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Foreword 

This report is the published product of a study by the British Geological Survey (BGS).  It refers 

to work carried out as part of the Science Budget project investigating the shrink-swell properties 

of Wealden Group mudstones in southern England, initially under the Physical Hazards 

Programme and later the Land Use, Planning and Development Programme.  The work provides 

geochemical, mineralogical and surface area analyses and interpretation for a suite of samples 

from the Wealden Group.  

 



IR/10/079; Version 1  Last modified: 2012/09/19 12:13 

ii 

 

Contents 

Foreword i 

Contents ii 

Summary iv 

1 Introduction 1 

2 Geology 1 

2.1 Weald Basin 2 

2.2 Wessex basin 3 

3 Previous mineralogical studies of the Wealden Group 4 

4 Samples 5 

5 Laboratory methods 5 

5.1 General sample preparation 5 

5.2 Surface area determination 5 

5.3 X-ray diffraction analysis 6 

5.4 X-ray fluorescence spectrometry 7 

6 Results 8 

6.1 Whole-rock mineralogy and surface area 8 

6.2 Clay mineralogy 8 

6.3 Geochemistry 9 

7 Discussion 16 

7.1 Basin-comparison 16 

7.2 origin of the clay mineral assemblages 17 

8 Conclusions 19 

References 20 

Appendix 1 Example X-ray diffraction traces: 22 
 

FIGURES 

Figure 1.  The distribution of the Wealden Group (Weald Clay and Hastings Beds) at surface and 

the location of the study sites. 2 

Figure 2.  Wealden Group stratigraphy in (A) the Wessex Basin and (B) the Weald Basin. 3 

Figure 3.  The whole-rock mineralogy and surface area of the Wealden Group samples 11 

Figure 4.  The clay mineralogy of the Wealden Group samples and their mica: kaolinite ratios 13 

 



IR/10/079; Version 1  Last modified: 2012/09/19 12:13 

iii 

 

TABLES 

Table 1  List of sampling locations and samples studied. 5 

Table 2.  Summary of whole-rock X-ray diffraction and surface area analyses of the Wealden 

Group samples 10 

Table 3.  Summary of <2 µm clay mineral XRD analyses of the Wealden Group samples 12 

Table 4.  Summary of the major element (%) geochemistry and loss-on-ignition (LOI) of the 

Wealden Group samples. 14 

Table 5.  Summary of the trace element (ppm) geochemistry of the Wealden Group samples. 15 

 



IR/10/079; Version 1  Last modified: 2012/09/19 12:13 

iv 

 

Summary 

This report describes the results of mineralogical and geochemical analysis of a suite of 

mudstones from the Wealden Group of southern England.  The work was carried out as part of 

the ongoing „Ground Shrinkage Hazards‟ project under the Land Use, Planning and 

Development Programme. 

The first part of the report gives an introduction to the geology of the Wealden Group and a 

summary of previous mineralogical studies of these rocks.  A summary of analytical methods 

employed (X-ray diffraction analysis, X-ray fluorescence spectrometry and surface area 

determinations) is then provided and the results discussed with reference to their likely effect on 

the engineering performance of the Wealden Group.   

This study has generally confirmed the findings of previous workers with typical non-clay 

mineral assemblages are typically composed of quartz, „mica‟, K-feldspar and a range of trace 

phases.  Clay mineral assemblages are generally formed of I/S, illite, kaolinite, chlorite with 

occasional traces of discrete smectite.  Interbedded ironstones are predominantly composed of 

siderite.   

However, the geographic and stratigraphic distribution of the analysed samples from both the 

Weald and Wessex basins has provided important new information which will aid not only 

interpretation of the engineering behaviour of these rocks but also their diagenetic and geological 

histories.   

The engineering properties of the Wealden Group are heavily influenced by its clay mineralogy 

and the proportion of clay minerals present.  This study has shown variations in both the 

composition of the clay mineral assemblages and the proportion of phyllosilicate/clay mineral 

content of the mudstones across the Wealden Group outcrop.   

The Wealden Group in the Wessex Basin contains the most expansible clay mineral (I/S, R0 

40%I) detected in this study but these mudstones are more massive, siltier, quartz-rich and clay 

mineral-poor resulting in relatively low surface areas.  In comparison, the Wealden Group 

mudstones from the Weald Basin are generally laminated, more clay-rich, contain a less 

expansible I/S (typically R0 80%I) and present higher surface areas.  The detected clay mineral 

assemblages are mostly detrital in origin with a minimal diagenetic overprint.   

The common presence of pyrite, together with gypsum in the Wealden Group means that 

concrete engineering sited in these rocks potentially risk acid attack and thaumasite formation.   
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1 Introduction 

This report summarises the results of a mineralogical, geochemical and surface area study of a 

suite of mudstone samples from the Wealden Group of south and south-east England.  This study 

forms part of the BGS geotechnical project, „Ground Shrinkage Hazards‟ under the Land Use, 

Planning and Development Programme. 

Since the early 1990‟s, the ongoing „Engineering Geology of UK Rocks and Soils‟ project has 

examined soils and rocks from different formations and attempted to database, characterise and 

explain their geotechnical behaviour.  Previous studies have included the Gault Clay (Forster et 

al., 1994), the Mercia Mudstone Group (Hobbs et al., 2001), the Lambeth Group (Entwisle et al., 

2005), the Lias Group (Hobbs et al., 2005) and the London Clay Formation (Jones et al., in 

prep.). 

The main aims of the „Ground Shrinkage Hazards‟ project are to specifically determine the 

shrinkage and swelling properties of UK clays and mudrocks, and to investigate the relationship 

between them.  

Due to their high surface area, residual charge and interaction with water, clay minerals (and 

smectite in particular) are most frequently cited as the reason for the shrink-swell behaviour 

noted in many fine-grained sedimentary rocks.  For this reason, this study principally aimed to 

evaluate the nature of the clay minerals present to help explain the geotechnical behaviour of 

mudstones from the Wealden Group.   

In addition, this study also focussed on detecting the presence of sulphate-bearing species (e.g. 

pyrite, gypsum etc).  Oxidation of pyrite in the environment leads to the formation of sulphuric 

acid which considerably reduces the pH of groundwater.  Where such acidic groundwaters make 

contact with concrete engineering at low temperatures (e.g. foundations, motorway bridges etc), 

the main cementitious binder C-S-H is converted to thaumasite (a non-binding calcium carbonate 

silicate sulphate hydrate) resulting in deterioration and failure (e.g. Hobbs & Taylor, 2000; 

Bensted, 1999; Burkart, et al. 1999).  Greater awareness of the potential problems that 

thaumasite can cause has arisen with the increased use of limestone fillers in cements, the 

common employment of limestone aggregates in concrete and the introduction of Portland 

limestone cements, together with the realisation that structural foundations of buildings are, on 

average, below ambient temperature and are within the optimum temperature range for 

thaumasite to be formed (Bensted, 1999).  A knowledge of the presence of sulphate-bearing 

species in the Wealden Group is therefore crucial to planning foundation construction in such 

strata. 

