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Abstract

Insects are infected by a variety of pathogens, including bacteria, fungi
and viruses, which have been studied largely for their potential as biocon-
trol agents, but are also important in insect conservation (biodiversity) and
as model systems for other diseases. Whilst the dynamics of host-pathogen
interactions are well-studied at the population level, less attention has been
paid to the critical within-host infection stage. Here, the reproductive rate
of the pathogen is largely determined by how it exploits the host; the re-
sources supplied by the host in terms of size and condition; competition
with other pathogens; and the speed with which it kills the host (death
being an inevitable outcome for obligate-killing pathogens). In this paper
we aim to build upon recent developments in the literature by conducting

single infection bioassays to obtain data on growth and fitness parameters
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for phenotypically different and similar strains of nucleopolyhedroviruses in
the Lepdipoteran host Spodoptera exigua. Using these data, a simple mech-
anistic mathematical model (a coupled system of differential equations) is
derived, fitted and parameter sensitivity predictions are made which support
empirical findings. We unexpectedly found that initial growth of virus within
the host occurs at a double-exponential rate, which contrasts with empiri-
cal findings for vertebrate host-pathogen systems. Moreover, these infection
rates differ between strains, which has significant implications for the evolu-
tion of virulence and strain coexistence in the field, which are still relative
unknowns. Furthermore, our model predicts that, counter to intuition, in-
creased viral doses may lead to a decrease in viral yield, which is supported
by other studies. We explain the mechanism for this phenomenon and discuss
its implications for insect host-pathogen ecology.

Keywords: Lepidoptera, nucleopolyhedrovirus, consumer-resource

dynamics, biocontrol, baculovirus

1. Introduction

Pathogens play an important role for many host organisms, ranging from
population regulation [1] to species invasion [2]. These in turn, have ap-
plications for our understanding of issues such as disease control [3], pest
control [4] and biodiversity [5]. However, much of our empirical understand-
ing of host-pathogen ecology and evolution is derived at the population level
(see Dwyer et al. [6] for example), and the crucial pathogen stages operating
within the host are either simply over-looked or assumed to be non-dynamic,

whereas, in reality, key pathogen fitness and virulence traits are often de-
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termined throughout the course of infection (e.g. environmental conditions).
For example, in the case of monarch butterflies, Danaus plexippus, rearing
infected larvae on different plant species alters parasite infection, replica-
tion and virulence [7]. This illustrates that population dynamics of hosts
and pathogens will be subject to feedback mechanisms from the pathogen
dynamics within the host.

This point is now being addressed by a number of authors, especially via
theoretical means. For example, Antia and Lipsitch [8] proposed a mathe-
matical model for an acute microparasite infection in a vertebrate host. This
model suggested that the within-host dynamics of the microparasite will be
a ‘race’ between parasite multiplication and the clonally expanding response
by the host immune system, resulting either in immune-mediated clearance
or host death. In a mathematically similar, but biologically different system,
Ellner et al. [9] modelled the within-host interaction of a fungal pathogen
in a coral. Here the fungal-immune system dynamics are rather complex
and spatially explicit, highlighting the importance of ‘immune response free
space’ which allows local rapid growth of the fungal infection. One appli-
cation of these types of models has been to improve our understanding of
pathogen evolution, which has revealed that the dynamics of the immune
system may select for parasites with intermediate within-host growth rates,
as this is when the number of transmission stages from infected hosts reaches
a maximum [10].

A large proportion of previous theoretical models based the infection dy-
namics on Lotka-Volterra interactions (see Alizon and van Baalen [11] for an

example and references therein) or models with a fixed kill rate by immunity



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

[12] and are aimed at vertebrate hosts, largely due to the applicability to
human health. In contrast, little work has been carried out for invertebrate
systems, particularly with empirical data to test the model.

The dynamics of pathogens within invertebrate hosts differ significantly
from those of vertebrates. Firstly, many insect pathogens are obligate killers,
in the sense that effective horizontal transmission may only be attained by
the death of the host, whereas for most vertebrates the infectious stages are
emitted throughout the course of infection. Secondly, since the host itself is
simply a resource for the virus to reproduce, the size and growth rate of the
host is crucial in determining the speed of pathogen replication and the yield
of infectious stages. Lastly, common to both vertebrates and invertebrates,
are innate immune mechanisms that can be either constitutively expressed
or induced on exposure to infection [13]. However, invertebrates lack ac-
quired immune responses, but their mechanistically simple innate effectors
are functionally sophisticated and can be highly efficient [14]. Therefore, the
vertebrate models do not lend themselves readily to invertebrate systems.

