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Abstract 12 

We describe the use of a fully volumetric geophysical imaging approach, three-dimensional electrical 13 

resistivity (3D ERT), for bedrock detection below mixed sand and gravel deposits typical of fluvial valley-fill 14 

terraces. We illustrate the method through an analysis of terrace deposits of the Great Ouse River (UK), 15 

where up to 4 m of sand and gravel have filled the valley bottom during the latest Pleistocene. We use an 16 

edge detector to identify the steepest gradient in first-derivative resistivity profiles, which yields an 17 

estimate of bedrock depth (verified by drilling) to a precision better than 0.2 m (average) and 0.4 m 18 

(standard deviation). Comparison of a range of drilling techniques at the site has revealed that borehole 19 

derived interface depths suffered from levels of uncertainty similar to those associated with the 3D ERT - 20 

indicating that the reliability of bedrock interface depths determined using these two approaches is 21 

comparable in this case. The 3D ERT method provides a high spatial resolution that enabled a previously 22 

unknown erosional bedrock structure, associated with the change from deeper first terrace to second 23 

terrace deposits, to be identified in the Great Ouse valley. The method provides a relatively quick method 24 

to quantify terrace fill volume over large sites to a greater degree of precision than currently available. 25 
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1. Introduction 30 

River terrace deposits are a focus of considerable scientific, archaeological, and economic interest. Terrace 31 

architecture can provide important information regarding uplift, incision, and landscape evolution (e.g., 32 

Boreham et al., 2010; Bridgland, 2010), with the formation of aggradational terraces in some settings 33 

correlating closely with climatic cycles (e.g., Bridgland, 2006). These deposits are a particularly rich source 34 

of archaeological artefacts preserving a record of Palaeolithic human activity (e.g., Wymer, 1988) and are 35 

also a major economic resource of groundwater (Gomme and Buss, 2006) and sand and gravel aggregates 36 

for construction (Smith and Collis, 2001). 37 

River terrace deposits can be highly variable and difficult to characterise in terms of structure and lithology, 38 

particularly where the deposits of multiple or dissected terraces are present (Gibbard, 1982; Peterson et 39 

al., 2011). Typical approaches to the characterisation of these deposits include geomorphological and 40 

geological mapping, remote sensing, and intrusive investigations (e.g., Suzuki et al., 2004; Guccione, 2008). 41 

Perhaps the most detailed and commonly undertaken subsurface investigations of river terrace deposits 42 

are for mineral exploration, where drilling is the principal investigative tool (Merritt, 1992; Crimes et al., 43 

1994; Smith and Collis, 2001). However, because of the complexity of some deposits, even drilling using 44 

densely spaced boreholes can fail to adequately reveal the three-dimensional (3D) structure of a deposit in 45 

terms of thickness and composition (Wardrop, 1999). 46 

To provide greater insights into subsurface heterogeneity, geophysical techniques such as seismic 47 

refraction, ground penetrating radar, and electrical methods are being increasingly applied (Hirsch et al., 48 

2008; Tye et al., 2011). Electrical resistivity tomography (ERT) is one such method that has been 49 

demonstrated to be an effective means of studying the architecture of these deposits for a range of 50 

applications, including the investigation of landscape evolution (Froese et al., 2005; Hickin et al., 2009; Hsu 51 

et al., 2010), geological mapping (Tye et al., 2011), groundwater studies (Revil et al., 2005; Hirsch et al., 52 

2008), and mineral exploration (Baines et al., 2002; Beresnev et al., 2002).  53 

The principal benefits of ERT are that it provides high resolution images of the subsurface and is 54 

noninvasive. It is an effective means of characterising the subsurface because of the sensitivity of resistivity 55 
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to variations in hydrogeological (e.g., saturation, pore fluid composition) and geological properties (e.g., 56 

mineral grain composition, porosity). In unconsolidated sediments, such as river terrace deposits, the major 57 

lithological control on resistivity is the type and proportion of clay minerals (Shevnin et al., 2007), with 58 

increasing clay content causing a decrease in resistivity.  59 

Limitations of the technique include inaccuracies because of 3D structures to the side of the survey line or 60 

area and the indistinct appearance of boundaries resulting from the smoothness-constrained inversion 61 

techniques typically used for ERT imaging. Most previous ERT surveys of river terrace deposits have 62 

employed 2D, rather than 3D, imaging, because of its comparative rapidity and simplicity. However, for 63 

heterogeneous subsurface conditions, the two-dimensional (2D) assumption is violated because of the 64 

influence of 3D features in close proximity to the survey lines, which can cause significant inaccuracies in 65 

the resulting 2D resistivity models (Chambers et al., 2002; Sjodahl et al., 2006). More accurate subsurface 66 

reconstruction can therefore be achieved by applying fully 3D ERT imaging approaches. However, the 67 

smoothness-constrained images can make it difficult to accurately determine the position of geological 68 

boundaries, such as the river terrace deposit−bedrock interface. To address this problem, Hsu et al. (2010) 69 

described an automated approach to bedrock edge detection, although their study was restricted to 2D 70 

