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Abstract  

This paper provides a synthesis of the recently published BGS report presenting a new 

Lithostratigraphical Framework of Quaternary and Neogene deposits for Great Britain and 

the Isle of Man (McMillan et al., 2011). Available as a download from the BGS website, the 

report sets out a hierarchy of lithostratigraphic units for superficial deposits providing 

summary descriptions of lithological characteristics, boundaries, ranges in thickness, type 

sections and known geographical distribution. This paper describes the requirement, rationale 

and development of the onshore scheme, and discusses the philosophy behind its creation. It 

discusses unique problems in stratigraphy presented by superficial deposits and introduces a 

new lithostratigraphical subdivision of tills laid down during the last regional glaciation (Late 

Devensian/Weichselian/Wisconsin). 

1. Introduction 

The publication earlier this year (McMillan et al., 2011) of the Lithostratigraphical 

Framework of Quaternary and Neogene deposits for Great Britain (onshore) is the 

culmination of a research project initiated by the British Geological Survey in 1998 and taken 

on under the direction of the BGS Stratigraphy Committee.  Recognising the need to provide 

a workable framework to aid future Quaternary mapping, modelling and research, and a 

stratigraphical scheme capable of use in a wide variety of applications (see Foster et al., 

1999), the BGS tasked a group of mapping geologists to develop a hierarchy that should 

utilise the full range of units from supergroup to bed.  It needed to conform as far as possible 

with international stratigraphical principles for lithostratigraphical classification as provided 

by the International Union of Geosciences (IUGS) (Hedberg, 1976; Salvador, 1994), and the 

national/regional guidance offered by the North American Commission on Stratigraphical 

Nomenclature (NACSN) (1983, 2005), Whittaker et al. (1991) and Rawson, et al. (2002). 
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The project commenced at the time that the Geological Society of London published a 

Revised Correlation of Quaternary deposits in the British Isles (edited by D Q Bowen, 1999), 

the first edition having been published some 26 years earlier (Mitchell et al., 1973). Both of 

these publications, together with the Quaternary volumes of the Geological Conservation 

Review Series (e.g. Gordon and Sutherland, 1993; Bridgland, 1994; Huddart and Glasser, 

2002) proved to be invaluable sources of information and citation, and several contributors to 

the Bowen (1999) edition contributed to and commented on the BGS framework. 

Stratigraphical charts correlating the principal units of the onshore framework with the 

recently published BGS offshore Quaternary lithostratigraphical framework (Stoker et al., 

2011) are in preparation (Stoker et al., 2012a,b). 

2. Development of the Framework 

Bowen (1999) defined some 1400 units at formation, member and bed levels. However, the 

formations defined therein generally embrace sequences of deposits of diverse lithology and 

depositional environment. The members and beds of these formations generally represent the 

mappable units, not the formations. This is particularly in case for Scotland. Many of the 

formations of Bowen (1999) are valuable, representative, regional stratigraphical successions, 

which arguably should have been given group or sub-group status. The BGS project team 

consequently recognised the utility of expanding the hierarchy to include groups, since 

grouping of formations is desirable, particularly to aid regional mapping (Salvador, 1994) and 

interpretation by non-geologists.  

The new groups have been established mainly on depositional environment and gross 

lithological characteristics. This approach was suggested by Willman and Frye (1970) in 

establishing a Pleistocene stratigraphical framework of Illinois. Widely varying lithological 

characteristics, for example of glacigenic sediments derived from many sources, is reflected 

in some of the groups, the bases of which are defined by basin-wide unconformities. Early 

thoughts on a possible hierarchy were published by McMillan and Hamblin (2000), and 

refined in a subsequent ‘overview’ report (McMillan et al., 2005), the key points of which 

were discussed at the TNO International Workshop on Integrated Land-Sea Lithostratigraphic 

Correlation in Utrecht, The Netherlands, in April 2003 (McMillan, 2005). In parallel, a novel 

chronostratigraphical classification applicable to the UK, and based upon an embracing 

forcing-event stratigraphy, was developed by Rose (2003, 2010). Elsewhere, particularly 

applicable in glaciated terrains (e.g. in Finland), an allostratigraphical scheme has been 

adopted (Räsänen et al., 2009) in which formations are defined by unconformable 
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boundaries. A similar approach based mainly on seismo-stratigraphy has been utilised for the 

Quaternary deposits lying offshore the UK (Stoker et al., 2011).  

