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1 Introduction 
This report summarises the results of mineralogical, geochemical and physico-chemical 
characterisation of a suite of clay-rich materials that were undergoing pore-squeezing tests as 
part of the Development of Capability subproject ‘Characterisation of Compact Clays – pilot 
Study’. 

A sample list is shown in Table 1. 

X-ray diffraction (XRD, whole-rock and <2 µm fraction) analyses were performed to determine 
the mineralogy of the samples while 2-ethoxyethanol (ethylene glycol monoethyl ether, EGME) 
surface area analyses and cation exchange capacity (CEC) determinations were carried out to 
assess the physico-chemical properties of the materials.  The major and selected trace-element 
geochemistry of the samples was also investigated using X-ray fluorescence (XRF) 
spectroscopy. 

Table 1. Sample list 

BGS code Sample name  Description 

MPLJ883 Bentonite Light grey pelleted clay 

MPLJ884 Baulking Blue Fuller's Earth Medium grey clay 

MPLJ885 Ball clay Light grey clay 

MPLJ886 Kaolinite Grade ‘B’ White powdered clay 

MPLK166 Aldrich Fuller’s Earth Light grey powdered clay 

 

2 Laboratory methods 

2.1 SAMPLE PREPARATION 
Approximately half of the submitted material was first dried at 55°C overnight and where 
necessary crushed to <2 mm diameter.  Half of this crushed material was then subsampled and 
tema-milled to <0.12 mm for whole-rock XRD analysis, surface area analysis and CEC 
determinations.  A subsample of the crushed material was agate tema –milled for geochemical 
analysis. 

2.2 X-RAY DIFFRACTION ANALYSIS 
In order to achieve a finer and uniform particle-size for whole-rock XRD analysis, 
approximately 3 g portions of the tema-milled material was micronised under acetone for 
5 minutes and dried at 55°C.  The dried material was then disaggregated in a pestle and mortar 
and back-loaded into a standard aluminium sample holder for analysis. 

Approximately 7.5 g subsamples of the jawcrushed material were dispersed in distilled water 
using a reciprocal shaker combined with ultrasound treatment.  The suspension was then sieved 
on 63 µm and the <63 µm material placed in a measuring cylinder and allowed to stand.  In order 
to prevent flocculation of the clay crystals, 1 ml of 0.1M 'Calgon' (sodium hexametaphosphate) 
was added to each suspension.  After a time period determined from Stokes' Law, a nominal 
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<2 µm fraction was removed and dried at 55°C.  100 mg of the <2 µm material was then re-
suspended in a minimum of distilled water and pipetted onto a ceramic tile in a vacuum 
apparatus to produce an oriented mount.  The mounts were Ca-saturated using 0.1M CaCl2.6H2O 
solution and washed twice to remove excess reagent. 

XRD analysis was carried out using a Philips PW1700 series diffractometer fitted with a cobalt-
target tube and operated at 45kV and 40mA.  Whole-rock samples were scanned from 3-50 °2θ 
at 0.69 °2θ/minute.  The <2 µm samples were scanned from 2-32 °2θ at 0.54 °2θ/minute as air-
dry mounts, after glycol-solvation and after heating to 550°C for 2 hours. 

Diffraction data were firstly analysed using PANalytical X’Pert software coupled to an 
International Centre for Diffraction Data (ICDD) database running on a PC system. 

Following identification of the mineral species present in the samples, mineral quantification was 
achieved using the Rietveld refinement technique (e.g. Snyder and Bish, 1989) using Siroquant 
v.2.5 software.  This method avoids the need to produce synthetic mixtures and involves the least 
squares fitting of measured to calculated XRD profiles using a crystal structure databank.  Errors 
for the quoted mineral concentrations are typically ±2.5% for concentrations >60 wt%, ±5% for 
concentrations between 60 and 30 wt%, ±10% for concentrations between 30 and 10 wt%, ±20% 
for concentrations between 10 and 3 wt% and ±40% for concentrations <3 wt% (Hillier et al., 
2001).  Where a phase was detected but its concentration was indicated to be below 0.5%, it is 
assigned a value of <0.5%, since the error associated with quantification at such low levels 
becomes too large. 

In order to gain further information about the nature of the clay minerals present in the samples, 
modelling of the XRD profiles was carried out using Newmod-for-Windows™ (Reynolds and 
Reynolds, 1996) software. 

Modelling was also used to assess the relative proportions of clay minerals present in the <2 µm 
fractions by comparison of sample XRD traces with Newmod-for-Windows™ modelled profiles.  
The modelling process requires the input of diffractometer, scan parameters and a quartz 
intensity factor (instrumental conditions), and the selection of different sheet compositions and 
chemistries.  In addition, an estimate of the crystallite size distribution of the species may be 
determined by comparing peak profiles of calculated diffraction profiles with experimental data.  
By modelling the individual clay mineral species in this way, mineral reference intensities were 
established and used for quantitative standardization following the method outlined in Moore 
and Reynolds (1997). 