ERT. They provided both synthetic and field based examples with borehole control, both of which showed 71 

good visual agreement between the ERT derived interfaces and the known interface locations. 72 

Here we present a study in which fully volumetric 3D ERT imaging is used to investigate river terraces from 73 

the Great Ouse valley, Bedfordshire, UK. The principal advance described here is the development and 74 

validation of an approach to bedrock surface detection in a river terrace setting based on 3D rather than 2D 75 

imaging. We propose that a fully volumetric approach is particularly preferable for highly variable deposits 76 

that have a fundamentally 3D structure. The specific aims of this study are (i) to quantitatively assess an 77 

automated approach to bedrock surface detection below highly heterogeneous valley fill deposits from the 78 

3D resistivity model and (ii) to consider the respective merits of 3D ERT and conventional intrusive 79 

approaches for river terrace deposit characterisation.   80 

 81 
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2. Study area 82 

The study area is located within the valley of the Great Ouse, near the village of Willington, 4 km to the east 83 

of Bedford, UK (Fig. 1). The Great Ouse is an important component of The Wash fluvial network, preserving 84 

a record of late Quaternary uplift and climate variation and of human activity during the Palaeolithic, and as 85 

such is of international significance (e.g., Boreham et al., 2010). The geology comprises Quaternary alluvium 86 

and river terrace sand and gravel overlying Oxford Clay Formation bedrock of the middle Jurassic (Barron et 87 

al., 2010). In this area the Oxford Clay bedrock consists of the Peterborough member, which is a brownish 88 

grey, fissile mudstone, with an approximate thickness of 20 m. The Oxford Clay outcrops to both the 89 

southeast and northwest of the survey area, and has been exposed by extractive activities within the river 90 

valley (Fig. 1). The river terrace deposits are of the Ouse Valley Formation and are likely to have been 91 

deposited by braided rivers under periglacial conditions during different Quaternary cold stages (Rogerson 92 

et al., 1992; Green et al., 1996; Bridgland, 2010). Three principal terrace deposits are observed in the area 93 

(Horton, 1970; Barron et al., 2010; Boreham et al., 2010). The first, and lowest, terrace overlies the 94 

Felmersham member, which is ~ 3 m thick, with a surface between 0.6 and 2 m above the floodplain. The 95 

second terrace overlies the Stoke Goldington member and has a surface hereabouts between 2 and 7 m 96 

above the floodplain. The third terrace overlies the Biddenham member, which has a thickness of up to 7 m 97 

and a surface between 11 and 13 m above the floodplain. The sands and gravels of the three terraces 98 

display a similar composition, comprising planar−bedded, brownish yellow sand and gravel for which the 99 

gravel component mainly consists of flint and limestone. The present day floodplain is covered by a brown 100 

clay and silt alluvium, with a thickness of up to 4 m, which overlies the Ouse Valley Formation and in places 101 

may occupy channels cut in the Felmersham member by meandering rivers under temperate climate 102 

conditions (Barron et al., 2010). Extensive removal and reworking of the superficial deposits in this area has 103 

occurred from mineral extraction and, in particular, the quarrying of sand and gravel from the river terrace 104 

deposits. In many places the removal of sand and gravel has resulted in the exposure of the Oxford Clay 105 

Formation bedrock (Fig. 1). 106 

 107 
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<Insert Fig. 1 near here> 108 

 109 

The study site is situated on terrace deposits of the undifferentiated Felmersham and Stoke Goldington 110 

members (Fig. 1), overlying Oxford Clay Formation bedrock. The terrace deposits at this site are the focus of 111 

a long-standing sand and gravel operation. At the time of this study, the topsoil (which was ~ 0.2 m thick), 112 

had been stripped and banked (Fig. 2) exposing alluvium at the surface. The alluvial materials observed 113 

across the survey area are probably modern overbank deposits, which are distinct from the thicker alluvium 114 

recorded on the geological map (Fig. 1). The area was selected because good subsurface data in the form of 115 

borehole logs was available with which to interpret and calibrate the geophysical results. Furthermore, 116 

mineral extraction activities immediately to the south of the study site and electromagnetic geophysical 117 

reconnaissance surveys (Hill et al., 2011) had revealed that the river terrace deposits in this area were 118 

extremely variable in terms of thickness and composition, thereby providing a complex target with which to 119 

test 3D ERT. The deposits were unsaturated because of dewatering associated with the mineral workings 120 

immediately to the south of the study site (Fig. 2). 121 

 122 

<Insert Fig. 2 near here> 123 

 124 

3. Methodology 125 

3.1.  Intrusive investigations 126 

Drilling at the site was carried out using a flight auger supplemented with holes drilled using other standard 127 

techniques, including shell and auger, reverse circulation, and sonic drilling. A total of 11 locations were 128 

drilled within the 3D ERT imaging area; five of the locations were drilled using only the flight auger; whilst 129 

the remaining six locations were drilled with a combination of two or more techniques. At each location 130 

bedrock was proven. For locations where multiple drilling techniques were applied, boreholes were drilled 131 

within ~ 1 m of one another. The drilling density achieved (i.e., about 11 holes per hectare) was 132 
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considerably in excess of standard sand and gravel exploration drilling programmes that typically employ a 133 