2 Geology 

The Wealden Group (Lower Cretaceous, Valanginian to Barremian) of southern England 

consists of a sequence of sands, silts, clays and occasional conglomerates that were deposited in 

river, lake and brackish coastal plain environments.  Palaeosols are locally abundant and have 

led to distinctive red, purple and orange mottling.  Wealden sedimentary rocks contain a 

distinctive flora and fauna including dinosaur (e.g. Iguanodon) footprints and are widespread 

across north-west Europe (Gale, 2000).  The Wealden facies represents a humid, more seasonal 

climate compared to the preceding arid climate in which the Purbeck Limestone was deposited.  

This change was perhaps initiated by massif uplift and the development of a drainage pattern 

dominated by west-east flowing rivers.  Sedimentation was terminated by sea-level rise in the 

Early Aptian.   
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In southern England, Wealden Group deposits are restricted to the Weald and Wessex basins 

(Figure 1). 

 

Figure 1.  The distribution of the Wealden Group (Weald Clay and Hastings Beds) at 

surface and the location of the study sites. 

 

2.1 WEALD BASIN 

The Wealden of the Weald is sub divided into the lower Hastings Group (c.400 m thickness) and 

the upper Weald Clay Group (Figure 2).  The Hastings Group comprises three sand-clay 

couplets; the Ashdown Formation, overlain by the Wadhurst Formation and the Tunbridge Wells 

Formation.  The sandier units are mostly outwash fans and sandy braided stream deposits while 

the clay units represent mud-plains, lakes and lagoons.  Towards the north-west there was a 

connection with the Boreal Sea and towards it, the marine influence increased, illustrated by an 

increase in brackish species of water mollusc. 

The arenaceous formations record the successive advances of alluvial braid plains southwards 

from the London-Brabant Massive into the Weald.  The Ashdown and Lower Tunbridge Wells 

Sands both display progressive coarsening upwards, reflecting initial meander-plain 

development followed by a later phase of coarser braid-plain development. 

The cycles have been attributed to eustatic sea level changes.  Rising base levels during 

transgression and high stand may have caused the formation of extensive lakes and lagoons.  It 

has not yet been possible to prove that this control was truly eustatic.  It is therefore likely that 

arenaceous units correspond to periods of maximum uplift of source areas and the argillaceous 

units to times when those areas were most degraded.  The highest part of the Wealden; the 

Weald Clay Group, up to 400 m thick, probably formed at a time when the London-Brabant 

Massif was at its lowest.  It contains a number of marine horizons, which record short lived 

breaching of the Weald mud-plains by the Boreal Sea (Gale, 2000). 

Detailed heavy mineral provenance studies have shown that most of the detritus was derived 

from the Jurassic and to a lesser extent Palaeozoic rocks of the London Platform to the north.  

However in the upper part of the Hastings Group, detritus originating from Cornubia spilled over 

from the Wessex Basin.  The general abundance of detritus derived from the west, which 

includes material from the Iberian Peninsula, points to doming on the continental margin west of 

the UK during Early Cretaceous times. 
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The overlying Weald Clay has also been proved cyclic in nature, predominantly comprising grey 

shale‟s and mudstones with intervening clastic rich layers representing periods of higher energy. 

The Weald Clay mudstones are characteristically bioturbated-laminated clays.  There is common 

cyclicity throughout the clays.  The fresh colour of the clays is characteristically a dark-medium 

green grey, and when weathered this changes to an orange ochre-brown type colour.  There are 

bands of red mudstones associated with sandstone horizons and rootlet beds; diagnostic of 

periods of uplift to the surface. 

The cyclicity and lithology changes outlined above may be attributed to environmental changes.  

The arenaceous formations, including sand and pebbly units is believed to have been deposited 

during periods of progradation of alluvial fans.  At the time of this deposition the material was 

travelling from the London-Brabant Massive into the Weald Basin.   

2.2 WESSEX BASIN 

It is important to note that the Wealden of the Wessex Basin (Isle of Wight, Dorset) has a 

different sedimentary history to that of the Weald (Figure 2). 

The Wessex Formation comprises pedogenically altered, strongly mottled silts and clays which 

represent muddy floodplain deposits.  Subsidiary sandstones, 5-10 m thick, were deposited as 

point bars within a major east-west river, flowing just south of the fault-bounded north basin 

margin.  The regular vertical distribution of these sands suggests that the river development was 

controlled by long-term climatic factors.  Units of mud, sand, coarse detritus and plant debris 

represent mudflows following heavy seasonal rainfall.  Westwards into Dorset the Wessex 

Formation thins rapidly and coarse quartz gravels are locally developed, formed as proximal 

braided fan deposits.   

The Vectis Formation, which overlies the Wessex Formation comprises dark silty clays and was 

deposited in a large standing body of water of varying but generally low salinity.  In the eastern 

Isle of Wight, the Vectis Formation contains Jurassic fossils and clasts derived from the adjacent 

fault-bounded basin margin.  The source of detritus is thought to be Cornubia to the west with a 

lesser input from Armorica to the south.  

 

 

Figure 2.  Wealden Group stratigraphy in (A) the Wessex Basin and (B) the Weald Basin. 
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3 Previous mineralogical studies of the Wealden Group 

Tank (1962, 1964) produced the first study of the clay mineral assemblages of the Wealden 

Group.  He found mica- and kaolinite-rich assemblages and suggested that these were probably 

recycled from older rocks while minor vermiculite was indicative of penecontemporaneous 

weathering. 

More extensive research was carried out by Sladen (1980, 1983 and 1987) who found similar 

clay mineral assemblages in the English Wealden Group and coeval strata on the continent.  He 

suggested that the variation in assemblages resulted from the changing nature of soils in the 

Anglo-Brabant source areas and were not affected by burial diagenesis (low burial depth of 1.1 – 

1.5 km and low temperatures of 53 – 65 °C) or differential settling.  The kaolin- and Al-

vermiculite-rich assemblages typical of the sandier units (upper Ashdown Fm., Lower Tunbridge 

Wells Sand Fm.) were sourced from soils associated with high relief and tectonic uplift that had 

undergone podsolization in a humid climate.  The finer-grained units (Wadhurst Clay Fm., 

Grinstead Clay member of the Tunbridge Wells Sand Fm.), characterised by a mixed layer 

smectite-mica assemblage with only minor kaolin, were sourced from less common podsolized 

soils that had developed on low relief areas during less humid, tectonically quiet periods. 

Sladen‟s climate-controlled model was taken-up and extended by Allen (1998) and Wright et al. 

(2000) added further support for the absence of neoformed clay minerals and modification of 

detrital clay minerals in the Weald and Wessex basins. 

Although considerable variations have been described within the Wealden Group clay mineral 

assemblages, most authors observe that these are mica-, kaolin- (of varying crystallinity) and 

collapsible (mixed-layer vermiculite, mica and smectite) mineral-rich.  Well-defined smectite is 

rare and chlorite may be present as trace amounts.  Ruffell & Batten (1990) also reported the 

presence of sepiolite, palygorskite and chlorite/smectite mixed layer minerals from the Wessex 

Formation (Isle of Wight) but these were not found by subsequent authors. 

