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ABSTRACT 
 

The importance of woody linear features for; maintaining connectivity between habitats, 

providing landscape resilience and enhancing biodiversity in otherwise impoverished 

landscapes are widely recognised. Despite the acknowledged importance of hedges and 

lines of trees in the wider countryside they are often excluded from models of landscape 

function due to the difficulties of acquiring relevant data about their extents and locations. 

We present an approach currently being trialled to produce a linear product for Great 

Britain which uses a combination of datasets and a classification to predict the presence of 

hedges/lines of trees and ‘other’ categories of linear features. The datasets used include; a 

digital terrain model (Nextmap), the spatial framework for Land Cover Map 2007 and field 

survey data from Countryside Survey 2007. The ITE/CEH landclasses are used as a key 

classifier. Early outputs from the model are presented and discussed and the potential uses 

of a linear land cover map are explored. 
 

INTRODUCTION 
 

Data on the extent and condition of our natural resources is vital to ensure their effective 

management into the future (MEA, 2005). This can be done at any number of scales but to 

understand resource management at a national level it is important to have access to 

national data (NEA). One of the most effective ways to collect data relating to habitat types 

and their extents is through the use of satellite imagery (Kerr, 2003). Another method is to 

use stratified sampling which is representative at a national level, as is used in the 

Countryside Survey (Carey, 2008). 
 

Land Cover Map is now in its third iteration and the data has been widely applied in, for 

example, urban planning, carbon accounting and flood risk modelling (Morton (2011). The 

pixel based habitat classification approach used in LCM does not however lend itself to 

assessing the presences and extents of linear landscape features such as hedges, lines of 

trees or walls due to their narrowness. In contrast, linear landscape features are an 

important part of the field mapping exercise included in the Countryside Survey, during 

which they are surveyed in detail in terms of length, type and to some extent, condition. CS 

uses a number of representative sample squares to provide national estimates of the 
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lengths of these different types of linear features in the countryside (Petit et al., 2003). 

Whilst estimates based on the same approach over time provide useful indices of change for 

policy makers and essential information for reporting against BAP Priority Habitat targets1, 

they do not provide valuable location specific information, except for in the actual squares 

in which CS takes place. A third national dataset, Nextmap provides digital terrain mapping 

for the entire UK surface, indicating the height of features and land parcels above ground 

height. Data is at relatively coarse resolution but coverage is comprehensive. These datasets 

all aim to provide national coverage, but have different strengths and weaknesses in 

relation to provision of information of linear landscape features. This work explores the 

potential benefits to be gained from their integration. 
 

Linear landscape features are an integral part of the countryside in GB as well as in other 

temperate countries worldwide (Barr C.J., 2001). They may consist of a range of different 

feature types incorporating; walls, hedges, lines of trees, banks, dykes, fences, etc, either 

singly or in combination. Their management often depends as much on tradition (Antoine, 

2001; Deckers et al., 2004; Tenbergen, 2001) as much as on practical issues (Staley et al., 

2012) and may vary between locations from regional to local scales. In GB, woody features 

consisting of managed hedges or lines of trees are widespread and ecologically important 

landscape features. Countryside Survey includes tight definitions of such feature types in 

order to enable differentiation between them at reporting, and accurate assessment of the 

extent of change between feature types, e.g. from managed hedge to unmanaged line of 

trees. Both feature types, however, provide important contributions to landscape diversity 

and have, for the purposes of this work been grouped into one category of woody linear 

features (hereafter referred to as hedgerows). 
 

Increasingly the original purposes of hedgerows as either stockproof or ownership 

boundaries have lessened in importance with alternative, relatively cheap to maintain, 

fencing options available to farmers. Whilst the provision of shelter to stock almost 

certainly remains an important (although diminishing) function of hedgerows in the 

landscape, recognition of their importance as semi‐natural habitat spanning increasingly 

sterile agricultural landscapes is growing (Natural Environment White Paper 2012). By 

providing a refuge for a wide range of taxa effectively eliminated from the majority of fields 

as a result of agricultural improvement (Smart et al., 2006) hedgerows help to maintain 

functioning agroecosystems in which predators of crop pests, pollinators and pollen 

producing species all play their roles (Pocock et al., 2012). Their presence in the landscape 

forms part of our cultural heritage with many National Character Areas2 including 

descriptions of hedgerows and field shape and pattern as defining characteristics. Their 

importance to game species is also a measure of their cultural importance as is their use for 
 