100-m drilling grid, which in complex situations can be reduced to 50 m. The drilling at the site was 134 

undertaken as a component of a separate project concerned with optimising sand and gravel deposit 135 

sampling strategies, which involved the geostatistical analysis of grading data and the comparison of 136 

different drilling technologies (Hill et al., 2011; Jeffrey et al., 2011). Although the borehole locations were 137 

selected principally for the purpose of undertaking geostatistical analysis of grain size variations, they 138 

nevertheless provided a useful ground truth data set with which to assess the performance of 3D ERT for 139 

river terrace deposit characterisation and bedrock detection. Borehole locations are shown in Fig. 2, and 140 

summary information showing depth to bedrock determined by drilling is shown in Table 1. 141 

 142 

<Insert Table 1 near here> 143 

 144 

3.2. Electrical resistivity tomography 145 

The application of ERT can provide fully 3D volumetric models of subsurface resistivity distributions from 146 

which features of contrasting resistivity can be located and characterised. Methodologies for 3D data 147 

collection and modelling are well established in the literature (e.g., Chambers et al., 2007, 2011; 148 

Magnusson et al., 2010) and so only a brief summary is presented here. 149 

 150 

3.2.1. Survey design and execution 151 

The 3D ERT survey was carried out within an area of 93 m (x) by 93 m (y). Data were collected on a network 152 

of 32 orthogonal survey lines positioned at 6-m intervals, oriented in both x and y directions (Fig. 2). The 153 

dipole-dipole array with dipole sizes (a) of 3 and 6 m, and dipole separations (n) of 1a to 8a were used, and 154 

a full set of both normal and reciprocal measurements were collected.  A line separation twice that of the 155 

along-line electrode separation was selected to avoid undersampling and to maximise survey coverage rate 156 

(Gharibi and Bentley, 2005). Likewise, the selected dipole sizes and separation were considered to be a 157 



8 
 

reasonable compromise between vertical and lateral resolution and coverage rate. Orthogonal lines were 158 

employed to minimise bias in the resulting ERT model resulting from the use of a single line direction 159 

(Chambers et al., 2002).  The dipole-dipole array was used because it is a well-tested array that can provide 160 

a relatively high level of resolution, it does not require a remote electrode, it can exploit the multichannel 161 

capabilities of modern ERT instruments, and crucially, it enables the efficient collection of reciprocal 162 

measurements (Dahlin and Zhou, 2004). For a normal four-electrode measurement of transfer resistance, 163 

the reciprocal is found by exchanging the current and potential dipoles, and in the absence of nonlinear 164 

effects should give the same result. Here, reciprocal error is defined as the percentage difference between 165 

the forward and reciprocal measurement. Reciprocal measurements are sensitive to both random and 166 

systematic sources of noise, and provide a particularly effective means of assessing data quality and 167 

determining robust data editing criteria (Dahlin and Zhou, 2004). 168 

A real-time kinematic global positioning system (GPS) survey was undertaken to measure surface elevations 169 

across the area for incorporation into the resistivity inversion and forward modelling procedure. Although 170 

most of the survey area was very flat, the GPS survey was required to capture the topography of a 3-m-high 171 

bank of topsoil that encroached on the eastern corner of the ERT imaging area (Fig. 2). 172 

 173 

3.2.2. Data processing, forward modelling, and inversion 174 

The combined data set from the survey lines comprised 11,270 pairs of normal and reciprocal 175 

measurements. In general, data quality diminished with increasing geometric factors, which cause smaller 176 

measured potential differences. Data points with a reciprocal error of > 5% were removed, which in this 177 

case accounted for only 2% of the measured data, resulting in a filtered data set of 10,952 pairs. These 178 

were inverted using a 3D regularized least-squares optimization method (Loke and Barker, 1996). The 179 

forward problem was solved using the finite-element method, in which node positions were adjusted to 180 

allow topography to be taken into account in the inversion process. In brief, the aim of the inversion 181 

process is to calculate a model that satisfies the observed data. A starting model is produced, which in this 182 

study was a homogeneous half-space, for which a response is calculated and compared to the measured 183 
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data. The starting model is then modified in such a way as to reduce the differences between the model 184 

response and the measured data; these differences are quantified as a mean absolute misfit error value. 185 

