There has been a ca. 80 % reduction in mean annual SRP and TP 

concentration of the River Kennet at Mildenhall since 1997, when the average and maximum SRP 

concentrations were 390 and 690 µg l-1 respectively 36.   There has been a continuing improvement in 

recent years, with the annual mean SRP concentration in both 2008 and 2009 being lower than any 

year since 1997 (Table 2).  These improvements in P concentration across the River Kennet have been 

directly attributable to improvements in sewage treatment 25.  Despite the decrease in annual average 

SRP concentration to the border of Good and High water quality 35, the intermittent peaks in SRP 

concentration observed in previous studies of the River Kennet 20, 26 were still occurring.  Three of the 

peaks were in excess of 200 µg l-1, and there were eight periods where SRP concentration exceeded 

100 µg l-1; a threshold concentration that was suggested by Jarvie et al (2004) as a trigger for 

excessive epiphytic algal growth.  Most of these phosphorus peaks were of relatively short duration.  

The high frequency TRP monitoring data allowed the size and duration of these peaks to be 

quantified.  Most peaks lasted between three and five days (peaks b, c, d, f and n; Figure 2B).  There 

were also two more-sustained SRP peaks of 10 days duration (peaks L and i; Figure 2B). 

3.2.1 Causes of TRP and SRP peaks in the River Kennet  

The majority of the SRP and TRP concentration peaks observed in the river coincided with storm 

events.  The daily mean flow hydrograph of the River Kennet at Mildenhall is presented in Figure 2C, 

highlighting the ten largest flow peaks throughout the monitoring period (peaks a-j; Figure 2C).  Eight 

of these ten storm events coincided with a peak in SRP and/or TRP concentration.  The highest P 
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concentrations were observed in June and November 2008, and coincided with flow peaks c, e and f 

(Figure 2B).  These storm events followed 3-4 month periods of dry antecedent conditions.  During 

these dry periods, phosphorus would have accumulated along the floodplain, and also within the river 

channel itself, due to deposition of phosphorus-rich sediment and sequestering of dissolved 

phosphorus from the water column by fine bed-sediments and riverine biota.  The rainfall and 

increased river flow velocity associated with these storm events would have mobilised this 

accumulated floodplain and bed-sediment phosphorus into the water column, and released P-rich 

sediment pore waters into the water column, resulting in phosphorus concentration peaks in the river.  

Similar observations have been made in previous studies 37-39.    The three largest storm events (peaks 

a, g and i; Figure 2C) all produced SRP concentration peaks of over 100 µg l-1 in the River Kennet at 

Mildenhall, and these did not correlate to phosphorus peaks in the Marlborough STW final effluent.  

However, the Marlborough STW could be a source of P to the river, due to combined sewer overflows 

(CSO).  These storm events would deliver large quantities of water to the STW, via the road drainage 

network, and may result in the excess raw sewage to be delivered directly to the river. 

The most sustained storm event was in February 2009 (peaks i-j; Figure 2C), and resulted in a two 

month period of high flows.  This coincided with one of the longer-duration SRP peaks, lasting ten 

days.  This shows that sustained periods of high flow and associated rainfall produces phosphorus 

peaks that have a longer duration.  However, the high SRP concentrations in the river were not 

sustained throughout the period of increased river flow, which indicates that the labile and easily 

mobilised phosphorus stored both on the floodplain and within the river channel is quickly depleted 

from the system.  Evidence for this depletion is further shown during storm peak j, which has no 

effect on river P concentration (Figure 2B).  

There was one major TRP and SRP peak that occurred in September 2008 that was not associated 

with a storm event.  The peak reached a maximum concentration of 137 µg l-1, and lasted for nine 

days duration (Figure 2B).  This coincides with the SRP and TRP peak in the Marlborough STW final 

effluent (1410 µg TRP l-1) (peak L; Figure 2A), which strongly suggests that this pollution incident 
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was caused by an intermittent failure of the Marlborough STW.  There was also a phosphorus peak in 

the River Kennet at Mildenhall in August 2009 (maximum TRP of 106 µg l-1; peak N; Figure 2A) that 

coincided with another peak in SRP concentration in the STW effluent of 842 µg l-1 (although this is 

well within Marlborough STW’s consent limit of 1000 mg l-1 annual average).  The longest period of 

increased phosphorus concentration in the STW effluent occurred throughout March 2009 (peak M; 

Figure 2A), reaching a maximum TRP concentration of ca. 1300µg l-1.  This did not result in any 

increase in SRP concentration in the River Kennet.  This is probably due to the increased river flow at 

this time, which would dilute the incoming sewage effluent.  This highlights the possible effectiveness 

of seasonal consent limits for STWs.  Resources (i.e. iron dosing rates) could be focussed on 

removing phosphorus during low flow periods during the biologically-active March to September 

period, and relaxed during periods of high river flow when effluent dilution will be significant, and 

particularly during the ecologically less-sensitive winter period, although the impact of seasonal STW 

consents on phosphorus dynamics and river ecology would need to be fully investigated before such a 

practice was widely adopted.  