Most recently and based on an extensive study of 450 new analyses of borehole and cliff 

exposure samples, Jeans (2006) produced a stratigraphical and regional analysis of the clay 

mineralogy of the Wealden Group.  He noted particularly high levels of kaolinite in the 

Ashdown Fm. and Tunbridge Wells Sand Fm. in several boreholes but lower levels in the 

Ashdown Fm.-Grinstead Clay in the Warlingham borehole and more generally in the Wadhurst 

Clay and its suggested correlatives in the Wessex Fm. at Worbarrow Bay.  Berthierine, a 

kandite-group mineral whose X-ray diffraction (XRD) peaks display a considerable loss of 

intensity following heating at 400°C, was also identified in kaolin-rich assemblages, particularly 

in the sandier formations.  Mica/kaolin values also appear stratigraphically-controlled.  The 

sandy formations have values between 0.2 and 2.4 while the Wessex Formation of the Isle of 

Wight, the Weald Clay Fm. and the Vectis Fm. show values of between 1.2 and 3.1.   

Jeans (2006) suggests that recent evidence indicates that Sladen‟s climate-controlled hypothesis 

is either untenable or requires modification.  Cited examples include authigenic kaolinite 

replacing feldspar in sandstones of the Ashdown Fm and berthierine/kaolin-rich assemblages 

considered to represent secondary volcanogenic deposits.  Grain-size mineralogical variations 

within the <2 µm fractions of the Wealden Group may indicate that differential settling during 

transport could be responsible for some variation.  Interpretation of the mica/kaolin ratios 

suggests three detrital clay sources: (1) the predominant source with ratios of ~1.8-2.2 and high 

proportions of collapsible minerals, (2) a westerly source with ratios of 0.1-1.2 and (3) a source 

active during deposition of the Wadhurst Clay with ratios >2.2 and enriched in collapsible 

minerals.  Jeans (2006) concludes that the Wealden Group clay mineral assemblages result from 

a combination of authigenesis, differential settling and various detrital sources and are not 

simply the result of climate switching. 
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4 Samples 

During 2006, field visits were made by BGS staff to sample the Wealden Group at nine locations 

across southern England (Figure 1).  The aims of these visits were to collect undisturbed samples 

for geotechnical tests and disturbed samples for a suite of geotechnical, mineralogical, 

geochemical and petrographical analyses.  The results of petrographical analyses were reported 

by Bouch (2007).   

A total of 16 disturbed, outcrop samples (Figure 1, Table 2) were submitted for mineralogical 

analysis using X-ray diffraction (XRD), surface area analysis and major and trace element 

geochemical analysis by X-ray fluorescence spectrometry (XRFS). 

 

Table 1  List of sampling locations and samples studied. 
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W
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Wadhurst 

Formation 
Bexhill 

TQ 71990 09707 MPLM227 S1 Top Blue Clay  

TQ 72029 09678 MPLM230 S4 Lower Blue Clay   

Weald Clay 

Formation 

Beare  

Green 

TQ 19102 42247 MPLM231 S1 -    

TQ 19098 42170 MPLM233 S3 -   

Smokejacks 

TQ 11026 37589 MPLM234 S1 Lower Blue Clay - 

TQ 11011 37587 MPLM235 S2 Upper Brown Clay - 

TQ 11011 37587 MPLM236 S3 Upper Brown Clay  Ironstone 

Laybrook TQ 12245 19104 MPLM238 S1 Lower Mottled Red-Green Clay - 

South  

Chailey 

TQ 39300 17592 MPLM240 S1 Lower Mottled Red-Green Clay - 

TQ 39290 17571 MPLM241 S2 Lower Grey Clay Near water seep 

W
es

se
x
 

Wessex 

Formation 

Lulworth Cove SY 86617 80214 MPLM245 S1 - 

Hanover Point 
SZ 37822 83783 MPLM246 S1 - 

SZ 37822 83783 MPLM247 S2 - 

Brighstone 

Holiday Park 
SZ 41500 81940 MPLM248 S1 - 

Swanage 
SZ 03304 80144 MPLM249 S1 - 

SZ 03304 80144 MPLM250 S2 - 

 

5 Laboratory methods 

5.1 GENERAL SAMPLE PREPARATION 

Representative portions of each sample were separated, dried at 55ºC and jawcrushed.  

Approximately ¼ of the jawcrushed material was then tema-milled for surface area and whole-

rock XRD analyses. 

5.2 SURFACE AREA DETERMINATION 

Surface area determinations were performed on all samples using the 2-ethoxyethanol (ethylene 

glycol monoethyl ether, EGME) technique (Carter et al., 1965).  The method is based on the 

formation of a monolayer of EGME molecules on the clay surface under vacuum.  Aluminium 

dishes containing approximately 1.1 g tema-milled sample/clay standard (Patterson Court Blue 

bentonite) were placed in a desiccator containing anhydrous phosphorus pentoxide.  The 

desiccator was evacuated and allowed to stand overnight before the dishes were reweighed.  The 
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samples were then saturated with 2-ethoxyethanol and placed in a second desiccator containing 

dry calcium chloride.  After 1½ hours, the desiccator was evacuated and left overnight.  The 

sample was then rapidly re-weighed and the weight of 2-ethoxyethanol absorbed determined and 

the surface area calculated.  Finally, a correction based on the Patterson Court Blue standard was 

applied. 

Smectite has a surface area of c.800 m
2
/g while other clay minerals and quartz have surface areas 

typically less than 100 m
2
/g and 1 m

2
/g respectively.  Such a difference in value means that the 

surface area of a sample can provide a useful estimate of its smectite content.  

5.3 X-RAY DIFFRACTION ANALYSIS 

5.3.1 Preparation 

In order to achieve a finer and uniform particle-size for whole-rock XRD analysis, 

approximately 3 g portions of the tema-milled material was micronised under acetone for 

5 minutes and dried at 55°C.  The dried material was then disaggregated in a pestle and mortar 

and back-loaded into a standard aluminium sample holder for analysis. 

Approximately 10 g subsamples of the jawcrushed material was dispersed in distilled water 

using a reciprocal shaker combined with treatment with ultrasound.  The suspension was then 

sieved on 63 µm and the <63 µm material placed in a measuring cylinder and allowed to stand.  

In order to prevent flocculation of the clay crystals, 2 ml of 0.1M 'Calgon' (sodium 

hexametaphosphate) was added to each suspension.  After a period dictated by Stokes' Law, a 

nominal <2 µm fraction was removed and dried at 55°C.  100 mg of the <2 µm material was then 

re-suspended in a minimum of distilled water and pipetted onto a ceramic tile in a vacuum 

apparatus to produce an oriented mount.  The mounts were Ca-saturated using 2 ml 0.1M 

CaCl2.6H2O solution and washed twice to remove excess reagent. 