This process continues iteratively until acceptable convergence between the calculated and measured data 186 

is achieved. In this case, a geologically realistic model was produced using L2-norm (smooth) model 187 

constraints because of the significant gradational lithological variations observed in the drift deposits and 188 

the undulating topography of bedrock (Loke et al., 2003). The final resistivity model consisted of 31 cells in 189 

the x-direction, 31 cells in the y-direction, and 11 layers in the z-direction, resulting in a total of 10,571 190 

model cells.  191 

 192 

3.2.3. Bedrock detection 193 

Amongst the most widely used approaches to edge detection are gradient techniques, which assume 194 

interfaces are located where changes in image properties are at a maximum (e.g., Marr and Hildreth, 1980; 195 

Vafidis et al., 2005; Sass, 2007). One of the only published examples of automated bedrock detection from 196 

ERT images is described by Hsu et al. (2010). They used a gradient method, which searches for values of 197 

zero in the Laplacian (second derivate) of the resistivity image in the horizontal and the vertical directions. 198 

Using this approach, they were able to accurately define the bedrock-sediment interface from a number of 199 

2D ERT images. The principal drawback of the Laplacian technique was, according to their study, the 200 

prevalence of local zero lines that were difficult to differentiate from those associated with the larger 201 

magnitude gradients defining the primary bedrock interfaces.  202 

Here we adopt a similar technique to Hsu et al. (2010). However, because of the added complexity of 3D 203 

image analysis compared to 2D, we have simplified their approach. We only consider variation in gradient 204 

in the vertical direction that although is less sensitive to very steeply dipping or vertical interfaces, is a 205 

reasonable approximation for the relatively layered structure of the river terrace deposits. We also only 206 

consider the gradient (first derivative) of the resistivity image, which tends to reduce the problem of the 207 

Laplacian method, which produces many more false interface (zero) lines. Although the first derivative 208 

eliminates false interfaces, it cannot discriminate between interfaces if multiple gradients are present. 209 
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Consequently, we employ a two-stage heuristic approach for bedrock detection at the study site. First, if 210 

multiple gradients in the correct direction (i.e., decreasing resistivity with decreasing elevation) are present 211 

then the steepest gradient is chosen; this is because we anticipate that in most cases the steepest 212 

resistivity gradient in the subsurface will be between the relatively coarse-grained river terrace deposits 213 

and very clay rich Oxford Clay, rather than lithological boundaries within formations or between the 214 

alluvium and terrace deposits. Second, if the gradients are of a similar magnitude, we pick the deeper 215 

gradient, as the lower lithological interface in the ERT model is likely to be between the valley fill and 216 

bedrock surface.     217 

Our implementation of the steepest gradient method involved extracting resistivity data, ρ, as a function of 218 

elevation, z, for each surface position (x, y). An interpolating curve was fitted through ρ(z) for each (x, y) 219 

point. In this case, a piecewise cubic hermite interpolating polynomial (PCHIP) was used. The coefficients of 220 

the polynomial are chosen so that the resistivity is continuous and smooth, its first derivative is continuous 221 

(although not necessarily smooth), and the interpolant is monotonic between data points (e.g., Fig. 3). This 222 

has the effect that the interpolant preserves the shape of the data (Fritsch and Carlson, 1980). Once the 223 

coefficients are determined, the first derivative can be calculated analytically. Then for interface detection, 224 

the depth corresponding to the steepest gradient on the interpolating curve that satisfied our heuristic was 225 

identified for each (x, y) point. 226 

 227 

<Insert Fig. 3 near here> 228 

 229 

4. Results and discussion 230 

4.1. Direct intrusive sampling 231 

The drilling results for the 11 locations (Fig. 2) in terms of the types of drilling techniques deployed, 232 

position, ground level, and depth to bedrock are shown in Table 1. The average depth to bedrock from each 233 

location, and hence river terrace and alluvium thickness, ranges from 2.1 to 4.2 m. Significant differences in 234 
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deposit thickness were observed between the various drilling techniques for each location. The alluvium 235 

showed a consistent thickness of ~ 1 m across the survey area. Bedrock interface depths determined by 236 

multiple holes were not consistent (Table 1); the discrepancies ranged between 0.2 and 1 m, with an 237 

average of 0.46 m. The reasons for this apparent lack of agreement between drilling techniques are 238 

threefold: first, misidentification of interfaces because of contamination by material from the hole sides 239 

during stem withdrawal (a problem that is recognised in the interpretation of flight auger logging in 240 

particular); second, poor core recovery and slippage of core in the barrel during withdrawal (as observed to 241 

occur with, for example, sonic drilling); and third, true variation in bedrock surface elevation between 242 

clustered sampling points (i.e., ~ 1 m separation). 243 

 244 

4.2. Three-dimensional resistivity model 245 

Good convergence between the observed and model data was achieved, as indicated by the mean absolute 246 

misfit error of 2.4%. The resulting resistivity model has dimensions of 93 m (x) by 93 m (y) and extends to a 247 

depth of 14 m below ground level (z). Visualisations of the 3D ERT model are shown in Fig. 4 as a series of 248 

vertical and horizontal sections and volumetric images. The clay bedrock is defined as low resistivity 249 

material underlying more resistive and highly heterogeneous valley fill deposits. The banked topsoil in the 250 

eastern corner displays a similar resistivity range to that of the terrace deposits. 251 