Subgroups have been introduced within some of the groups. These are defined on lithological 

characteristics and geographical extent of component formations. Rawson et al. (2002) 

acknowledged that the term subgroup is not in the formal hierarchy, but has been usefully 

employed for subdividing certain groups, for example the Chalk. However, as Rawson et al. 

(2002) note, definition of a group and subgroup may be contentious. For reasons such as this 

it is necessary to consider the Quaternary as a ‘special case’(see discussion below) . 

For the BGS framework it was determined that although the groups should have a broad 

genetic background they should be defined by the lithological characteristics of the principal 

component formations, many of which were already defined (see Bowen, 1999); others are 

modified from earlier definitions or are completely new. The formation is generally agreed to 

be the primary mappable unit (Rawson et al., 2002).  Hitherto, no formal Quaternary 

lithostratigraphy has been applied over much of the UK and both national and regional 

correlation has proved difficult. Superficial (formerly Drift) deposits are commonly 

lithologically variable and spatially discontinuous.  Despite a legacy of over 175 years of 

mapping at a range of scales, Quaternary deposits are variably recorded in both academic and 

geological survey publications and maps.  

Traditionally, lithostratigraphical studies were confined to parts of the UK near or beyond the 

limits of glaciation where the best-preserved Quaternary record could be established. Thus a 

stratigraphical framework was first established for eastern and central England, notably East 

Anglia and the Midlands, and for the valleys of major river systems (see Mitchell et al., 

1973). Elsewhere, geological survey mapping employed a practical ‘morpho-lithogenetic’ 

classification which had evolved since the 19th century into the currently recommended 

standard (McMillan and Powell, 1999; BGS, 2012). Morpho-lithogenetic units are locally 

mappable sediment-landform assemblages of strata that are considered without regard to time 

(Schenck and Muller, 1941; Salvador, 1994). In recent decades, modern surveys of 

superficial deposits, locally with good quality sub-surface records, and new dating 

techniques, have enabled formal lithostratigraphies to be developed elsewhere in the UK, 

notably north-west England (Merritt and Auton, 2000), west-central Scotland (Browne and 

McMillan, 1989; Finlayson et al., 2011) and north-east Scotland (Merritt et al., 2003).  The 

rationale for establishing the defining criteria of the framework with particular reference to 

glacigenic and catchment deposits is discussed in more detail later in this paper.  
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3. Groups and subgroups 

The framework of McMillan et al. (2011) establishes the Great Britain Superficial Deposits 

Supergroup within which seven named groups are defined. The spatial relationships and age 

range of the groups is shown in Figure 1, whereas the characteristics, age and distribution of 

the groups are summarised in Table 1. Of these, the Crag Group (after Reid, 1890, Funnell 

and West 1977, Arthurton et al., 1994) and the British Coastal Deposits Group (McMillan et 

al., 2005), comprise marine and coastal deposits.  The Dunwich Group (after Rose et al., 

2002, McMillan et al., 2005) and the Britannia Catchments Group (McMillan et al., 2005) 

comprise predominantly fluvial deposits.  A Residual Deposits Group (McMillan et al., 2005) 

is established for mainly remanié deposits and other units which have undergone dissolution 

and disturbance. Two groups are assigned for glacigenic deposits, namely the Albion 

Glacigenic Group and the Caledonia Glacigenic Group (McMillan et al., 2005). The former 

group includes the Older Drift of previous classifications, whereas the later equates with the 

Newer Drift (Wright, 1937).  