2.3 X-RAY FLUORESCENCE ANALYSIS 
XRF analysis was carried out using sequential, fully automatic wavelength-dispersive 
spectrometers (2 x Philips PW2400 and 1 x Philips PW2440) controlled via PCs running SuperQ 
(version 3.0H) XRF application package.   

Fused beads for major element analysis were prepared by fusing 0.9 g sample plus 9.0 g flux 
(66/34 Li2B4O7 and LiBO2) at 1200°C.  Loss on ignition (LOI) was determined on c.1 g sample 
heated at 1050°C for one hour. 

2.4 CATION EXCHANGE CAPACITY DETERMINATION 
Cation exchange capacity (CEC) determinations were carried out using tema-milled material and 
a BaCl2/triethanolamine (pH 8.1) titration method based on that proposed by Bascomb (1964).  
BGS experience has shown that this modified method appears to give a slightly increased CEC 
value compared to that indicated by the methylene blue method.  Data for standard materials 
analysed with the samples indicates that values might be increased by 10%.   
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2.5 SURFACE AREA DETERMINATION 
Surface area determinations were performed on all samples using the 2-ethoxyethanol (ethylene 
glycol monoethyl ether, EGME) technique (Carter et al., 1965).  The method is based on the 
formation of a monolayer of EGME molecules on the clay surface under vacuum.  Aluminium 
dishes containing approximately 1.1 g hammer-milled sample/clay standard (Patterson Court 
Blue bentonite) were placed in a desiccator containing anhydrous phosphorus pentoxide.  The 
desiccator was evacuated and allowed to stand overnight before the dishes were reweighed.  The 
samples were then saturated with 2-ethoxyethanol and placed in a second desiccator containing 
dry calcium chloride.  After 1½ hours, the desiccator was evacuated and left overnight.  The 
sample was then rapidly re-weighed and the weight of 2-ethoxyethanol absorbed determined and 
the surface area calculated.  Finally, a correction based on the Patterson Court Blue standard was 
applied. 

Smectite has a surface area of c.800 m2/g while other clay minerals and quartz have surface areas 
typically less than 100 m2/g and 1 m2/g respectively.  Such a difference in value means that the 
surface area of a sample can provide a useful estimate of its smectite content.  

3 Results 
The results of all analyses are summarised in Tables 2 to 5 and labelled whole-rock and <2 µm 
X-ray diffraction traces are shown in the Appendix. 

Due to the presence of cement minerals in the pelletised ‘bentonite’, and the lack of such 
cementitious phases in the Siroquant database, no quantification of the whole-rock mineralogy 
was possible for this sample.   

 

Table 2.  Summary of whole-rock XRD analyses 
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MPLJ883 Bentonite tr nd maj nd nd min min ?tr tr nd 
MPLJ884 Baulking Blue Fuller's Earth 3.1 0.8 93.2 1.7 nd 1.2 nd nd nd nd 
MPLJ885 Ball clay 5.7 36.6 3.0 0.2 54.5 nd nd nd nd nd 
MPLJ886 Kaolinite Grade ‘B’ 0.9 12.4 0.9 4.5 81.3 nd nd nd nd nd 
MPLK166 Aldrich Fuller’s Earth 2.3 nd 95.2 nd nd 2.5 nd nd nd <0.5 

KEY nd not detected 
 maj major component 
 min minor component 
 
 ‘mica’ undifferentiated mica species possibly including muscovite, biotite, illite, illite/smectite etc 
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Table 3.  Summary of <2 µm XRD analyses 
BGS code Sample name %clay mineral 

  smectite illite kaolinite 
MPLJ883 Bentonite 100 nd nd 
MPLJ884 Baulking Blue Fuller's Earth 100 nd nd 
MPLJ885 Ball clay 2 32 66 
MPLJ886 Kaolinite Grade ‘B’ <1 8 91 
MPLK166 Aldrich Fuller’s Earth 100 nd <<1 
KEY nd not detected 

 

Table 4.  Summary of CEC and surface area data 

BGS code Sample name  CEC (meq/100g) Surface area (m2/g) 
MPLJ883 Bentonite 97.1 356 
MPLJ884 Baulking Blue Fuller's Earth 76.3 756 
MPLJ885 Ball clay 16.5 130 
MPLJ886 Kaolinite Grade ‘B’ 5.1 34 
MPLK166 Aldrich Fuller’s Earth 89.3 793 

 

Table 5.  Summary of XRF geochemical and loss on ignition data 

BGS code Sample name % oxide  
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MPLJ883 Bentonite 39.40 0.35 9.95 7.34 0.05 2.14 24.00 1.81 0.56 0.09 0.8 12.92