Ebert and Weisser [15] proposed a model for the dynamics of the within-
host growth of obligate-killing parasites, such as baculoviruses, and many
species of bacteria, bacteriophages, nematodes, fungi and microsporidia. Their
model assumes that pathogen biomass grows logistically, where the carrying
capacity (invertebrate host mass) is time-dependent (also assumed to be
logistic in growth) and crucially does not depend on the extent of infection
within the host. It is possible, however, that as the pathogen spreads through
host tissues it would interfere with metabolic processes and ultimately inhibit

the growth of the host. In this case, the host size at the time of death, and
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therefore the ‘pathogen carrying capacity’ of the host, should depend on the
extent of host tissue infection. Typically, this is not the case in vertebrate
infections, and so the interaction between virus replication and host growth
rates has not been explicitly considered. In this paper we aim to address this
by developing a more biologically detailed model for the within-host growth
of obligate killing viruses of invertebrates, which is parameterised and vali-
dated against experimental data.

We base our model on baculoviruses, a group of double stranded DNA
obligate killing viruses, which have been particularly well studied because of
their utility as expression vectors and biocontrol agents [16]. Baculoviruses
can be subdivided into two distinct genera, Granuloviruses (GVs) and Nu-
cleopolyhedroviruses (NPVs - the focus of this paper), and are indirectly
transmitted pathogens, persisting outside their arthropod hosts as occlu-
sion bodies (OBs), a proteinaceous matrix in which the virus particles are
embedded. The OBs may contain many virus genomes. Hosts (primarily
Lepidoptera) become infected by consuming OBs when eating foliage. The
protein dissolves in the alkaline gut of the caterpillar allowing viruses to cross
the gut wall and then to start replicating. Overt infections result in the death
of the host a few days later. Body tissues are then dissolved with millions
of virus particles being produced as a result. These OBs persist in the en-
vironment until consumed by a new host or are degraded by environmental
factors.

In this paper, we begin by describing bioassays carried out with lep-
idopteran hosts, in which we determine key life-history traits of the bac-

ulovirus and the within-host growth rate of the different strains of virus. We
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empirically explore the possibility that the virus infection may impede host
growth rate, and whether this inhibition increases as the infection progresses
using statistical models. We then develop a novel mathematical model for
the within-host growth of the different strains of virus. This model incorpo-
rates the interactions observed and is parameterised by experimental data.

The ecological implications are then discussed.

2. Infection Bioassays and Results

2.1. Materials & Methods

2.1.1. Insect and virus stocks

Spodoptera exigua larvae were reared in continuous culture on artificial
diet [17]. Four different baculoviruses were used in this study; the Oxford
strain of Mamestra brassicae nucleopolyhedrovirus (MbNPV) [18], Panolis
flammea nucleopolyhedrovirus (PafiINPV) variant 4 [19], Autographa califor-
nica nucleopolyhedrovirus (AcNPV) strain C6 [20] and Spodoptera exigua
nucleopolyhedrovirus (SeNPV) [21]. Additional details can be found in the

electronic supplementary material (ESM).

2.1.2. Determination of median lethal dose and mean time to death

Three blocked bioassays were carried out to determine the median lethal
concentration (LCso) and mean time to death of the four viruses in S. ez-
tgua. Newly moulted third instar larvae of S. exigua were selected on the
basis of head capsule diameter and starved overnight at 28°C. Thirty insects
per treatment were then dosed by droplet feeding [22] with 1ul of the virus

concentrations specified. The time taken to administer each treatment was
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recorded and the start time (Ty) taken as the mid-point of this. The ex-
posed larvae were transferred to individual pots of artificial diet and reared
at 28°C and checked after 24 hours, at which point any handling deaths were
removed. The larvae were subsequently checked every 12 hours until death
or pupation (if the host survived infection) and any levels of mortality and
time to death recorded. Details of our statistical methods can be found in

the ESM.

2.1.3. Measurement of the within host-growth of baculoviruses

Based on the data generated in the previous bioassays a virus concentra-
tion of 1 x 10” OBs/ml was selected for all four viruses as at this dose all
insects should be infected. Newly moulted third instar S. exigua larvae were
starved overnight and 200 larvae dosed with 1ul of either AcNPV, MbNPV,
PafINPV or SeNPV virus at a concentration of 1 x 107 OBs/ml. The larvae
were transferred to individual pots of artificial diet and reared at 28°C. Af-
ter 2 hours ten larvae were collected from each treatment. These were then
weighed and frozen at -20°C until DNA extraction. The process of weighing
and freezing 10 individual larvae was repeated at 12 hour intervals until all
remaining larvae had died from virus infection.