Subgroups have been introduced within some of the groups, defined on lithological 

characteristics and geographical extent of component formations. Two subgroups of the 

Dunwich Group have been defined, namely the Bytham Catchments Subgroup (after Lewis, 

1993; Rose 1994) and the Kesgrave Catchment Subgroup (after Whiteman and Rose, 1992) 

for pre-Anglian fluvial deposits of the ancestral, pre-diversionary Thames and Bytham rivers 

of southern Britain (Figure 2).  Subgroups of the Britannia Catchments Group are defined for 

formations and lithogenetic units occurring within broad, present-day physiographic regions 

drained by major river drainage systems that have developed since Mid-Pleistocene time. The 

geographical boundaries of these subgroups broadly coincide with physiographic regions 

defined by modern ‘catchment’ boundaries (Figure 3). The subgroups comprise formations 

defined by river terrace deposit members, floodplain alluvium and associated lithogenetic 

units.  For deposits of the two glacigenic groups lying mainly to the north of the Devensian 

ice-sheet limit , a series of glacigenic subgroups is established for formations and lithogenetic 

units of similar lithology and provenance (Figure 2). The glacigenic subgroups are defined 

geographically and mainly on the basis of mappable formations of till, although some of the 

glacigenic water-lain units associated within them may extend beyond the Devensian limit. 
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The rationale for establishing the defining criteria of the framework with particular reference 

to glacigenic and catchment deposits is discussed in more detail later in this paper.  

 

4. Discussion 

4.1. Unique problems to lithostratigraphy presented by Superficial deposits 

Quaternary deposits present a challenge to formal stratigraphical procedures, which have 

been developed over many years mainly for mapping and dividing the rest of the geological 

column (bedrock). For example, most Quaternary deposits have not been folded and tilted 

tectonically. Hence it is commonly not possible to establish the precise nature of contacts 

between units by traditional mapping and section-logging methods alone. In many cases 

deposits do not crop out at the surface.  Hence subdivision of the Quaternary onshore is 

heavily dependent on borehole information and formal type sections are commonly borehole 

logs, not exposures that one can examine at first hand. Furthermore, bedrock units should be 

defined by the nature of their lower and upper contacts, generally established on the ground, 

whereas numerous Quaternary units have upper contacts that represent the modern land 

surface, or water. 

In theory, allostratigraphy should perhaps be most suited for subdividing Quaternary 

sequences, for example, in delineating sheets of till of different ages resting on regionally 

widespread unconformable surfaces. An allostratigraphical unit is a mappable stratiform body 

of sedimentary rock that is defined and identified on the basis of its bounding discontinuities 

(North American Commission on Stratigraphic Nomenclature, 1983). However, this is 

commonly not so simple in practice onshore, where tills vary laterally in lithology and 

thickness, merge with one another, or where local complications pertain. The method is more 

applicable offshore where seismic transects are generally available, making ‘sequence 

stratigraphy’ easier to use. Geophysical techniques have limited utility onshore, mainly due to 

cost and logistics. Nevertheless, allostratigraphy is used covertly in many schemes, as for 

example, in the classification of river terraces adopted herein, where individual terraces are 

mapped as members within a flight given formational status. Each terrace deposit is defined 

by bounding surfaces, but the units do not form a stack as in traditional stratigraphy. Relative 

age is generally dependent on position within the flight, with higher terraces being older than 

lower ones. Many other superficial deposits are in practice mapped allostatigraphically, for 

example, glaciofluvial deposits and moraines, because each landform-sediment package has 
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been laid down sequentially during ice sheet recession. However, in these and other cases it 

would be cumbersome to label each item correctly using the prefix ‘allo’ or ‘litho’. 

The Quaternary succession is thin compared to most older systems, but it is highly variable in 

lithology. As it is generally capable of fine resolution vertically in terms of depositional 

environment, provenance and age, it is appropriate to use the full hierarchy of stratigraphical 

units available. For example, an organic bed within a thick sequence of till may be thin, but it 

could represent a complete interglacial or interstadial period. A gravel lag within a thick fine-

grained marine sequence may have formed during a specific sea-level low-stand. Formational 

status may be justified for a unit just a few tens of centimetres thick, especially if it can be 

further subdivided. It may not be practical to map out such thin units on the ground, but it is 

important to be able to correctly correlate them between boreholes and with the very high 

resolution chronostratigraphies now available in Quaternary science, such the Greenland ice 

core record and microtephra-stratigraphies. 