MPLJ884 Baulking Blue Fuller's Earth 59.81 0.90 17.13 6.74 <0.01 3.51 2.72 0.16 0.62 0.12 0.5 7.76

MPLJ885 Ball clay 50.99 0.87 31.90 1.40 <0.01 0.60 0.22 0.32 2.89 0.06 <0.1 9.92

MPLJ886 Kaolinite Grade ‘B’ 48.06 0.03 35.96 0.90 0.02 0.22 0.02 <0.05 2.23 0.15 <0.1 11.92

MPLK166 Aldrich Fuller’s Earth 57.43 0.86 16.47 7.09 <0.01 3.50 3.33 1.37 0.59 0.12 0.6 7.66

 

BGS code Sample name % oxide 
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MPLJ883 Bentonite <0.01 0.05 0.05 0.18 <0.01 <0.01 0.02 <0.01

MPLJ884 Baulking Blue Fuller's Earth <0.01 0.11 0.09 0.03 <0.01 <0.01 0.01 <0.01

MPLJ885 Ball clay 0.02 0.02 <0.02 0.07 <0.01 <0.01 0.01 <0.01

MPLJ886 Kaolinite Grade ‘B’ <0.01 0.02 <0.02 0.02 <0.01 0.01 <0.01 <0.01

MPLK166 Aldrich Fuller’s Earth <0.01 0.08 0.10 0.03 <0.01 <0.01 0.02 <0.01
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4 Discussion 

4.1 BENTONITES 
Whole-rock XRD analysis suggest that all three bentonite samples (‘bentonite’, Baulking Blue Fuller’s 
Earth and Aldrich Fuller’s Earth) contain large proportions of smectite.  ‘Contaminant’ phases in the 
Baulking and Aldrich fuller’s earths include quartz, ‘mica’, K-feldspar, calcite and pyrite.   

<2 µm fraction XRD analyses indicate almost pure smectite clay mineral assemblages for all three 
samples.  [A trace of kaolinite was detected in the Aldrich Fuller’s Earth.]  Each of the samples produces 
the typically broad, rational smectite basal spacings.  The air-dry smectite d001 peaks for the Baulking 
and Aldrich fuller’s earths appear at c.15Å, ‘swell’ to c.17Å on glycolation and collapse to c.10Å on 
heating as would be expected of a standard smectite.  However, despite showing similar glycol-solvated 
and heated peak positions, the pelletised bentonite is characterised by an air-dry d001 peak at c.19.5Å.  
Such a large spacing for the air-dry peak suggests that the smectite contains three layers of interlayer 
water rather than the usual two.  On glycolation and heating, this excess water is driven out and the 
structure returns the more characteristic smectite peak spacings. 

CEC values for the two fuller’s earth samples are high (76.3 meq/100g for the Baulking sample and 
89.3 meq/100g for the Aldrich sample).  These compare well with standard montmorillonite values of 
between 76.4 and 120 meq/100g (van Olphen & Fripiat, 1979).  2-ethoxyethanol surface areas are also 
high for the fuller’s earth samples (756 and 793 m2/g) and close to the ‘standard’ smectite value of 800 
m2/g.  The Baulking Fuller’s earth surface area appears to validate the XRD quantification results 
considering the c.5% non-clay mineral contaminants identified.  However, the major amounts of ‘mica’ 
identified in the Aldrich Fuller’s Earth do not correspond with its high CEC and surface area and suggest 
that the ‘mica’ content should be included in the smectite total.  A cross-plot of CEC versus surface area 
shows a good correlation between these parameters for the fuller’s earths (Figure 1). 

However, the pelletised bentonite has a surface area approximately only half as large as the fuller’s earth 
samples (356 m2/g) probably due to the major presence of lower surface area calcite and cement 
minerals.  The very large CEC for this sample (97.1 meq/100g) and the fact that this sample falls away 
from the correlation line between surface area and CEC (Figure 1) is most likely the result of the high 
exchange capacity of cement minerals (e.g. Delattre Louvel et al., 1993). 

The major element chemistry of the bentonites also indicates the similarity between the two fuller’s 
earth samples and the presence of cementitious materials in the pelletised bentonite.  The major oxide 
for the two fuller’s earths show very similar distributions but the pelletised bentonite shows relatively 
higher levels of Ca and LOI, similar levels of Fe, K and Na but significantly lower levels of Si, Al and 
Mg (Figure 2).  

4.2 KAOLINITE-BEARING SAMPLES 
Whole-rock XRD analysis indicates that both the ball clay and kaolinite Grade ‘B’ samples are 
predominantly composed of kaolinite with variable amounts of ‘mica’ (major in the ball clay and minor 
in the Grade ‘B’) and minor-trace amounts of quartz, smectite and K-feldspar. 