 252 

<Insert Fig. 4 near here> 253 

 254 

The distribution of inverted resistivities is shown in Fig. 5, plotted as a probability density function (PDF). 255 

The PDF was estimated using a kernel smoothing algorithm (Sheather and Jones, 1991), which sets up a 256 

normal distribution at each of the measured values in the data set and adds these together to produce 257 

smoothed PDF. Using the standard deviation (SD) and relative proportions of points from an initial 258 

approximation as starting points, an optimisation routine (Rowan, 1990) that modifies the input 259 
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parameters to minimise the root mean square error between the estimated PDF and the actual PDF was 260 

used to determine mean and standard deviations for each of the predicted resistivity populations. Three 261 

resistivity populations with means of 15, 60, and 125 Ωm, respectively, were estimated using this approach. 262 

The well-defined low resistivity peak (peak 1) corresponds to the Oxford Clay bedrock, whilst the higher 263 

resistivity and less distinct peaks are consistent with separate populations within the deposits of varying 264 

composition. For unsaturated valley fill deposits present at this site, the high resistivity population (peak 3) 265 

is likely to be associated with relatively clean coarse sand and gravel, whilst the lower resistivities (peak 2) 266 

are consistent with the more clay-rich alluvium. 267 

 268 

<Insert Fig. 5 near here> 269 

 270 

The geological sequence at the site — comprising a thin layer of alluvium at the surface, river terrace sand 271 

and gravel, and Oxford Clay bedrock — is apparent in the 3D ERT image (Fig. 4). The alluvium is seen as a 272 

thin layer of relatively low resistivity (< 100 Ωm) material (e.g., Figs. 4 and 6), which indicates a higher clay 273 

content than the underlying sand and gravel. The alluvium appears to vary in composition across the area, 274 

with the northwestern corner and southern edge showing a higher resistivity, due perhaps to a lower clay 275 

content. The underlying terrace deposits are generally more resistive than both the alluvium and the 276 

Oxford Clay bedrock. They display a broad range of resistivities with a spatial distribution that is consistent 277 

with deposition as part of a braided river system, with silt and clay-rich channel fill and coarser bar 278 

deposits. The Oxford Clay bedrock is associated with a relatively homogeneous resistivity distribution. A 279 

number of slightly higher resistivity zones are seen within the bedrock, with the two strongest features at y 280 

= 0 m and x = 25 and 75 m, respectively. It is probable that these are artefacts of the inversion process 281 

rather than real bedrock features for three principal reasons. First, they are not consistent with known 282 

geological structure. Second, they are in a part of the model that has low model resolution (Wilkinson et al., 283 

2012); in this case the model resolution reduces by more than an order of magnitude between 4 m below 284 
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ground level and the base. Third, because they are at the base of the model they are influenced by 285 

measurements with higher geometric factors, which have poorer signal-to-noise characteristics. 286 

 287 

<Insert Fig. 6 near here> 288 

 289 

The primary structure is an arch-shaped feature (Fig. 4), running approximately SW to NE, which defines 290 

thicker terrace deposits and deeper bedrock to the NW. The transition from thicker to thinner deposits is 291 

likely to represent that transition from first to second terrace. Three lines of evidence corroborate this 292 

interpretation. First, it is close to the anticipated transition between the first and second terrace (Barron et 293 

al., 2010; A.J.M. Barron, British Geological Survey, personal communication, 2011). Second, the thickness 294 

and height change between the first and second terraces recorded in the area (Horton, 1970; Barron et al., 295 

2010; Boreham et al., 2010) are consistent with the structure observed in the ERT model. Third, the 296 

orientation of the erosional structure identified in the ERT model is subparallel to the long axis of the Great 297 

Ouse. 298 

 299 

4.3. Steepest gradient method bedrock surface detection 300 

The bedrock surface extracted from the 3D ERT model using the steepest gradient (first derivative) method 301 

extends between 20 and 24 m above Ordnance Datum (AOD) (Fig. 7). The broad structure identified in the 302 

3D ERT model, interpreted as the transition from first to second terrace, is clearly visible in the steepest 303 

gradient bedrock surface as a sharp upward step toward the eastern corner of the image. In addition, the 304 

steepest-gradient–derived surface contains a scattering of false high elevation points where our heuristic 305 

approach failed to capture the full complexity of resistivity variations in the model. These points appear as 306 

isolated spikes, or bull’s-eyes, and are concentrated in the northwestern corner, below the higher resistivity 307 

alluvium, and in the southeastern corner, below the topsoil bank. 308 

 309 



14 
 

<Insert Fig. 7 near here> 310 

 311 

Examples of interpolated resistivity depth curves from the 3D ERT model, showing the location of the 312 

steepest gradient and ‘known interface’ resistivities, are given for borehole locations 11 and 15 (Fig. 6). The 313 

known interface resistivity is the value associated with the borehole-defined depth; an alternative to the 314 

steepest gradient approach is to use the known interface resistivity to define an isoresistivity surface, which 315 

is assumed to coincide with the bedrock surface (see discussion on the use of isoresistivity surfaces below). 316 