It is a challenge in the Quaternary to use lithostratigraphy conventionally to map out 

horizontal changes in lithology. For example, in the Carboniferous there are a plethora of 

named units for sequences of the same age across the country. There is no problem with this 

because the coalfields are discrete basins bounded by major faults. Horizontal changes in 

lithology are equally, or more important in the Quaternary, but such division is not possible 

for very widespread, flat-lying deposits. A solution adopted here is to use subgroups where 

some boundaries are geographically defined, as for example, in using catchment divides to 

subdivide the catchment groups. 

4.2. Glacigenic subgroups and formations 

The glacigenic subgroups, mainly of the Caledonia Glacigenic Group (Devensian, MIS 2-5d) 

have been divided geographically, some by natural boundaries, such as the Great Glen, in the 

Scottish Highlands, but mostly on the basis of overall lithology and provenance of the 

constituent formations (Figure 2). Colour remains a useful parameter for general 

classification of a unit, but it can be misleading locally. The concept of subdivision is not 

new, for example, in north-east Scotland three ‘series’ of glacigenic deposits have been 

recognised traditionally relating to distinct bodies of ice that existed in the region during past 

glaciations (Merritt et al., 2003) (Figure 4). Ice flowing north-eastwards along the coast of 

Angus and Aberdeenshire led to the deposition of the ‘Red Series’, which includes a variety 

of materials of a typically vivid reddish brown colour. Ice flowing eastwards along the Moray 
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Firth impinged onto the coastal lowlands and was responsible for laying down a suite of 

typically dark grey, calcareous deposits assigned to the ‘Blue-grey Series’. The typically 

sandy, yellowish brown tills laid down in the interior by ice flowing from the eastern 

Grampian Highlands were assigned to an ‘Inland Series’. The ‘Blue-grey’ and ‘Inland’ series 

have been replaced in the present scheme by the ‘Banffshire Coast and Caithness’ and ‘East 

Grampian’ glacigenic subgroups respectively, whereas the ‘Red Series’ has been replaced by 

the ‘Mearns’ and ‘Logie-Buchan’ glacigenic subgroups, the latter laid down by ice that 

nudged onshore to the north of Aberdeen at a relatively late stage in the last glaciation, 

introducing a unique suite of erratics and shells from offshore: all subgroups have older, 

Albion Glacigenic Group (pre MIS 5e) counterparts. 

The glacigenic subgroup boundaries in north-east Scotland share those dividing the surficial 

tills of each subgroup, namely the Banchory, Hatton, Mill of Forest and Essie till formations, 

which generally can be mapped out to within a few tens of metres on the ground (Figure 5). 

Older units, including till, glaciofluvial deposits and palaeosols, may interdigitate at depth, 

resulting from interactions between ice masses during several glaciations (Figure 6). For 

example, much of Buchan was first crossed by ice during the Devensian from the Moray 

Firth, laying down the heterogeneous Whitehills Glacigenic Formation with its many rafts of 

Mesozoic strata, before East Grampian ice sheet expanded, laying down the Crovie and 

Banchory till formations (Merritt et al., 2003) (Figure 6). Temporal changes in flow velocity 

and provenance of ice during the last glaciation also resulted in multiple sequences in 

Caithness and around the inner Moray Firth (McMillan et al., 2011. Although the glacial 

history of these regions has been documented and generally accepted for over a century, the 

delineation of subgroups illustrated in Figure 2 helps to conceptualize and synthesize a 

complicated sequence of events, thus fulfilling one of the main aims of lithostratigraphy. 