 

1 
 

http://ukbars.defra.gov.uk/archive/plans/national_plan.asp?HAP=%7BBC11363F%2D7C31%2D4CC6%2DA5F3 
%2D497601778845%7D (Ancient or species rich hedgerows) 
2 

http://www.naturalengland.org.uk/publications/nca/default.aspx 

http://ukbars.defra.gov.uk/archive/plans/national_plan.asp?HAP=%7BBC11363F%2D7C31%2D4CC6%2DA5F3
http://www.naturalengland.org.uk/publications/nca/default.aspx


collecting produce such as fruit or fungi in the autumn. Their contributions to other 

ecosystem services is perhaps less well documented due to difficulties of measurement or 

relative ease of measuring the more obvious ecosystem components contributing to those 

services. For example, carbon or water storage is generally measured/estimated on the 

basis of blocks of land cover, e.g. grassland, woodland, bog. Hedgerows, as lines, rather than 

blocks of habitat tend to be considered as less important. However, their position within 

habitats may make them particularly important at local scales and their prevalence may 

mean that their impact is more substantial than expected. 
 

Here we present the approaches taken for development of a spatially explicit national map 

of GB linear features which differentiates between the presence of hedgerows and all other 

features using a binary classification. 
 

METHODS 

Datasets 

The Countryside Survey data provided us with an ideal dataset which could be used to train 

and test a linear model for GB 1km squares (as described below). 
 

 

Countryside Survey 2007 
 

 

Countryside Survey methodologies are well documented and complex (Firbank et al., 2003). 

Full methodologies for the most recent survey (2007) are available at 

www.countrysidesurvey.org.uk.  Relevant  methods  are  summarised  in  brief,  below.  In 

CS2007 data on habitat extent was collected using a digital field mapping system based on 

ESRI ArcGIS 9.2 (ESRI, 2006). Using the digital mapping system, field surveyors delineated 

and mapped areas of different habitat types, effectively converting the 1 km square to a 

mapped format, at a resolution of 20 × 20 m for areal features and recording all linear 

(>20 m in length) and point features present within sample 1 km squares. Surveyors were 

provided with a field handbook containing detailed definitions of linear features, including 

fences, walls, hedges and lines of trees. Data collected using the digital mapping system was 

entered into a database containing both spatial and attribute information for all linear 

features recorded in the sample squares. 
 

 

The following datasets were used to provide variables for the linear model enabling 

extrapolation of linear data outside of CS sites: 

 
NEXTMAP Great Britain™ 

 

 

NEXTMAP  Great  Britain™   is   a   digital   terrain   model   (DTM)   produced   by   Intermap 

Technologies for Norwich Union Insurance to assist with flood risk mapping. NEXTMAP data 

http://www.countrysidesurvey.org.uk/


were generated by airborne survey using synthetic aperture radar (SAR), and single‐pass 

interferometry (IfSAR) (Chiverrell et al., 2008). NEXTMAP digital elevation data were 

collected at a flight height c. 6500 m and the data are supplied at a 5m resolution. The 

NEXTMAP data was chosen because it is cheap and there is comprehensive coverage for the 

United Kingdom, whereas in 2007 the Environment Agency LiDAR dataset (which has higher 

resolution data) was available for less than 33% of the country. 

 
Ordnance Survey Land‐Form PANORAMA® 

 
Land‐Form PANORAMA® is a height dataset available as a set of contours with spot heights, 

breaklines, coastline, lakes, ridges and formlines with a 10 m contour interval. We used the 

gridded DTM with 50 m post spacing to provide us with altitude information. 

 
Land Cover Map Spatial Framework 

 

 

The OS MasterMap topography layer (OSMM) provides a highly detailed view of Great 

Britain’s landscape including individual buildings, roads and areas of land. In total it contains 

over 400 million individual features. From this, the data relating to polygon objects (100 

million) were used to create the spatial framework for the GB Land Cover Map (LCM) 2007. 

Since the resolution of OSMM is greater than that used for LCM (which uses 20x20m pixel 

satellite data) the OSMM was spatially generalised, removing unnecessary detail whilst 

retaining relevant details on location of boundaries (Morton et al. 2011). 