Summary data for each of the borehole locations is given in Table 2. Statistical analysis has been carried out 317 

using the Bland and Altman (1986) method, which provides a means of comparing two different methods 318 

of measurement (i.e., ERT and boreholes) where the true value of the measured parameter is unknown. It 319 

is used to calculate the bias and the agreement, or standard deviation, between the two methods. This 320 

approach has indicated a reasonable agreement between the boreholes and steepest-gradient–derived 321 

method as indicated by an SD of 0.38 m (Fig. 8A). A slight bias of 0.19 m caused by two outlying data points 322 

(BH8 and BH13) has been observed between the boreholes and steepest gradient method, with the ERT-323 

derived bedrock elevations slightly higher than those recorded in the boreholes. Likewise, the Pearson 324 

correlation coefficient for the steepest gradient and borehole-derived bedrock elevations is 0.83, with a p-325 

value of 0.001 (Fig. 8B), indicating good agreement between the two approaches and a high degree of 326 

statistical significance. Based on the steepest gradient method, a volume of 12,250 m3 (SD 3240 m3) has 327 

been calculated (using the trapezoidal rule) for the valley fill sediment (terrace sand and gravel, and 328 

alluvium) within the 3D ERT survey area. 329 

 330 

<Insert Table 2 near here> 331 

 332 

<Insert Fig. 8 near here> 333 

 334 
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These results also confirm the findings of Hsu et al. (2010) that isoresistivity lines are not necessarily a good 335 

indicator of bedrock surface geometry.  For isoresistivity lines to successfully define the bedrock surface, 336 

the interface must be characterised by a consistent value of resistivity. By comparing the results of the 11 337 

drilling locations with the ERT model, it is clear that the range of interface resistivity values is considerable 338 

(Table 2), varying between 42 and 520 Ωm. The large range of interface resistivities is a function of the 339 

complexity of the deposit, with the valley fill deposits displaying a large resistivity range and significant 340 

heterogeneity. This is further illustrated with reference to Fig. 6, where the interface resistivity for BH 11 is 341 

520 Ωm, whilst for BH15 it is 280 Ωm. The reason for the difference between these two locations is that at 342 

BH11 the terrace deposits were significantly more resistive than at BH15, resulting in a large difference in 343 

interface resistivity values. 344 

4.4. Comparison of 3D ERT and borehole results 345 

Drilling and ERT produce very strongly contrasting types of information. Boreholes provide very detailed, 346 

very high resolution (centimetre to decimetre scale) information for vertical profiles at discrete locations 347 

but provide very poor lateral resolution, even for dense drilling grids or profiles considered here, because 348 

of separations that are typically on the scale of at least tens of metres between holes. Moreover, drilling 349 

can provide direct samples of subsurface materials. Conversely, 3D ERT provides high resolution (metre 350 

scale) spatially continuous volumetric subsurface models but provides indirect information on material 351 

properties. Interestingly, the uncertainty associated with bedrock surface elevation for both drilling and 352 

ERT was of a similar magnitude (i.e., tens of centimetres), with an average discrepancy between drilling 353 

techniques of 0.46 m (section 4.1) and a standard deviation of 0.38 m for the difference between steepest 354 

gradient and average borehole-derived bedrock elevations (section 4.3).  355 

In this geological setting, the spatial information provided by ERT was essential for resolving the structure 356 

of the bedrock surface, due the complexity of the deposit, in terms of thickness variations and sediment 357 

heterogeneity. The relative success of ERT was a function of the spatial resolution (in the x-, y- and z-358 

directions) of the technique, which was closer to the scale of deposit heterogeneity than the borehole data, 359 

which had sufficient resolution only in the z-direction. However, intrusive investigations and sampling will 360 
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always be necessary for this type of investigation, whether it be for mineralogical assessment and dating 361 

for geological, geomorphological, or archaeological studies; hydrogeological testing for groundwater 362 

resource assessment; or particle size distribution determination for mineral exploration. Crucially, intrusive 363 

sampling is also essential for the calibration and validation of geophysical images. These two approaches 364 

are therefore complementary. The combined use of 3D ERT and boreholes has the potential to reduce the 365 

number of boreholes required, and the ERT images could also assist in the more effective targeting of 366 

boreholes.  367 

Boreholes were also important for deposit characterisation in this case, as they were able to differentiate 368 

between river terrace and alluvium. The 3D ERT model did reveal a thin, relatively conductive layer across 369 

much of the surface of the model, but in places alluvium was indistinguishable from the underlying sand 370 

and gravel due to insufficient resistivity contrasts (e.g., Figs. 4 and 5). For this reason the steepest gradient 371 

method was not applied to identify the interface between the alluvium and the sand and gravel. 372 