Other long-established, but loosely-defined, suites of offshore-associated glacigenic deposits 

of the last glaciation occur down both coasts of northern England, and around the north of 

Wales, namely the ‘Irish Sea Drift’ and ‘North Sea Drift’ (Huddart and Glasser, 2002; Stone 

et al., 2010). The former has been redefined as the Irish Sea Coast Glacigenic Subgroup, 

whereas the latter becomes the North Sea Coast Glacigenic Subgroup (Figure 2): both have 

older, Albion Glacigenic Group (pre MIS 5e) counterparts. These subgroups typically contain 

shell fragments and re-worked, cold-water marine microfossils and are largely the legacy of 

ice streams that flowed southwards through the two marine basins respectively, notably 

during relatively late stages of the last glaciation. They contain characteristically thinly 
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interbedded sequences of till, sand, gravel and silt that interdigitate with glacigenic deposits 

derived from land-based ice, either the Pennines or the mountains of North Wales. Although 

these two marine-associated subgroups can be mapped out locally to within a few tens of 

metres, establishing their entire geographical boundaries is more difficult and contentious. As 

far as is practically possible at a regional scale the source of the matrix, rather than the 

farther-travelled erratics in the tills, has been taken into account in placing ‘up-ice’ 

boundaries. For example, the tills of the Irish Sea Glacigenic Subgroup are typically sandy 

and reddish brown, reflecting their derivation from Permo-Triassic strata, both directly and 

indirectly. A major source of the former Irish Sea ice stream was the Solway Lowlands and 

the Vale of Eden, and the boundary of the subgroup thereabout roughly follows the boundary 

of the Permo-Triassic basin (Figure 7). The interdigitation of subgroups portrayed within the 

Vale of Eden (Figure 2) reflects the complex glacial history of this region, where ice first 

flowed up the vale before the Solway branch of the Irish Sea ice stream became established 

and ice flow was reversed (Stone et al., 2010; Livingstone et al., 2012, in press). 

The boundaries between subgroups have been established over time, generally governed by 

where BGS Quaternary mapping has been in progress. In regions such as north-east Scotland, 

the contrasting tills were first mapped out and the subgroups established subsequently. 

Elsewhere subgroup boundaries had to be completed using knowledge of general ice flow 

trajectories and glacial history from the literature, and bedrock geology. For example, the 

eastern boundary of the East Grampian Glacigenic Subgroup was mapped out many years 

before the western boundary was established, when mapping was undertaken in the upper 

Spey valley. 

4.3. Till subdivision 

In recent years BGS has been developing a novel Soil Parent Material Model and a Till 

Thematic Layer for the country, underpinned by databases of physical properties, thicknesses, 

colour, clast-composition, carbonate content, etc. (Entwisle and Wildman, 2010). 

Geographical subdivision of the tills of Great Britain is required in order to provide more 

information, in particular, for distinguishing coarse-grained (primarily gravel or sand), silt 

and clay parent materials of soils (Griffiths, et al., 2011). Subdivision is necessary because till 

covers about 30% of Great Britain yet BGS maps traditionally show till simply as 

‘undivided’, although it is known to vary considerably in lithology and composition across 

the country. These initiatives are driven by the requirements of soil scientists, ground 

engineers, hydrogeologists and others, for whom tills present particular challenges in their 
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feasibility studies, site investigation design, calculations, parameterization and modelling. 

The maps are an addition to a set of ‘GeoSure’ products that enhance and develop the output 

of BGS digital geological maps, providing specific GIS map layers for applied geologists, 

such as for ‘compressible’ and ‘collapsible’ ground, ‘shrink-swell’, and ‘running sand’  (see 

BGS website; http://www.bgs.ac.uk/products/geosure/home.html). These initiatives have 

provided the impetus to complete the lithostratigraphical subdivision of surficial tills at 

formation and/or member level across the country, at least within the limits of the Late 

Devensian glaciations (Figure 5).  

The systematic geographical delineation of surficial till units was undertaken in 2009 

(Entwisle and Wildman, 2010). ARC GIS was used, utilizing the BGS DiGMapGB50 

Superficial and DiGMapGB-625 Bedrock Geology themes draped on a hill-shaded digital 

elevation model generated from the NEXTMap BritainTM dataset from Intermap 

Technologies Both geology themes are available as free downloads 

[http://www.bgs.ac.uk/downloads]. Archive BGS mapping, digital air photos and other 

relevant data were used, including BRITICE, a GIS database of landforms and features 

related to the last British Ice Sheet (Clark et al., 2004). NEXTMap enabled drawing the 

boundaries as objectively as possible, which were digitized at 1:50,000 scale. For practical 

reasons the boundaries wriggle somewhat as they have been positioned within polygons of 

bedrock, or Superficial deposits other than till, in order to minimise the splitting of till 

polygons. The exercise provided some new insights, such as the path taken by ice that flowed 

northwards from the upper Spey valley directly towards the Moray Firth (Figure 8), across a 

mountains over 500 m above sea level rather than flowing down the valley towards Elgin, as 

previously thought (Gordon and Sutherland, 1993).   