 
ITE Land Classification 2007 

The 2007 version of the ITE Land Classification was developed from earlier classifications 

which used environmental data from all 1km squares in GB to create a stratification based 

on underlying physical variables (Bunce et al., 1996). The stratification contains 46 classes or 

strata, distributed across Great Britain. Each stratum consists of areas with similar 

environmental characteristics. 

 
Model variables 

 

 

Linear data from Countryside Survey (see above) were attributed with variables from the 

above four datasets. Prior to use of the NEXTMAP 5m canopy dataset the data was prepared 

by masking out the Urban, Forest, Littoral and Sub‐littoral Broad Habitats and all areas 

above 450m altitude (i.e. all canopy height data in these areas was set at zero). Raw data 

from the resulting 5m resolution dataset formed one of the variables used in the models. 

The remaining data were treated in two ways; 

 
1)   Aggregated canopy heights were calculated within a 15m buffer around each 5m 

resolution linear (total linear width 35m) – 35m resolution 



2)   Data were resampled at 25m resolution for maximum height associated with linear 

features 

 
A number of variables were calculated using the altitude data from OS Land Form data. 

Curvature (a measure of how convex or concave a feature is) was derived using Arc GIS 3D 

analyst at 50m resolution from this data. All variables used in the final models are detailed 

in Table 1. 

 
Model training and validation 

 

 

A boosted binary classification tree (described in more detail below) enabling a mix of both 

classification and continuous data was used for the modelling approach. The CS dataset 

classified into: 1) hedgerows and 2) other linear features, was separated into two datasets 

which constituted an initial training dataset (70% of the data) and a testing dataset (30% of 

the data). The model was then asked to predict the output values for the data in the testing 

set. Model performance was assessed using % accuracy statistics for individual CS squares, 

but also the model produced mean square error statistics for each individual prediction. 
 

 

Bagged decision tree classifiers 
 

The model architecture employs bagged decision trees as a binary classifier based on its 

performance on CS2007 linear feature classes; 1) hedgerows and 2) other linear features. 

The decision tree is a machine learning classifier with a tree data structure. Classification 

decisions are the result of traversing from the tree root to a leaf node. Each non‐leaf node 

employs a split variable and split value to determine the path of traversal to a leaf node, 

where each tree makes a final class assignment. Each leaf bases the assignment on prior 

probabilities from the remaining sample subpopulation at that leaf established during 

training. During training, the selection of n samples from the training set (of size n) with 

replacement constitutes a bootstrap sampling. The resulting classifier uses a majority vote 

of the individual trees in the ensemble. The model tested uses an ensemble of 30 trees with 

default parameters. By default, TreeBagger considers random features for each cut variable, 

allows a minimum of one observation per leaf node and employs the Gini’s diversity index 

as an impurity measure. Other defaults include no pruning and using equal misclassification 

costs (Dube et al., 2012). 
 

Model selection 
 

Since the model’s ability to predict the type of feature present should depend more on the 

important variables in the model and less on unimportant variables, this can be used to 

identify the important variables and test whether a smaller subset of variables can be 

substituted for the full set. For each linear feature, it is possible to permute the values of 

this feature across all of the observations in the data set and measure how much worse the 

mean‐squared error (MSE) becomes after the permutation. This can be repeated for each 



feature, so that it is then possible to identify the importance of each different model 

variable for prediction. 
 

This process was carried out with the original set of 13 variables input to the model and 

used to identify a subset of 6 (Table 1, in bold). Land class did not feature in the top 6 (or 

even the top 10) variables after testing of the 13 + landclass. However, when subsequently 

included with the 6 most important variables it proved to be more than twice as important 

as all other variables. 

 
Hence, four models were implemented, two with and two without the land classification 

(table 2). After testing with the CS data, the ‘best’ model was then used to predict linear 

feature cover and type in areas outside of CS squares using the LCM spatial framework. Due 

to the large amounts of linear features which would need to be modelled at a UK scale and 

the considerable amount of data and computer processing power required to do so, initially 

this was trialled for specific areas of the UK with known high hedge densities. Indicative 

results are presented here. 
 

RESULTS 
 

The results for the four different models are shown in Figure 1. All models showed between 

78% and 82% accuracy for predicting whether a linear feature in the CS testing dataset was 

either a type 1) hedgerows or type 2) other linear feature. The lowest % accuracy (78%) was 

for Model 1 with the 6 variables and no classifier, with model accuracy increasing with the 

inclusion of the classifier and increasing numbers of variables, so that model 4 had the 

highest % accuracy. 
 