 373 

5. Conclusions 374 

Automated bedrock detection from 3D ERT imaging at a site in the Great Ouse Valley, UK, using the 375 

steepest gradient (first derivative) method was shown to correlate well with borehole-derived bedrock 376 

elevations. Comparison of the borehole and steepest gradient methods has enabled the performance of 3D 377 

ERT for bedrock detection to be quantitatively assessed and uncertainty associated with sediment volume 378 

calculations to be determined. Whilst the steepest gradient method was shown to provide a good quality 379 

bedrock elevation model, isoresistivity lines were shown to provide a very poor indication of bedrock rock 380 

surface depth and geometry in this situation. Interestingly, a comparison of a range of drilling techniques 381 

deployed at the site has indicated a level of uncertainty for borehole derived interface depths similar to 382 

that associated with 3D ERT steepest gradient edge detection – indicating that intrusive sampling cannot 383 

always be regarded as providing inherently more reliable information than geophysical investigations. 384 

Subsurface geological variations (including the distribution of major formations, and lithological 385 

heterogeneity, and river terrace deposit thicknesses) were captured within the 3D ERT model. Crucially, a 386 
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major erosional feature on the bedrock surface was identified as the boundary between first and second 387 

terrace deposits of the Great Ouse valley. 388 

Three-dimensional ERT image analysis using the steepest gradient method has been shown to be an 389 

effective bedrock detection method in this locality, owing in part to the strong contrast in resistivity 390 

between the bedrock and river terrace deposits. It is therefore reasonable to presuppose that ERT would 391 

be similarly successful in other river terrace settings with strong resistivity contrasts between valley fill and 392 

bedrock materials. In particular, in areas of clay or mudstone bedrock, a good resistivity contrast could be 393 

expected with river terrace sand and gravel because of the large difference in the proportion of clay 394 

between the two material types. 395 

The appropriateness of 3D ERT for any given setting will also be dependent on a number of other factors, 396 

including the required spatial coverage and level of resolution. The practical limit of survey coverage using 397 

3D ERT is probably in the order of a few tens of hectares for individual surveys and, as such, is not 398 

equivalent to surface mapping approaches using remote sensing or towed ground-based systems that 399 

permit very rapid large-scale data collection. Therefore, in the context of river terrace deposit 400 

investigations, 3D ERT is best suited to targeted site-specific surveys associated with complex deposits 401 

displaying significant lateral variations where detailed information on subsurface structure is required. 402 
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List of Figures 520 

Fig. 1. Geological map based on a recent geological resurvey of the area (Barron et al., 2010), showing the 521 

location of the study site and the distribution of artificially modified ground associated with extractive 522 

activities. Coordinate systems are given as longitude and latitude (bold) and British National Grid (normal). 523 

Inset map (top left) shows the location of the study site within the UK. 524 

Fig. 2. Three-dimensional ERT survey area (red shading), site boundary (black line), and line locations (red 525 

lines, 6-m separation), and borehole positions (black dots). Banked topsoil stockpiles (grey shading) crest 526 

heights are typically 3 m above ground level. 527 

Fig. 3. Example of a resistivity depth curve (black line) generated from PCHIP interpolation of resistivity data 528 

(circles) and the gradient (first derivative) of the resistivity (grey line). The maximum positive gradient is 529 

shown by the dashed black line. 530 
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Fig. 4. Three-dimensional ERT model displayed as (A) a solid volume, (B) a solid volume with opaque volume 531 

defining resistivities above 200 Ωm, (C) vertical sections, (D) a horizontal section at 20 m AOD. Vertical 532 

extent of mineral and overburden, determined from drilling, shown as grey cylinders. The southeastern 533 

edge of the incised channel structure is indicated as a dashed white line. 534 

Fig. 5. Probability distribution plot of the Willington 3D ERT data (solid line), and optimised probability 535 

distribution model (dashed line) for three normal distributions with peaks at log resistivities of 1.21, 1.75, 536 

and 2.09 Ωm (i.e., resistivities of 16, 56, and 123 Ωm). 537 

Fig. 6. Resistivity data (circles) and interpolating curves (blue line) as a function of elevation, given as mAOD 538 

at surface positions corresponding to BH11 (top) and BH15 (bottom). The elevations associated with the 539 

steepest gradient method (SGM) and the intersections between the borehole-derived elevations and the 540 

resistivity depth curves (interface resistivities) are indicated. Drilling results for four different techniques at 541 

this location are shown: flight auger (FA); shell and auger (SA); reverse circulation (RC); sonic (SNC).  542 

Fig. 7. Bedrock surface determined using the steepest gradient (first derivative) method, showing the 543 

erosional structure associated with the transition from the first to the second terrace of the Great Ouse. 544 