Similar protocols were followed as for the earlier delineation of glacigenic subgroups, using 

literature review and prior knowledge of general ice flow trajectories, glacial history and 

simplified bedrock geology (Figure 7). As the matrices of tills are known to bear a strong 

relationship with underlying bedrock (Benn and Evans, 2011), many boundaries are 

positioned a short distance ‘down ice’ of significant changes in bedrock geology, as for 

example between Lower Palaeozoic greywacke dominated terrain and Permo-Trias ‘red beds’ 

in the Solway lowlands. As it is important for soil scientists and hydrogeologists to be able to 

identify calcareous from poorly calcareous tills, some formations have been defined and 

delineated to closely follow underlying limestones, for example, the Greystoke Till 

Formation in Cumbria (Figure 5,7) and the Ruabon Till Member of the Plynlimon Glacigenic 
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Formation in north-east Wales (Figure 5), which both broadly mirror outcrops of the 

Carboniferous Limestone Supergroup. 

NEXTmap provided invaluable information, for example, in locating end-moraines across 

Lancashire and Cheshire in order to map boundaries of the Kirkham, Stockport and Brewood 

tills, and delineating the final penetration of ‘North Sea’ into Tees-side, which laid down the 

Horden Till Formation. With these examples, and most others, previously defined units were 

selected if at all possible, reverting where necessary to original literature sources rather than 

subsequent iterations. For example, the units first established by Francis (1970) have been 

adopted in north-east England, even though much excellent stratigraphical work in the region 

has been published since this paper was written. Similarly in Wales, the till formations 

defined by Bowen (1999) generally have been adopted and delineated for the first time. The 

positions of end moraines in the Welsh borders follow Lewis and Richards (2005), adjusted 

from new information provided by NEXTMap. For Wales, in particular, the formations and 

boundaries are speculative and may be adjusted following detailed mapping in the future. 

4.4. Catchment subgroups and formations 

Catchment subgroups of the Britannia Catchments Group have been divided geographically 

with boundaries following present day watersheds (Figure 3) and defined primarily by 

formations of fluvial gravels, sands and silts of the principal and tributary rivers within each 

catchment.  Where the deposits of the catchment can be demonstrated to have formed with 

little or no modification by a later over-riding ice sheet or glacier,  a single formation is 

generally considered sufficient to define the fluvial deposits (floodplain alluvium and 

terraces) of a river and its tributaries (e.g. the post-Devensian, Clyde Valley Formation). 

However, for drainage basins that have been modified by one or more ice sheets (e.g. those of 

the Thames, Trent and Severn) separate formations, defined by terrace deposit members with 

broadly unified lithostratigraphical characteristics, have been established for the deposits of 

the principal river valley, or parts of it, and also for the deposits of tributary valleys. In the 

case of the Thames, a major river system of Neogene to Quaternary age, Bridgland (2006) 

has argued the case for assigning formational status to individual mappable terrace deposits 

comprising several members including periglacial aggradation deposits (principally sands and 

gravels) and interglacial/interstadial organic (peat) and fossiliferous lacustrine sediments 

(principally sands, silts and clays). However, the BGS Framework retains member status for 

terrace deposits (Figure 7) with the parent formations providing the basis for regional 

correlation (as adopted by Gibbard, p. 45–58 in Bowen, 1999). Formations of the ‘pre-
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diversionary Thames’ and the Thames and its tributaries are established within subgroups of 

two groups. The Kesgrave Catchment Subgroup (which forms part of the Dunwich Group) 

includes the lithologically distinctive Colchester and Sudbury formations of the pre-

diversionary river (pre-Anglian) (after Whiteman and Rose, 1992). The Thames Catchments 

Subgroup (Britannia Catchments Group) (Anglian and younger) includes formations of river 

terrace deposit members within the upper reaches (Upper Thames Valley Formation), and 

middle and lower reaches (Maidenhead Formation, modified after Gibbard’s Maidenhead and 

Lower Thames formations) of the main river together with other formations for deposits of 

major tributary valleys (e.g. the Kennet Valley Formation). Each formation includes, at 

member or bed level, the terrace gravels and interbeds including peat.  