Predictions for linear features outside of CS squares using the LCM spatial framework are 

shown in figure 2. Figure 2 shows the model results for hedgerows for an area in Cornwall 

alongside LCM data for forestry in the same area 
 

DISCUSSION 
 

Early results presented here indicate that the approach developed may provide an excellent 

tool for mapping UK linear features. The high % accuracy for the CS testing dataset provides 

some confidence that extrapolations outside of CS squares are likely to be reasonably 

accurate, even with the use of a relatively coarse resolution dataset (NEXTMAP). 
 

Next steps are to continue work to validate the model and understand where it performs 

well and where it performs poorly. The sheer size of the dataset means that it can be rather 

unwieldy to deal with and uses up a lot of computation power and time. A UK linear data set 

would involve modelling over 20 million individual features. Even with a simple binary 

classification this is a very extensive dataset. 



A first step is to investigate, in detail, predictions for CS squares and examples from other 

1km square datasets which have used the CS linear mapping methodology. The availability 

of detailed ‘ground‐truthing’ datasets will allow for a much better understanding of any 

issues decreasing the accuracy of the model. 
 

In the future it may be possible to refine the model using different higher resolution 

datasets. LiDAR (Light Detection And Ranging) is an optical remote sensing technology that 

can measure the distance to, or other properties of a target by illuminating the target with 

light, often using pulses from a laser. It has been used for a range of purposes relating to 

ecosystem studies (Lefsky et al., 2002) including predicting biodiversity from observed 

habitat variables (Muller and Brandl, 2009). LiDAR data is available for a number of the CS 

squares and can be used to test the potential for not only identifying the type of linear 

feature present but also some of its more detailed characteristics including height, width 

and species composition. It is also likely to be a more appropriate dataset than the 

NEXTMAP for identifying the presence of other important linear features such as stone walls 

or banks. However, the extent to which LiDAR data may be used for any future national 

linear product will depend on the extent of coverage of the UK and on access to the 

considerable computing power required to process such detailed data at a national scale. 
 

Further work is required to ensure that any model of UK linears produced using this 

approach is robust and that uncertainties in the model are quantified. In addition, 

improvements in the availability of earth observation data like LiDAR will broaden the 

potential resolution of any linear product. However, it is clear that both the datasets used 

here and the approach developed show great potential for enhancing our ability to quantify 

the natural resources of the UK. Even a basic model of hedgerow extent and locations, such 

as developed here, could help to fill in key gaps in our understanding about landscape 

function in relation to ecosystem services production through their important role in, for 

example, carbon storage, the movement of water and diffuse pollutants or habitat provision 

for biodiversity and aesthetic enjoyment. Increases in spatial resolution of satellite derived 

data such as LiDAR point to potential future products which would enable application at 

local levels for use in strategic planning for sustainable landscapes. 
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Figure 2. Woody cover aerial habitat maps for an area in Cornwall 1) without woody linear features 

and 2) with woody linear features 
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Table 1. Variables used in the models (those in bold were used in all four models), variable 

14 was the classifier variable. 
 

 

 Variables Derived from 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Altitude – weighted mean 

Curvature – linear weighted mean 

Curvature –minimum 

Curvature – maximum 

Maximum height (25m) – linear weighted mean 

Maximum height (25m) ‐ minimum 

Maximum height (25m)‐ maximum 

5m canopy data ‐ linear weighted mean 

5m canopy data ‐ minimum 

5m canopy data ‐ maximum 

Aggregated 35m ‐ linear weighted mean 

Aggregated 35m ‐ minimum 

Aggregated 35m ‐ maximum 

OS Land Form altitude data 

OS Land Form altitude data 

OS Land Form altitude data 

OS Land Form altitude data 

NEXTMAP 

NEXTMAP 

NEXTMAP 

NEXTMAP 

NEXTMAP 

NEXTMAP 

NEXTMAP 

NEXTMAP 

NEXTMAP 

14 Land class ITE Land Classification 



Table 2. Model  design 
 

 With Classifier Without Classifier 

Number of variables 6 (in bold 
 

Table 1) 

 

13 
6 (in bold 

 

Table 1) 

 

13 

 