3.2.2 Catchment phosphorus sources  

The TP and SRP concentration data from the manual sampling programme are shown in Figure 3.  

This shows that most of the storm-related phosphorus peaks observed at Mildenhall also occur in the 

upper River Kennet and River Og (peaks a, c, d, e, f, g and i).  This confirms that the major 

phosphorus source during periods of rainfall is probably from a combination of diffuse inputs from 

across the catchment (from agriculture and septic tanks discharging to soak-aways) and remobilisation 

of stored phosphorus from within the river channel itself, rather than an increasing phosphorus load 

from the Marlborough STW.  The monitoring of the Marlborough STW final effluent confirmed that 

the SRP and TRP concentrations do not increase during storm events, but the SRP and TRP loads to 

the river could have increased dramatically, due to increased volumetric flow rates as the STW 

receives large amounts of storm water from road drains. During the larger storm events, CSOs from 

Marlborough STW are also likely to contribute to the peaks observed in the River Kennet at 
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Mildenhall.  However, as phosphorus peaks are also observed in the upper Kennet at Clatford, and the 

River Og (which has no sewage treatment works within its catchment), this infers that diffuse inputs 

and within-river remobilisation are primarily responsible for the observed peaks in phosphorus 

concentration within the River Kennet during storm events. 

Some P peaks are very small in the upper catchments, compared to the peaks observed in the River 

Kennet at Mildenhall (e.g. peak c at Clatford, peak i on the River Og).  To a large extent, this is 

probably due to the relatively low frequency of sampling.  Pollution spikes in the headwater 

catchments are likely to be of relatively short duration, but will broaden as they travel downstream, 

due to advection and dispersion processes 40.  Therefore, the phosphorus peaks are more likely to be 

observed at the River Kennet at Mildenhall, but these peaks could easily be missed at the headwater 

sites.  This highlights the need to adopt high-frequency auto-analyser technology for effective 

monitoring of rivers, to gain insights into how these systems are operating. 

The TP data confirms that the Marlborough STW had four periods of high effluent phosphorus 

concentration (peaks K, L, M and N; Figure 3C).  The discharges in May 2008 (peak K) and March 

2009 (peak M) had no effect on either the weekly manual TP or SRP concentrations in the River 

Kennet at Mildenhall.  The peaks in effluent P concentration in September 2008 (peak L) and August 

2009 (peak N) did result in small peaks in SRP and TP concentration in the River Kennet at 

Mildenhall, reaching TP concentrations of 133 µg l-1 and 177 µg l-1 respectively, and SRP 

concentrations in excess of 100 µg l-1.  This is probably due to these effluent peaks occurring at times 

of low river flow, and so dilution of STW effluent would be it its minimum.  There are no 

corresponding peaks in P concentration in the upper Kennet at Clatford or the River Og, indicating 

that Marlborough STW is probably the source.  These STW-related peaks are relatively small, in 

comparison to those associated with diffuse inputs during major storm events, but they are still 

important, as they are easier to control (compared to agricultural diffuse pollution) and are more likely 

to occur during low flow periods within the biologically-active growing season. 
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4 Conclusions 

This paper has demonstrated the usefulness of the high-frequency phosphorus data produced by 

nutrient auto-analysers in determining the presence, magnitude and duration of intermittent 

phosphorus pollution incidents in rivers, and their potential sources.  It also highlights the difficulties 

in producing continuous data from environmental samples using these auto-analyser instruments in 

the field, despite the infrastructure and methodologies developed within this project.  The supporting 

manual sampling (approximating to weekly sampling interval or better) was sufficient in this case to 

capture the majority of the pollution incidents, but gave no information on magnitude and duration of 

peaks.  Monthly sampling interval (typical of most water quality monitoring programmes in the UK) 

would have missed most of the phosphorus peaks, showing the severe limitations of this monitoring 

for detecting pollution incidents.   

The high-frequency monitoring data show that the peaks in phosphorus concentration observed in 

studies throughout the 2000s still occurred, although their size and frequency were now lower than 

those observed in the early 2000s 20, 26.  Almost all of these peaks were associated with storm events, 

indicating that the source of phosphorus pollution was from diffuse inputs from the upper catchment 

and remobilisation / desorption of stored phosphorus from within the river channel itself, rather than 

intermittent STW failures, although CSO discharges from the STW will also contribute to these peaks 

in river phosphorus concentration.   