Commonly terrace deposits of early fluvial systems and ‘buried channel’ (palaeovalley) 

deposits are unrelated to the present day physiography. Where such deposits cannot be 

biostratigraphically correlated with surficial terrace deposits of present-day valleys it is 

recommended that they be designated as separate formations within the Britannia Catchments 

Group (McMillan et al., 2005). 

The stratigraphical hierarchical status of organic interbeds, including peats and soils, within 

glacial sequences has been the subject of much debate. Often thin and inextensive, such 

deposits are important for terms of regional correlation. Consequently, the most significant 

organic units have been assigned formational status within the Britannia Catchments Group. 

Examples in the Grampian Highlands (for details see Merritt et al., 2003, and McMillan et al., 

2011) include the Moy Burn Palaeosol (MIS 5a-d), which overlies the Suidheig Till 

Formation, and the Teindland Palaeosol (MIS 5e) overlying the Deanshillock Gravel 

Formation.  Other organic units raised to formation level include the Troutbeck Palaeosol 

(MIS 5e or 11), under the Threlkeld Till Formation of Cumbria (after Boardman, 1991), and 

the Quinton Peat Formation (comprising peat, organic sand, silt and humic clay with root 

traces and drifted wood) (MIS 11) overlying the Nurseries Glacigenic Formation of the 

Birmingham area (after Horton, 1974, 1989).   

In the BGS Framework it is proposed that extensive surficial peat, lacustrine and mass 

movement deposits (e.g. head) which have hitherto been mapped as lithogenetic units may 

remain as such or, if biostratigraphically well-constrained, be raised to formational status or 

remain as lithogenetic units within a catchments subgroup or group, if related to more than 

one subgroup.  
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4.5. Lithological descriptors 

Following on from the discussion above it should be clear that the new lithostratigraphical 

framework is designed to be relevant for applied geologists and others with limited 

geological knowledge wishing to make sense of the nature and distribution of an extremely 

varied and heterogeneous suite of deposits. It is anticipated that the framework also will be of 

assistance to specialist Quaternary geologists and geomorphologists who share the ambition 

of making their subject as accessible to others as possible. With this objective in mind it has 

been decided not to follow the ‘recommendations’ (not specific ‘rules’) of Hedberg (1976) 

and Salvador (1994), which specify that lithological descriptors best not be used. Instead the 

framework has formally employed lithological descriptors in most unit names, or has 

reintroduced them in names where they had been removed in Bowen (1999). It was 

concluded that considering the plethora of named units now in existence, some indication of 

gross lithology would generally help more than confuse. For complex, heterogeneous 

sequences, terms such as ‘glacigenic’ have been used to embrace glacial, glaciofluvial, 

glaciolacustrine and locally glaciomarine deposits, but it is agreed that genetic descriptors 

should be used sparingly. Where units of diamicton may not be tills as strictly defined, the 

term ‘diamicton’ is preferred, as for example, the Corse Diamicton Formation of the 

Banffshire Coast and Caithness Glacigenic Subgroup (Merritt et al., 2003).  

5. Conclusions 

The published framework for onshore Quaternary and Neogene deposits (McMillan et al., 

2011) is primarily aimed at providing a rational, hierarchical lithostratigraphical scheme for 

geological mapping, modelling and correlation.  It presents a unified framework that aims to 

be of assistance in a wide range of pure and applied applications.  Although specifically 

designed for Great Britain and the Isle of Man, the scheme is capable of application 

elsewhere, particularly in recently glaciated terrain. 
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Figures  

1. Generalised relationship of the seven groups belonging to the Great Britain Superficial 

Deposits Supergroup. Bedrock groups and formations of Palaeogene age are also shown 

(after McMillan et al., 2011).  