Fig. 8. (A) Bland Altman plot of steepest gradient method and borehole-derived (BH) elevations, showing 545 

the 95% confidence limit between -0.56 and 0.93 m. (B) Cross plot of steepest gradient method and 546 

borehole-derived bedrock elevations, showing Pearson correlation coefficient. 547 

 548 

 549 



507000 508000

509000

509000

510000

510000

511000

511000

2
4
9
0
0
0

2
4
9
0
0
0

2
5
0
0
0
0

2
5
1
0
0
0

Stewartby and Weymouth Member

Peterborough Member

Head

Oadby Member

Alluvium

Felmersham & 
Members - First/Second Terraces

Stoke Goldington

Felmersham Member - First Terrace

Biddenham Member - Third Terrace

Oxford Clay Formation

Wolston (Till) Formation

Ouse Valley Formation

Superficial Deposits

Bedrock Units

Made Ground

Infilled ground

Worked ground

Made ground

Landscaped ground

Disturbed ground

507000

2
5
1
0
0
0

0 500 1000 m

Geophysical Survey Area

3D ERT

o0 22'0' W'
o0 24'0' W'

o0 26'0'’W

o0 24'0' W'

o
5
2

8
'0

'N' o
5
2

8
'0

'N'

o0 22'0' W'

jecha
Typewritten Text
Figure 1



x [m]

y [m]

0
0

93

93

0 10 25 50 m
North

ern lim
it o

f o
verburden strip

ping

Bank (t
opsoil)

Bank (topsoil)

B
a
n
k
 (to

p
s
o
il)

Site boundary

509400

2
4
9
5
0
0

509300

2
4
9
4
0
0

509400 509500
2
4
9
5
0
0

2
4
9
6
0
0

7

8

9
10

11 12

13
14

15

17

18

jecha
Typewritten Text
Figure 2



10

12

14

16

18

20

22

24
-400 -200 0 200 400

E
le

va
tio

n
 (

m
 A

O
D

)

Resistivity (Ohm.m)
Resistance (Ohms)

First derivative
(resistance)

Model resistivity

Steepest gradient

jecha
Typewritten Text
Figure 3



0

20

40

60

80

x [m]

0

20

40

60

80

y [m]

12
16
20
24

z [m AOD]

0

20

40

60

80

x [m]

0

20

40

60

80

y [m]

12
16
20
24

z [m AOD]

10 100 1000

Resistivity [Ohm m].

0

20

40

60

80

x [m]

0

20

40

60

80

y [m]

12
16
20
24

z [m AOD]

0

20

40

60

80

x [m]

0

20

40

60

80

y [m]

12
16
20
24

z [m AOD]

(A)

(B)

(C)

(D)

N

jecha
Typewritten Text
Figure 4



0 0.5 1 1.5 2 2.5 3 3.5

Log [resistivity in Ohm.m]

Data
Model

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
P

ro
b
a
b
ili

ty
 d

e
n
si

ty Peak Mean SD

1 1.2 0.2

2 1.8 0.2

3 2.1 0.4

1

2 3

jecha
Typewritten Text
Figure 5



10

12

14

16

18

20

22

24
0 200 400 600 800 1000

E
le

va
tio

n
 (

m
 A

O
D

)

10

12

14

16

18

20

22

24
0 200 400 600 800 1000

E
le

va
tio

n
 (

m
 A

O
D

)

Resistivity (Ohm.m)

Resistivity (Ohm.m)

Clayey
overburden

Sand &
gravel

Clay
bedrock

Bedrock surface
(borehole average)

Bedrock surface
(SGM)

Interface resistivity
(borehole average)

Clayey
overburden

Sand &
gravel

Clay
bedrock

Bedrock surface
(borehole average)

Bedrock surface
(SGM)

Interface resistivity
(borehole average)

FA SA RC SNC

FA SA RC SNC

jecha
Typewritten Text
Figure 6



N

20 21 22 23 24

Bedrock elevation [m AOD]

N

jecha
Typewritten Text
Figure 7



19

20

21

22

19 20 21 22

Pearson correlation 
coefficient = 0.83,
p-value = 0.001

Bedrock level - borehole [m AOD] 

B
e
d
ro

ck
 le

v
e
l -

 S
G

M
 [
m

 A
O

D
] 

20.0 20.5 21.0 21.5

-0.5-0.56

-0.19

0.93

(SGM+BH)/2

S
G

M
 -

 B
H

-1.0

-0.5

0.0

0.5

1.0

(A)

(B)

jecha
Typewritten Text
Figure 8


	GEOMOR-3033_R1
	Figure_1_R1
	Page 1

	Figure_2_R1
	Page 1

	Figure_3_R1
	Page 1

	Figure_4_R1a
	Figure_5_R1
	Page 1

	Figure_6_R1
	Page 1

	Figure_7_R1a
	Figure_8_R1
	Page 1