Details of the DNA extraction and quantification can be found in the

ESM.
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2.2. Bioassay Results
2.2.1. Infectivity and speed of kill of AcNPV, MbNPV, PafINPV and SeNPV

in third instar larvae of S. exigua

The mortality of third instar larvae of S. erigua was significantly differ-
ent between the viruses (x? = 98.1, df = 4, p<0.001) although there was no
significant difference between the mortality induced by AcNPV and MbNPV
(x* = 1.42, df=1, p=0.233) (see Figure S1 (a) in the ESM). The mortal-
ity was significantly affected by dose of virus (y? = 185.4, df=1, p<0.001)
but there was no significant interaction between dose and virus (y* = 6.59,
df=4, p=0.159). Overall SeNPV showed the highest mortality and PafINPV
showed the lowest mortality, and in all cases mortality increased with dose.

Time to death was significantly different between the viruses (see Fig-
ure S1 (b) in the ESM), with a significant interaction between virus dose and
virus strain (Fy790=16.59, p<0.001). The time to death of AcNPV, MbNPV
and SeNPV decreased with increasing virus dose, however the slope of the line
for PafINPV was not significantly different from zero (Fg 797=1.355, p=0.259)

showing that the speed of kill of this virus was unaffected by dose.

2.2.2. Host growth and the within-host growth of baculoviruses in third instar
larvae of S. exigua

Host weight showed distinct differences between infected and uninfected

insects (see Figure 1). Growth rates are curvilinear with time (minimally

adequate statistical models), and the degree of this curvilinearity varies

with virus strain (virus*time?®, Fy 504=3.41, p=0.009) indicating that different

strains impede host growth to varying degrees. The uninfected larvae grow

to their peak in mass before a decrease in weight due to larvae preparing for

8
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pupation (Figure 1 (e)). All infected larvae are smaller in mass in compari-
son with uninfected larvae, particularly at the later stages of infection prior
to virus induced death. Both AcNPV and MbNPYV infected larvae showed
a similar decrease in host mass to controls at the latter stages of infection
(Figure 1 (a)-(b)), but no such effect was shown for PafINPV and SeNPV
(Figure 1 (c)-(d)).

Taking the first 7 census host growth data points from each treatment,
when the log,, weight grows linearly with time (Figure 1 (f) - minimally
adequate statistical model), the infected hosts (as one category) show a
significantly slower initial growth rate than their uninfected counterparts
(F1345 = 6.813, p=0.009). Furthermore, the growth rates of control and in-
fected larvae were individually compared (virus*time, Fy 339=4.617, p=0.001)
indicating that NPV viral infections alter the growth of the host differentially
during the early stages of infection. PafINPV and SeNPV infected larvae
showed significantly reduced initial growth rates compared to the uninfected
larvae (virus*time, ty 339 = 3.645, p=0.0003 and t; 339 = 3.039, p=0.003, re-
spectively). Interestingly, AcNPV and MbNPV infected individuals showed
no significant difference in initial growth rates when compared to their unin-
fected conspecifics.

The growth of the viruses within S. ezxigua, as measured by the proportion
of total DNA represented by viral DNA, also varied significantly between the
four viruses (see Figure 2). This relationship is highly non-linear and the
degree of non-linearity varies (virus*time®, F3504=3.19, p=0.025). All viral
treatments showed a log sigmoidal relationship with time, with all treatments

approaching an asymptotic proportion of DNA. Moreover, all treatments also
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showed a decrease in the proportion of viral DNA shortly after inoculation,
with SeNPV and AcNPV showing the greatest reduction (approximately a
10-fold reduction). The four viruses also showed differences in the maximum
proportion of the host they converted to virus biomass. AcNPV had the
highest ratio of virus to host DNA with a peak of 45%. SeNPV was unable
to replicate as much viral DNA, peaking at 12.5%. MbNPV and PafINPV
had the slowest speeds of kill and lowest proportion of viral DNA (8% and
10% respectively).

3. Within-Host Virus Growth Mathematical Model

Using the statistical model fitting above we have been able to demon-
strate differences in the growth dynamics of the 4 strains of virus within the
host. However, this analysis does not inform us of the importance of vari-
ous mechanisms and factors of viral infection. To address this we derive the

mathematical model below.