5.3.2 Analysis 

XRD analysis was carried out using a PANalytical X‟Pert Pro series diffractometer equipped 

with a cobalt-target tube, X‟Celerator detector and operated at 45kV and 40mA.  The whole-rock 

samples were scanned from 4.5-85°2 at 2.76°2 /minute.  The diffraction data were then initially 

analysed using PANalytical X‟Pert Pro software coupled to the latest version (2009) of the 

International Centre for Diffraction Data (ICDD) database. 

The <2 µm oriented mounts were scanned from 2-35°2 at 0.55°2 /minute after air-drying, 

ethylene glycol solvation, heating at 400°C for 2 hours and 550°C for 2 hours.  Clay mineral 

species were then identified from their characteristic peak positions and their reaction to the 

diagnostic testing program.   

5.3.3 Whole-rock quantification 

Following identification of the mineral species present in the samples, mineral quantification was 

achieved using the Rietveld refinement technique (e.g. Snyder & Bish, 1989) using PANalytical 

HighScore Plus software.  This method avoids the need to produce synthetic mixtures and 

involves the least squares fitting of measured to calculated XRD profiles using a crystal structure 

databank.  Errors for the quoted mineral concentrations are typically ±2.5% for concentrations 

>60 wt%, ±5% for concentrations between 60 and 30 wt%, ±10% for concentrations between 30 

and 10 wt%, ±20% for concentrations between 10 and 3 wt% and ±40% for concentrations <3 

wt% (Hillier et al., 2001). 
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5.3.4 XRD-profile modelling 

In order to gain further information about the nature of the clay minerals present in the samples, 

modelling of the XRD profiles was carried out using Newmod-for-Windows™ (Reynolds & 

Reynolds, 1996) software. 

Modelling was also used to assess the relative proportions of clay minerals present in the <2 µm 

fractions by comparison of sample XRD traces with Newmod-for-Windows™ modelled profiles.  

The modelling process requires the input of diffractometer, scan parameters and a quartz 

intensity factor (instrumental conditions), and the selection of different sheet compositions and 

chemistries.  In addition, an estimate of the crystallite size distribution of the species may be 

determined by comparing peak profiles of calculated diffraction profiles with experimental data.  

By modelling the individual clay mineral species in this way, mineral reference intensities were 

established and used for quantitative standardization following the method outlined in Moore & 

Reynolds (1997). 

5.4 X-RAY FLUORESCENCE SPECTROMETRY 

X-ray fluorescence spectrometry (XRFS) analysis was carried out using both Wavelength 

Dispersive X-ray fluorescence spectrometers (WD-XRFS) and Energy Dispersive polarised 

X-ray fluorescence spectrometers (ED-[P]XRFS). 

PANalytical Axios Advanced and Philips MagiX-PRO WD-XRF spectrometers fitted with 

automatic sample changers were used for this study.  The spectrometers were fitted with a 60 kV 

generator and 4 kW rhodium (Super Sharp) end–window X-ray tube.  A PANalytical Epsilon5 

ED-[P]XRFS spectrometer, with polarised optics, fitted with a 100 kV 600 W Gadolinium side 

windowed tube and liquid nitrogen cooled germanium detector was also used. 

Fused beads for major element analysis were prepared by fusing 0.9 g sample plus 9.0 g flux 

(66/34 Li2B4O7 and LiBO2) at 1200 C.  Loss on ignition (LOI) was determined on c.1 g sample 

heated at 1050 C for one hour. 
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6 Results 

The results of whole-rock XRD and surface area analyses are shown in Table 2.  <2 µm clay 

mineral XRD analyses are summarised in Table 3.  Major and trace element geochemical 

analyses are summarised in Tables 4 and 5.  Example labelled whole-rock and <2 µm clay 

mineral XRD traces are shown in the Appendix. 

6.1 WHOLE-ROCK MINERALOGY AND SURFACE AREA 

Whole-rock XRD analysis indicates that the samples from the Wealden Group are composed of 

variable amounts of quartz (25-69%) and phyllosilicates/clay minerals (25-74%) together with a 

variable range of minor-trace phases including K-feldspar, calcite, dolomite, siderite, anatase, 

rutile, hematite, pyrite, halite and gypsum.   

The ironstone sample (Smokejacks S3) is predominantly composed of siderite with minor 

amounts of phyllosilicates/clay minerals and quartz and traces of gypsum and hematite.  A 

noticeable shift in the position of the siderite XRD peaks when compared with those of standard 

siderites suggests a non-standard chemistry, perhaps a manganoan- and/or calcian-species. 

As shown in Figure 3, it is noticeable that samples from the Weald Basin (excluding the 

ironstone) contain higher proportions of phyllosilicates/clay minerals (mean c.54%) compared to 

those from the Wessex Basin (mean c.33%).  Additionally, the samples from the Wessex Basin 

appear more quartz-rich (mean c.63%) than those from the Weald Basin (mean c.43%).  Within 

the Weald Basin, there appears to be no great stratigraphic difference between the mineralogies 

of the Wadhurst Fm. samples and those from the Weald Clay Fm.  

Surface area analyses for the sample suite (Figure 3) indicate a range of values from 

73-161 m
2
/g, which assuming a surface area of 800 m

2
/g for pure smectite is equivalent to 

smectite contents of 5–20%.  Mean surface area values for the Weald Basin samples (119 m
2
/g) 

are slightly higher than those recorded for the Wessex Basin (104 m
2
/g).  The Weald Basin 

samples Bexhill S4 (161 m
2
/g), Laybrook S1 (156 m

2
/g), Beare Green S1 (148 m

2
/g) and South 

Chailey S1 (142 m
2
/g) have the highest values equivalent to c.20% smectite. 

6.2 CLAY MINERALOGY 

Oriented mount XRD analysis of separated <2 µm fractions indicates that the clay mineral 

assemblages of the Wealden Group samples are composed of varying proportions of 

illite/smectite (I/S), smectite, illite, kaolinite and chlorite (Table 3, Figure 4).  Typically the clay 

assemblages are dominated by I/S (mean 38%) and kaolinite (mean 41%) with minor proportions 

of illite (mean 18%) and traces of chlorite (mean 2%).  Traces of discrete smectite were 

identified in a small number of the samples. 

XRD peak positions and Newmod-for-Windows™ modelling indicates that the I/S is R0-ordered 

in all cases but the proportion of illite and smectite interlayers show some variation from 40% 

illite/60% smectite through to 85% illite/15% smectite (Table 3).  It is noticeable that the 

Wealden Basin samples are characterised by more illitic I/S (75 or 85% illite) compared to the 

more smectitic I/S of the majority of samples from the Wessex Basin (typically 40 or 50% illite).  

However, the I/S of the Weald Basin samples shows no apparent stratigraphic difference 

between the Wadhurst Fm. and the Weald Clay Fm. 