The monitoring of Marlborough STW’s final effluent confirmed that the STW was operating well 

within its consent level of an annual average phosphorus concentration of 1000 µg l-1.  There were 

two periods where effluent P concentration were greater than 1000 µg l-1, and only one of these 

(during the period of low river flow in September 2008)  resulted in a peak in SRP concentration in 

the River Kennet at Mildenhall.  The sustained period of high effluent SRP concentration in March 

2009 (with a maximum SRP concentration of 1300 µg l-1 SRP and with concentrations greater than 

1000 µg l-1 for a period of 21 days) had little effect on river phosphorus concentrations, due to dilution 

by the high river flows at the time.  This shows that phosphorus effluent consents could potentially be 



14 

 

relaxed during high-flows, particularly in winter, without risk to the ecological status of the River 

Kennet, although further research would be required to confirm this.   

A previous nutrient-limitation study in the River Kennet at Mildenhall showed that increasing river 

SRP concentration from ca. 60 µg l-1 to 170 µg l-1 for a period of 9 days had no effect on biofilm 

growth rate, which strongly indicates that these phosphorus peaks are not responsible for the 

excessive benthic algal growth that exists at the site 41.  This nutrient limitation study also 

demonstrated that reducing the SRP concentration of the River Kennet at Mildenhall to below 50 µg l-

1 during the growing season reduced the rate of periphyton growth 41.  Therefore, the typical average 

SRP concentrations during the spring and summer need to be reduced to decrease periphyton growth 

rate and potentially improve ecological status of the upper Kennet, rather than trying to prevent the 

intermittent spikes in phosphorus concentration.   

This study has shown that the Marlborough STW was not responsible for the great majority of 

phosphorus concentration peaks observed in the River Kennet at Mildenhall, or directly for the 

excessive periphyton growth that occurs in this part of the upper Kennet.  However, implementing a 

seasonal discharge consent system for the STW, focusing on further reducing effluent phosphorus 

concentrations in spring and summer, and relaxing consents during winter high-flow periods, could be 

the most effective way of controlling excessive benthic algal growth in the upper Kennet.  However, it 

is important to note that reductions in phosphorus concentration are not the only way to control 

benthic algal growth in rivers.  Increasing flow velocity by removing weirs and sluices (and thereby 

reducing residence times) 42, providing riparian shading 43-44, and establishing a more natural and 

diverse foodweb which promotes invertebrate grazers could have a much greater impact on 

controlling biofilm development than nutrient reduction alone, and these should also be considered as 

potential mitigation strategies by catchment managers. 
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Table 1.   Summary phosphorus concentration statistics for the River Kennet, River Og and the final 

effluent of the Marlborough sewage treatment works.  Results based on data from a weekly manual 

sampling programme. 
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Table  2.   Mean  annual  soluble  reactive phosphorus  and  total phosphorus  concentrations  for  the 

River Kennet at Mildenhall.  Data taken from Neal et al., 36. 
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Figure 1.  Map of the upper River Kennet catchment, showing locations of sampling sites. 
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Figure 2. Timeseries of phosphorus concentrations of (A) Marlborough sewage treatment works final 
effluent and  (B)  the River Kennet at Mildenhall.   The  lines  represent high  frequency  total  reactive 
phosphorus  concentrations  from  the  Systea  auto‐analysers.    The  x  symbols  represent  soluble 
reactive  phosphorus  concentrations  from  the  manual  sampling  programme.    The  estimated 
volumetric  flow  of  the  River  Kennet  at Mildenhall  is  given  in  Figure  2C.    Lower  case  letters  (a‐j) 
represent  storm events.   Upper  case  letters  (K‐N)  represent periods of  increased P  concentration 
from Marlborough  STW.    (The  high  resolution  TRP  data  is  relatively  unprocessed, with  only  the 
‘single point’ peaks  removed, and  therefore many of  the  sporadic,  short‐duration peaks observed 
particularly in May to July 2009 will be attributable to instrument noise). 
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Figure 3. Total phosphorus and soluble reactive phosphorus concentrations for the River Kennet at 

Clatford, the River Og at Poulton Farm, Marlborough sewage treatment works final effluent and the 

River Kennet at Mildenhall.   The  lower  case  letters  (a‐j)  represent  the  storm events  (identified  in 

Figure  2C).    Upper  case  letters  (K‐N)  represent  periods  of  increased  P  concentration  from 

Marlborough STW. 
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