2. Surface distribution of glacigenic groups and subgroups, the Crag Group and the courses of 

the ancestral Thames and Bytham rivers (after McMillan et al., 2011). 

3. Distribution of catchment subgroups of the Britannia Catchments Group (after McMillan et 

al., 2011). 

4. Profile map of the five subgroups of the Caledonia Glacigenic Group mapped in north-east 

Scotland, showing generalised flow-lines of ice during the main Late Devensian Glaciation 

(after Merritt et al., 2003). 

5. Distribution of surficial till formations and members of the Caledonia Glacigenic Group 

(after McMillan et al., 2011). 

6. Relationships of formations and subgroups within the Caledonia and Albion subgroups in 

north-east Scotland (after McMillan et al., 2005). Inset map is a summary of Figure 4. 

7. Till formation and member boundaries of Figure 5 draped over the DiGMapGB-625 

Bedrock map for Cumbria. Generalised ice flow lines are after Stone et al., 2010, fig. 68). See 

Figure 5 for key to numbered polygons. Permian and Triassic rocks in the Vale of Eden are in 

shades of orange and pinkish brown; the Carboniferous Limestone Supergroup in pale blue. 

For full key to bedrock see free BGS download at 

http://www.bgs.ac.uk/products/digitalmaps/digmapgb_625.html. 

8. NEXTMap hill-shaded digital elevation model of the area around Grantown-on-Spey, 

showing the boundary between the Central Grampian and East Grampian glacigenic 

subgroups. Ice sourced in the western Grampian Highlands ice flowed northwards across the 

Spey - Moray Firth catchment divide creating streamlined landforms and depositing 

widespread till, whereas sluggish ice centred over the East Grampians caused minimal glacial 

modification of the landscape.  

9. Schematic transect across the Thames Valley near Beaconsfield, showing subgroups and 

formations within the Britannia Catchments Group and Residual Deposits Group (after 

McMillan et al., 2011). 

Tables 
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1. Summary of the genesis, lithology, distribution and age of the seven groups within the 

Great Britain Superficial Deposits Supergroup. 

 

 



Table 1.  Summary of the genesis, lithology, distribution and age of the seven groups 
within the Great Britain Superficial Deposits Supergroup. 

Group name Genesis Lithologies and textures Distribution Age 

Britannia 

Catchments 

Group 

Fluvial, 

organic and 

mass 

movement  

Clastic deposits: boulder, 

gravel, sand, silt and clay 

grades; periglacial slope 

deposits/gelifluctate/ 

‘head’  

Great Britain Holocene to pre- 

Anglian, MIS 1-

pre-12  

Caledonia 

Glacigenic 

Group 

Glacigenic Clastic deposits; boulder, 

gravel, sand, silt and clay 

grades; diamictons 

(including till)  

Great Britain, north 

of the Devensian 

(Weichselian) ice-

sheet limit 

Devensian 

(Weichselian), 

MIS 2-5d 

Albion 

Glacigenic 

Group 

Glacigenic Clastic deposits; boulder, 

gravel, sand, silt and clay 

grades; diamictons 

(including till) 

Great Britain, north 

of the Anglian ice-

sheet limit 

pre-Devensian 

(pre-

Weichselian), pre 

MIS 5e 

Residual 

Deposits 

Group 

Residual and 

weathering 

products 

Clastic deposits; gravel, 

sand, silt and clay grades 

Great Britain Tertiary to Early 

Pleistocene 

British 

Coastal 

Deposits 

Group 

Marine and 

coastal 

Clastic deposits; gravel, 

sand, silt and clay grades 

Great Britain, 

coastal fringe 

Holocene to pre- 

Anglian, MIS 1-

pre-12 

Dunwich 

Group 

Fluvial Clastic deposits; gravel, 

sand, silt and clay grades 

Eastern England early Middle to 

Early Pleistocene  

Crag Group Shallow 

marine 

Clastic deposits; gravel, 

sand, silt and clay grades 

Eastern England, 

extending offshore 

Pliocene and 

Early Pleistocene 

 




