Berthierine was tentatively identified in three of the samples (Smokejacks S3, South Chailey S2 

and Hanover Point S2) on the basis of its considerable loss of XRD peak intensity following 

heating at 400°C for 2 hours.  Kaolinite remains stable at 400°C.  This is most apparent when 
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examining the 3.52Å d002 spacing which is resolved to the low angle side of the kaolinite 3.58Å 

d002 spacing (See Appendix).   

The kaolinite in most of the samples appears to be poorly-ordered with Newmod-modelling 

suggesting a mean defect-free distance of ~9 layers and a size range of 1 to 45 (7Å) layers.  

However, the kaolinite in the Swanage S2 sample presents particularly broad peaks, suggesting 

an even greater degree of disorder.  Newmod-modelling suggests a mean defect-free distance of 

only 5 layers and a size range of 1 to 25 (7Å) layers for this sample. 

Mica: kaolinite ratios derived from their proportions of the clay assemblages (Table 3), where 

mica concentrations include contributions from both illite and I/S, are shown in Figure 3.  These 

show values of 1.0 - 6.0 (mean 2.0) for the Wealden Basin and values of 0.6 - 5.2 (mean 1.5) for 

the Wessex Basin.   

Traces of discrete smectite were only identified in some of the Weald Basin samples and not in 

the Wessex Basin samples. 

6.3 GEOCHEMISTRY 

In general terms the major element geochemistry concurs with the identified mineralogical 

assemblages. 

SiO2 and Al2O3 contents are predominantly controlled by variations in the major mineral 

components of quartz and phyllosilicate/clay minerals.  CaO contents are low except where 

carbonate minerals are present (Bexhill S4 and Smokejacks S3).  MgO contents are also low.  

The positive correlation of K2O and Al2O3 content provides evidence that most of the K2O and 

Al2O3 is hosted by „mica‟ and to a lesser extent, K-feldspar species.  The much smaller Na2O 

concentrations are indicative of the presence of traces of halite and probably below XRD-

detection amounts of plagioclase (albite) feldspar.  TiO2 is hosted by trace amounts of rutile and 

anatase.   

Fe2O3t contents for the Wealden Group samples are relatively high for mudstone lithologies (c.2 

– c.45%).  XRD identified major amounts of siderite in one of the samples (Smokejacks S3) to 

account for the Fe2O3t content of this sample.  However, minor amounts of siderite together with 

traces of chlorite, pyrite and hematite identified in the remaining samples would contribute to but 

not fully account for the measured Fe2O3t contents.  The positive correlation between Fe2O3t 

content and „mica‟ suggest that much of the iron may be contributed by micas and illitic clay 

minerals.  Alternatively, such a discrepancy is most likely to be explained by the presence of 

small amounts of X-ray amorphous iron oxyhydroxides in the Wealden Group samples.  The 

detection of small quantities of goethite in four of the separated <2 µm fractions (Table 3, 

Smokejacks S2, S3, Laybrook S1, South Chailey S1) would appear to provide further evidence 

for such a possibility. 

No significant trace-element geochemical anomalies are apparent from the limited number of 

samples analysed in this study.  In general terms the concentration of all trace elements increase 

with decreasing SiO2 content due to a decreasing quartz-dilution effect. 
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Table 2.  Summary of whole-rock X-ray diffraction and surface area analyses of the Wealden Group samples 

B
a

si
n

 

Formation Site name Grid Reference 
Sample MPL 

Code 

q
u

a
rt

z 

K
-f

el
d

sp
a

r 

a
n

a
ta

se
 

ru
ti

le
 

h
em

a
ti

te
 

p
y

ri
te

 

‘m
ic
a
’ 

sm
ec

ti
te

 

k
a

o
li

n
it

e 

ch
lo

ri
te

 

Others 
Surface area 

(m
2
/g) 

W
ea

ld
 

Wadhurst 

Formation 
Bexhill 

TQ 71990 09707 MPLM227 61.3 2.6 <0.5 nd nd <0.5 25.3 <0.5 7.5 2.7  74 

TQ 72029 09678 MPLM230 29.5 7.4 <0.5 nd nd <0.5 44.4 nd 9.7 1.6 calcite (6.7), siderite (0.5) 161 

Weald Clay 

Formation 

Beare  

Green 

TQ 19102 42247 MPLM231 25.1 nd 0.7 0.6 nd nd 42.0 1.1 27.6 2.9  148 

TQ 19098 42170 MPLM233 35.7 nd 0.6 0.6 nd <0.5 36.6 <0.5 22.6 3.3  125 

Smokejacks 

TQ 11026 37589 MPLM234 53.6 nd 0.7 0.6 nd <0.5 26.1 <0.5 16.4 2.3  80 

TQ 11011 37587 MPLM235 39.1 nd 1.0 0.6 0.6 nd 33.2 <0.5 21.8 3.4  114 

TQ 11011 37587 MPLM236 7.6 nd nd nd <0.5 nd 10.9 nd 2.8 1.9 siderite (74.0), gypsum (2.5) 40 

Laybrook TQ 12245 19104 MPLM238 38.1 4.0 0.6 nd <0.5 nd 34.3 <0.5 22.6 nd  156 

South  

Chailey 

TQ 39300 17592 MPLM240 46.6 5.4 0.8 nd 1.2 nd 29.9 nd 16.1 nd  142 

TQ 39290 17571 MPLM241 56.4 nd 0.8 0.9 1.1 nd 27.0 nd 11.5 2.3  73 

W
es

se
x
 

Wessex 

Formation 

Lulworth Cove SY 86617 80214 MPLM245 55.4 5.4 nd nd nd nd 25.0 nd 8.2 1.3 dolomite (4.2), halite (<0.5) 94 

Hanover Point 

SZ 37822 83783 MPLM246 58.5 3.7 0.6 nd nd <0.5 26.2 nd 9.8 1.0  137 

SZ 37822 83783 MPLM247 67.8 1.7 0.7 nd nd <0.5 20.5 nd 7.7 1.3  107 

Brighstone 

Holiday Park 
SZ 41500 81940 MPLM248 61.4 3.2 <0.5 1.0 nd <0.5 24.3 nd 8.5 0.9 

 
74 

Swanage 

SZ 03304 80144 MPLM249 69.4 3.4 <0.5 nd nd <0.5 19.1 nd 6.6 nd gypsum (1.1) 107 

SZ 03304 80144 MPLM250 59.6 2.1 0.6 nd nd nd 20.4 nd 11.0 nd siderite (6.4) 105 

 

KEY:  nd – not detected, „mica‟ – undifferentiated mica species including muscovite, illite, illite/smectite 
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Figure 3.  The whole-rock mineralogy and surface area of the Wealden Group samples 



IR/10/079; Version 1  Last modified: 2012/09/19 12:13 

  12 

Table 3.  Summary of <2 µm clay mineral XRD analyses of the Wealden Group samples 

B
a

si
n

 
Formation Site name Grid Reference 

Sample 

MPL Code 

Clay minerals (%) 

I/
S

  
o

rd
er

in
g

/ 

co
m

p
o

si
ti

o
n

 

Non-clay minerals 

il
li

te
/s

m
ec

ti
te

 

sm
ec

ti
te

 

il
li

te
 

k
a

o
li

n
it

e 

ch
lo

ri
te

 