<2 µm fraction XRD analyses indicate clay mineral assemblages dominated by kaolinite with minor 
amounts of illite and traces of smectite.  The ball clay kaolinite has a much smaller average crystallite-
size, revealed by the broader XRD basal spacings (e.g. d001 full width at half maximum (FWHM) = 
0.74°2θ) compared to a FWHM of 0.26°2θ for the Grade ‘B’ sample.  Newmod-for-Windows™ 
modelling suggests a mean defect-free distance of seven 7Å units and a range of 1 to 35 7Å units for the 
ball clay kaolinite compared to a mean defect-free distance of twenty 7Å units and a range of 1 to 100 
7Å units for the Grade ‘B’ kaolinite.  The illite and smectite present in both samples have approximately 
similar crystallite-size distributions. 
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Both kaolinite-bearing samples present relatively low CEC values (ball clay = 16.5 meq/100g and Grade 
‘B’ = 5.1 meq/100g) reflecting the lack of cation exchange from the dominant 1:1 kaolinite structure.  
However, these are higher than published values for standard kaolinites (typically c.3 meq/100g, van 
Olphen & Fripiat, 1979) due to the presence of 2:1 clay minerals.  The higher value for the ball clay 
indicates the significant presence of illite and to a lesser extent smectite in this material.  Surface area 
values of 130 and 34 m2/g show a good correlation with the CEC values (Figure 1).    

The Al and Si-dominated major element chemistry of both the ball clay and Grade ‘B’ samples reflects 
their kaolinite-dominated mineralogy.  The greater LOI figure for the Grade ‘B’ sample indicates the 
greater kaolinite concentration in this sample.  The slightly enhanced K concentration in the ball clay 
reflects the greater mica content of this sample but is partially compensated by the K-feldspar in the 
Grade ‘B’ sample.  Higher Ca, Mg, Na concentrations in the ball clay probably mirror its greater 
smectite component while the similarly enhanced Fe and Ti contents may indicate the greater occurrence 
of Fe- and Ti-oxides in the ball clay.   

5 Conclusions 
Five samples undergoing pore-squeezing tests have been characterised using mineralogical, geochemical 
and physico-chemical analyses.  These have revealed that: 

• The two fuller’s earth samples (Baulking Blue and Aldrich) are smectite-rich with surface areas 
and cation exchange capacities similar to published values.  They contain minor contaminant 
phases such as quartz, ‘mica’, K-feldspar, calcite and pyrite.  Both have similar major-element 
geochemistries. 

• The pelletised bentonite is also smectite-rich but contains major amounts of calcite and 
cementitious material producing a more Ca-rich geochemistry.  Such a mineralogy is also 
responsible for a very high cation exchange capacity but a surface area only half as large as the 
fullers earth samples.  The smectite present in the pelletised bentonite is an unusual tri-hydrate 
species. 

• The ball clay sample is composed of major amounts of kaolinite and ‘mica’ with minor amounts 
of quartz, smectite and K-feldspar.  The kaolinite and ‘mica’ are ‘poorly crystalline’, having 
small defect-free distances and low range crystallite-size distributions.  The ball clay’s CEC and 
surface area are low but greater than expected for a standard kaolinite due to the presence of illite 
and smectite.  Enhanced levels of K, Ca, Mg and Na are also due to the presence of these clay 
minerals. 

• The Grade ‘B’ kaolinite is predominantly composed of a ‘well-crystallised’ kaolinite which has a 
large mean defect-free distance and extended range crystallite-size distribution.  Minor-trace 
levels of ‘mica’, K-feldspar, quartz and smectite were also detected.  It has a low CEC and 
surface area value but these are slightly higher than those obtained from pure kaolinites due to 
the detected impurities. 
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Figure 1.  Cross-plot of CEC versus surface area for the compact clay samples. 
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Figure 2.  Summary of bentonite major element chemistry and loss-on-ignition (LOI) 
 

 

 

Figure 3.  Summary of kaolinite major element chemistry and loss-on-ignition (LOI) 
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Appendix 1: X-RAY DIFFRACTION TRACES: 

KEY 

 

Vertical axis – Intensity (counts per second) 

Horizontal axis - °2θ Co-Kα 

 

For the whole-rock traces, only the most intense/diagnostic peak of each identified mineral is 
labelled. 

 

For the <2 µm traces. Black trace (air-dry), red trace (glycol-solvated) and green trace (heated 
550°C/2 hours).  
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MPLJ884, Baulking Blue Fuller's Earth 
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MPLJ885, Ball clay 
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MPLJ886, Kaolinite Grade ‘B’ 
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MPLK166, Aldrich Fuller’s Earth 
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