W
ea

ld
 

Wadhurst 

Formation 
Bexhill 

TQ 71990 09707 MPLM227 37 2 27 30 5 R0 75%I quartz, K-feldspar 

TQ 72029 09678 MPLM230 66 0 18 14 2 R0 85%I quartz, K-feldspar, calcite 

Weald Clay 

Formation 

Beare Green 
TQ 19102 42247 MPLM231 34 2 16 43 5 R0 75%I quartz, K-feldspar 

TQ 19098 42170 MPLM233 30 2 18 45 5 R0 75%I quartz, K-feldspar 

Smokejacks 

TQ 11026 37589 MPLM234 34 2 12 46 6 R0 75%I quartz, K-feldspar 

TQ 11011 37587 MPLM235 41 1 16 39 3 R0 85%I quartz, K-feldspar, goethite 

TQ 11011 37587 MPLM236 31 0 19 47* 3 R0 85%I quartz, K-feldspar, goethite 

Laybrook TQ 12245 19104 MPLM238 46 1 23 29 1 R0 75%I quartz, K-feldspar, goethite 

South Chailey 
TQ 39300 17592 MPLM240 58 0 14 28 1 R0 75%I quartz, K-feldspar, goethite 

TQ 39290 17571 MPLM241 38 0 15 44* 3 R0 75%I quartz, K-feldspar 

W
es

se
x
 

Wessex 

Formation 

Lulworth Cove SY 86617 80214 MPLM245 53 0 30 16 1 R0 85%I quartz, K-feldspar 

Hanover Point 
SZ 37822 83783 MPLM246 27 0 15 58 0 R0 40%I quartz, K-feldspar 

SZ 37822 83783 MPLM247 28 0 17 55* 0 R0 40%I quartz, K-feldspar 

Brighstone 

Holiday Park 
SZ 41500 81940 MPLM248 23 0 21 55 1 R0 40%I quartz, K-feldspar 

Swanage 
SZ 03304 80144 MPLM249 33 0 20 46 1 R0 50%I quartz, K-feldspar 

SZ 03304 80144 MPLM250 32 0 4 63 1 R0 50%I quartz, K-feldspar 

 

KEY:  *includes berthierine 
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Figure 4.  The clay mineralogy of the Wealden Group samples and their mica: kaolinite ratios 
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Table 4.  Summary of the major element (%) geochemistry and loss-on-ignition (LOI) of the Wealden Group samples. 

 

BGS Code Location SiO2 TiO2 Al2O3 Fe2O3t Mn3O4 MgO CaO Na2O K2O P2O5 SO3 Cr2O3 SrO ZrO2 BaO NiO CuO ZnO PbO LOI 

MPLM 227 
Bexhill 

71.70 1.28 13.56 3.76 0.16 0.90 0.53 0.24 2.27 0.19 <0.1 0.02 0.01 0.03 0.05 0.01 <0.01 0.02 <0.01 5.42 

MPLM 230 55.22 0.90 18.77 6.69 0.11 1.59 3.92 0.39 3.74 0.22 <0.1 0.02 0.02 0.02 0.05 0.01 <0.01 0.02 <0.01 8.51 

MPLM 231 
Beare Green 

52.30 1.04 25.94 7.65 0.04 1.17 0.40 0.21 2.80 0.08 0.3 0.02 0.01 0.02 0.06 <0.01 <0.01 0.01 <0.01 8.37 

MPLM 233 54.91 1.24 22.08 9.11 0.06 1.09 0.34 0.38 2.62 0.10 0.2 0.02 0.02 0.03 0.06 0.01 <0.01 0.02 <0.01 8.54 

MPLM 234 

Smokejacks 

65.96 1.56 17.77 5.49 0.07 0.79 0.27 0.29 2.13 0.12 0.3 0.02 0.01 0.04 0.05 0.01 <0.01 0.01 <0.01 6.01 

MPLM 235 57.48 1.16 20.56 8.32 0.38 1.08 0.48 0.23 2.50 0.09 0.2 0.02 0.01 0.03 0.05 <0.01 <0.01 0.01 <0.01 7.25 

MPLM 236 11.36 0.24 4.92 44.99 4.61 0.87 5.45 0.06 0.62 1.20 0.2 <0.01 0.01 <0.02 0.03 <0.01 <0.01 <0.01 <0.01 26.24 

MPLM 238 Laybrook 59.00 1.05 21.05 7.71 0.02 0.92 0.43 0.30 2.91 0.15 <0.1 0.02 0.02 0.03 0.06 0.01 <0.01 0.03 <0.01 6.33 

MPLM 240 
South Chailey 

62.96 0.91 17.18 7.75 0.02 0.94 1.31 0.41 2.53 0.77 <0.1 0.02 0.02 0.02 0.05 <0.01 <0.01 0.01 <0.01 5.18 

MPLM 241 70.12 1.52 15.06 5.23 0.05 0.80 0.19 0.22 2.18 0.06 0.3 0.02 0.01 0.04 0.05 0.01 <0.01 0.01 <0.01 5.08 

MPLM 245 Lulworth Cove 68.58 0.99 13.33 3.60 0.09 1.77 1.71 0.21 2.98 0.13 <0.1 0.01 0.01 0.04 0.04 <0.01 <0.01 <0.01 <0.01 5.89 

MPLM 246 
Hanover Point 

70.76 1.35 14.70 3.89 0.02 0.75 0.46 0.18 1.81 0.09 0.2 0.01 <0.01 0.04 0.05 <0.01 <0.01 <0.01 <0.01 5.43 

MPLM 247 73.37 1.29 12.36 4.24 0.03 0.70 0.40 0.17 1.64 0.09 0.4 0.01 <0.01 0.05 0.04 <0.01 <0.01 <0.01 <0.01 4.78 

MPLM 248 
Brighstone 

Holiday Park 
73.56 1.39 13.45 3.73 0.06 0.68 0.30 0.25 1.89 0.08 0.3 0.01 <0.01 0.05 0.04 0.01 <0.01 <0.01 <0.01 4.92 

MPLM 249 
Swanage 

78.52 0.81 11.16 1.81 <0.01 0.52 0.29 0.12 1.48 0.04 0.2 0.01 0.01 0.05 0.04 0.02 <0.01 0.02 <0.01 4.90 

MPLM 250 72.07 1.12 12.65 5.65 0.23 0.45 0.81 0.11 0.80 0.21 <0.1 0.02 0.02 0.06 0.03 <0.01 <0.01 <0.01 <0.01 6.24 
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Table 5.  Summary of the trace element (ppm) geochemistry of the Wealden Group samples. 

 

BGS Code Location V Cr Co Ni Cu Zn As Rb Sr Y Zr Nb La Ce Nd Pb Th U 

MPLM 227 
Bexhill 

110 93 20 51 44 136 12 119 86 47 269 25 57 113 50 33 16 5 

MPLM 230 140 109 11 49 32 146 8 194 197 37 196 22 52 94 44 32 13 2 

MPLM 231 
Beare Green 

179 141 9 47 38 97 9 181 119 32 170 19 46 79 35 32 16 4 

MPLM 233 167 131 18 72 38 128 24 167 112 39 199 22 49 96 42 36 18 5 

MPLM 234 

Smokejacks 

150 112 19 60 37 85 17 129 97 46 293 28 55 97 41 41 19 6 

MPLM 235 154 110 17 48 30 115 15 141 126 40 233 22 57 108 45 36 17 5 

MPLM 236 69 31 <1 18 7 74 8 39 92 72 42 4 40 129 83 15 <1 4 

MPLM 238 Laybrook 149 107 27 57 25 186 17 168 201 37 210 20 51 95 40 35 15 4 

MPLM 240 
South Chailey 

125 93 14 36 15 93 8 153 188 44 267 16 43 87 44 29 12 5 

MPLM 241 119 88 22 56 30 110 17 121 88 46 292 28 50 110 44 33 16 6 

MPLM 245 Lulworth Cove 108 85 14 37 19 74 2 129 130 40 326 23 44 87 40 21 12 3 

MPLM 246 
Hanover Point 

119 82 15 39 26 71 14 132 92 41 322 26 48 96 41 27 14 5 

MPLM 247 106 75 15 38 22 75 17 116 83 42 392 24 50 101 44 25 13 5 

MPLM 248 
Brighstone Holiday 

Park 
113 89 25 51 29 68 14 108 86 42 368 26 50 97 41 27 15 5 

MPLM 249 
Swanage 

91 73 98 104 21 180 17 92 130 51 347 16 54 119 53 22 10 3 

MPLM 250 93 92 3 14 14 38 6 63 157 35 440 23 39 73 34 21 9 5 
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7 Discussion 

Mineralogical analysis of a small suite of Wealden Group mudstone samples from a range of 

sampling sites across southern England indicates that they have generally similar mineralogies to 

those described in previous studies (e.g. Tank, 1962, 1964; Perrin, 1971; Sladen, 1980, 1983, 

1987; Jeans, 2006; Bouch, 2007).  Non-clay mineral assemblages are typically composed of 

quartz, „mica‟, K-feldspar and a range of trace phases.  Clay mineral assemblages are generally 

formed of I/S, illite, kaolinite, chlorite with occasional traces of discrete smectite.  Interbedded 

ironstones are predominantly composed of siderite (cf. Bouch, 2007).   

Some of the earlier authors identified the presence of minor amounts of vermiculite (e.g. Tank 

1962, 1964; Sladen 1980, 1983 and 1987) on the basis of a 14Å XRD peak that was invariant 

following glycerolation.  However in this study, without the benefit of glycerolation, the 14Å 

XRD is interpreted as resulting from the presence of minor amounts of chlorite and not 

vermiculite. 

Similarly as corroborated by other authors, no evidence was found in this study for the more 

exotic sepiolite, palygorskite and chlorite/smectite clay mineral assemblages described by 

Ruffell & Batten (1990) from the Wessex Formation (Isle of Wight). 

Previous studies of the clay mineralogy of the Weald Group have been based on the 

interpretation of XRD traces following a diagnostic testing program – typically running samples 

following air-drying, glycol- or glycerol-solvation and heating.  While this approach is essential 

to establishing an idea of which clay mineral species are present, it is incapable of distinguishing 

the precise nature of mixed-layer clays where these are present in complex mixtures.  This is one 

of the principal reasons that Jeans (2006) groups smectite, vermiculite, mixed-layer minerals and 

poorly-defined minerals together as „collapsible minerals‟.  However in this study, the more 

sophisticated Newmod-modelling-approach employed has shown subtle differences in the 

complex 15 – 10 Å region and particularly in the nature of the I/S present (see below).   

Mineralogical analyses in this study also suggest that pyrite is commonly developed throughout 

the Wealden Group, but typically forms <0.5% rock.  Pyrite has also been described in the 

Wealden Group by several previous workers (e.g. Radley, 1994; Martill & Unwin, 1997; 

Robinson & Hesselbo, 2004).  Gypsum is also sporadically developed but can form up to 3% 

rock.  Its presence may indicate development as an insitu weathering product of pyrite or may 

have formed post sampling.  Bouch (2007) shows that pyrite occurs as strings of framboids, 

possibly replacing organic matter in the Wealden Group.  Concrete engineering sited in the 

Wealden Group mudstones therefore potentially run a risk of acid attack and thaumasite 

formation.   

7.1 BASIN-COMPARISON 

Mineralogical and geochemical analysis indicates that samples from the Weald Basin have 

higher proportions of phyllosilicates/clay minerals (mean c.54%) compared to those from the 

Wessex Basin (mean c.33%) reflecting their different sedimentary histories.  Additionally, the 

samples from the Wessex Basin appear more quartz-rich (mean c.63%) than those from the 

Weald Basin (mean c.43%).  Differences in the nature of the mudstones between the Weald and 

Wessex basins were also suggested by Bouch (2007).  He noted that the Wessex Formation 

samples were notably siltier, typically coarser-grained and possessed more massive fabrics than 

the mudstones from the Weald Basin.   

The I/S species identified in the Wealden Group samples are generally similar within each 

sampling site and vary in character from the illitic (e.g. Smokejacks ~85%I) to more smectitic 

species (e.g. Hannover Point 40%I).  Importantly the I/S in the Wessex Basin samples (mean 

50%I) appears to be more smectitic than the Wealden Basin samples (mean 80%I).  In terms of 



IR/10/079; Version 1  Last modified: 2012/09/19 12:13 

  17 

engineering behaviour potential, the greater the smectite content of the R0 I/S, the greater the 

potential for shrink swell.  However, this simplistic suggestion is complicated by the fact that the 

samples from the Weald Basin contain greater quantities of I/S in their <2 µm clay assemblages 

(mean 42% I/S) compared to samples from the Wessex Basin (mean 33% I/S).  This is also the 

case in terms of their relative phyllosilicate/clay whole-rock contents.   

Newmod-for-Windows modelling suggests that all the clay minerals present in the Wealden 

Group have small mean defect-free distances, typically <10 units thick.  Such small crystallite 

sizes indicate that all clay species will provide an input to the surface area of the rock, not just 

the I/S component.  This, together with the relative phyllosilicate/clay whole-rock contents, 

explains why the surface area values for the Wealden Basin (mean 119 m
2
/g) are larger than 

those from the Wessex Basin (mean 104 m
2
/g) despite the more smectitic nature of the I/S in the 

Wessex Basin.  It will therefore be interesting to determine whether the quantity of clay minerals 

present or the nature of the swelling clay mineral has a greater effect on the engineering 

properties of the Wealden Group. 

Bouch (2007) also draws attention to the fact that the Wealden Group mudstones show some 

basin-dependant variability in their fabrics which vary from highly-laminated to massive.  For 

the most part, mudstones from the Weald Basin exhibit mm-scale grain size lamination (e.g. see 

cover photomicrograph), with variable relative proportions and thicknesses of clay-rich/silt-poor 

and clay-poor/silt-rich layers.  More massive fabric were only observed in the “Lower Mottled 

Red-Green Clay” at Laybrook and South Chailey.  The Wessex Basin mudstones tend to be 

characterised by similarly massive fabrics.   

Spot chemical analysis (SEM-EDXA) of the clay matrix of both Weald and Wessex basin 

samples produced an ambiguous K-Fe-Al-Si composition, suggestive of illite but with Al: Si 

ratios suggestive of kaolinite (Bouch, 2007).  Such a chemical composition would concur with 

the mixed clay assemblage (I/S, illite, kaolinite, chlorite) identified by XRD in this study.   

Kaolinite forms a greater proportion of the clay mineral assemblage in the Wessex Basin (mean 

49%) compared to the Weald Basin (mean 37% clay assemblage) although kaolinite crystallinity 

appears to be similarly poorly-ordered in both basins with an exception of the very poorly-

ordered material present in the sample Swanage S2.  Mica: kaolin ratios (1.0 - 6.0, mean 2.0, 

Wealden Basin and 0.6 - 5.2, mean 1.5, Wessex Basin) fall within previously published ranges 

(Jeans, 2006).   

The identification of berthierine in samples from both the Weald (Smokejacks S3 and South 

Chailey S2) and Wessex (Hanover Point S2) basins is interesting.  Berthierine was identified 

where kaolin-group minerals appear to form a greater proportion of the clay assemblage and 

where non-clay minerals form a greater part of the whole-rock mineralogy.  This may reflect the 

localised, authigenic development of berthierine in these sedimentary rocks, perhaps 

representing secondary volcanogenic deposits as suggested by Jeans (2006).  Alternatively, this 

may simply relate to the easier detection of berthierine in such conditions.   

7.2 ORIGIN OF THE CLAY MINERAL ASSEMBLAGES 

In order to more fully understand the nature and distribution of the clay mineral assemblages of 

the Wealden Group, and their engineering behaviour, it is necessary to consider their origins.   

Differences in the nature of the identified I/S species may represent differences in the burial 

histories of the Wealden Group across southern England.  During burial of sedimentary 

sequences, the clay minerals contained in mudstones and shales undergo diagenetic reactions in 

response to increasing depth and temperature.  Quantitatively, the most important change is the 

progressive reaction of smectite to form illite via a series of intermediate I/S mixed-layer 

minerals.  In general, progressive changes are irreversible so that where basinal sequences have 

been inverted clay mineral evidence of the maximum burial depth is retained and can be used to 

estimate the amount of uplift.  According to the Basin Maturity Chart of Merriman & Kemp 
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(1996), the presence of I/S (mean 80%I) in the rocks from the Weald Basin suggests burial 

depths of perhaps 4 km, assuming a 'normal' geothermal gradient of 25-30°C/km.  The I/S (mean 

50% illite) in the samples from the Wessex Basin suggests shallower burial to perhaps <2 km.  

However, petrographic studies suggest that the Wealden Group has experienced only relatively 

light diagenetic overprints (e.g. Bouch, 2007) and that the clay mineral assemblages are largely 

detrital in nature.  Such findings are in agreement with Sladen (1983) who suggested low burial 

depths (<1.5 km) and low temperatures of (<65 °C).   

Further evidence for a general detrital origin for the clay mineral assemblages of the Wealden 

Group is suggested by mica: kaolin ratios (1.0 - 6.0, mean 2.0, Wealden Basin and 0.6 - 5.2, 

mean 1.5, Wessex Basin).  These values fall within previously published ranges which Jeans 

(2006) ascribes to three different sources: (1) the predominant source with ratios of ~1.8-2.2 and 

high proportions of collapsible minerals, (2) a westerly source with ratios of 0.1-1.2 and (3) a 

source active during deposition of the Wadhurst Clay with ratios >2.2 and enriched in collapsible 

minerals.    

In this study, evidence for limited diagenesis is only provided by the presence of berthierine, 

which is very prone to oxidation if reworked.   

This study therefore reinforces the arguments proposed by Jeans (2006) that the Wealden Group 

clay mineral assemblages result from a combination of authigenesis, differential settling and 

various detrital sources and are not simply the result of climate switching. 
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8 Conclusions 

This mineralogical, geochemical and surface area study of a suite of samples from the Wealden 

Group of southern England has generally confirmed the findings of previous workers.  Non-clay 

mineral assemblages are typically composed of quartz, „mica‟, K-feldspar and a range of trace 

phases.  Clay mineral assemblages are generally formed of I/S, illite, kaolinite, chlorite with 

occasional traces of discrete smectite.  Interbedded ironstones are predominantly composed of 

siderite.   

Although limited to a relatively small sample suite, the geographic and stratigraphic distribution 

of the analysed samples from both the Weald and Wessex basins has provided important new 

information which will aid not only interpretation of the engineering behaviour of these rocks 

but also their diagenetic and geological histories.   

The engineering properties of the Wealden Group will be heavily influenced by its clay 

mineralogy and the proportion of clay minerals present.  This study has shown variations in both 

the composition of the clay mineral assemblages and the proportion of phyllosilicate/clay 

mineral content of the mudstones across the Wealden Group outcrop.  The use of advanced 

modelling techniques has also provided more detailed speciation of potential swelling clay 

minerals than have previously been published. 

The Wealden Group in the Wessex Basin contains the most expansible clay mineral (I/S, R0 

40%I) detected in this study but these mudstones are more massive, siltier, quartz-rich and clay 

mineral-poor resulting in relatively low surface areas.  In comparison, the Wealden Group 

mudstones from the Weald Basin are generally laminated, more clay-rich, contain a less 

expansible I/S (typically R0 80%I) and present higher surface areas.  It will therefore be 

interesting to relate these mineralogical characteristics with measured engineering parameters 

when these are completed. 

It would appear most likely that the detected clay mineral assemblages are mostly detrital in 

origin with a minimal diagenetic overprint.   

The common presence of pyrite, together with gypsum in the Wealden Group means that 

concrete engineering sited in these rocks potentially risk acid attack and thaumasite formation.   
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Appendix 1 Example X-ray diffraction traces: 

KEY 

 

Vertical axis – Intensity (counts per second) 

Horizontal axis - °2  Co-K  

 

For the whole-rock samples, the upper figure shows the sample diffraction trace.  The lower 

figure shows stick pattern data for the extracted sample peaks (orange) and the identified mineral 

standard data.   

 

For the <2 µm samples. Black trace (air-dry), red trace (glycol-solvated), green trace (heated 

400°C/2 hours) and magenta trace (heated 550°C/2 hours).  Only the most diagnostic peak of 

each identified clay mineral is labelled. 
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South Chailey S1, Wealden Clay Fm., Weald Basin 
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South Chailey S1, Wealden Clay Fm., Weald Basin 
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Hanover Point S2, Wessex Fm., Wessex Basin 
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Hanover Point S2, Wessex Fm., Wessex Basin 
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