3.1. The Model

Let H(t) and V() be the mass of healthy host tissue and mass of virus
within the host at time ¢, respectively. We assume that the host is an inverte-
brate and thus has no acquired immunity [23]. Here, we only consider overt
infections where the initial dose of virus is sufficiently large such that the
innate immune response is negligible and cannot clear the infection, leading
to host death. The host grows with growth rate r(¢). Note that since we are
only interested in overt infections, it is not necessary to consider host growth
in the absence of infection, where the dynamics are considerably different

(e.g. overt infections will prevent the onset of pupation). Healthy host mass

10
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is infected and converted into virus mass according to the mass action law
with transmission coefficient 5(t). Here, the assumption is that all infected
host tissue is converted into virus (to the best of our knowledge, it is not
known if at the cellular level infected host cells produce ‘waste’, thus war-
ranting a conversion efficiency parameter). These simplifying assumptions

lead to the following model:

% — r()H - BHHV (1a)
dv
- -~ smHv. (1b)

where H(t), V(t) > 0 for all ¢ > 0.

During the course of infection, the host becomes increasingly moribund
and in the latter stages of infection the host almost completely stops eat-
ing and therefore stops growing. This is demonstrated in Section 2.2.2 and
supported by additional and closely related findings [24]. Furthermore, we
assume that increased viral loads will have greater effect on the host growth

rate [24]. We model this by the following integral equation

F(t) = ro exp (—a /0 tV(s)ds) (1)

where 7 is the maximum host growth rate and a is the host growth reduction
rate. Here, the growth rate decreases with the ‘experience’ of the infection.
Note that for mathematical and numerical analyses it is useful to differentiate
(1c) with respect to time.

In addition, we assume that as the virus converts an increasing proportion
of host mass the infection rate decreases, and tends to zero as the virus

proportion approaches a maximal limit, p. We model this by the functional

11
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) V()
Ble) = Fo (l o v<t>>> (1d)

where 3 is the maximum infection rate. This assumption essentially acts to
impose a ‘carrying capacity’ for the pathogen growth within the host since
the virus growth is limited by the size of the growing host. Hence, the
‘carrying capacity’ is not a fixed parameter, but is dynamic with respect to
the interactions between the host and the virus. Note that the parameter p
acts as an upper limit for the proportion of virus mass within the infected
host, as we demonstrated empirically in Section 2.2.2. This is included as
not all of the available host mass may be infected (the host head capsule for
example), and therefore it is necessary to prescribe this limit via a reduction
in the potential carrying capacity. In addition, it should also be noted that
since H(0) >> V(0) it follows that 5(t) > 0 for all ¢ > 0.

Linear stability analysis (see Appendix A) of Model (1) reveals that there

are an infinite number of locally stable equilibria which lie on the curve

Vv
p(H+V)

Thus, for given growth parameters, rq, 8o and a, the equilibria obtained will
crucially depend on the mass of the host and the virus dose at the time of

infection.

3.2. Parameter Fitting

To fit the within-host infection Model (1) to the within-host virus growth
data one must convert the proportion of virus data into virus mass data. To

do this we assume that the fraction of sampled DNA that is virus DNA is
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equal to the fraction of total host mass that is virus mass. Thus mathemat-
ically we have

mass of virus DNA at time ¢ B mass of virus at time ¢

(2)

Using the host and virus mass data we are able to fit the within-host

total mass of DNA at time ¢  total mass of infected host at time ¢

infection Model (1) to the data and find the associated parameter values
(see Appendix B for details). Here, we use some asymptotic properties of
the model to find initial estimates of the model parameters and then all
parameters are found simultaneously using the initial estimates. Note that
we do not prescribe rog from the control data, but instead we find it from the
simultaneous fitting on the infected data, which therefore takes into account
the stochastic differences between treatments. A discussion on prescribing
ro can be found in the ESM and Table S1. The fitted parameter values are
listed in Table 1 and we compare the results of this parameter fitting with
the data graphically in Figure 3.

From Figure 3 we see that Model (1) is an excellent fit to both the host
and virus data, and we are able to capture all of the growth behaviour. All
fits produce the characteristic log-sigmoidal virus growth and the sigmoidal
growth of the host. However, due to the exceptionally fast speed of kill of
SeNPV the deceleration of host growth is almost negligible, which is reflected
in the low value of a. In contrast, MbNPV has the largest larvae at the time
of death and thus the largest value for a. PafINPV and SeNPV have the
largest infection rates, 3y, whilst MbNPV has the smallest infection rate. The
extent to which viruses can convert healthy host tissue into virus particles
greatly differs between strains, ranging from approximately 2.8% for MONPV

to as much as 22% for AcNPV. The maximum host growth rate, 7o, does not
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change considerably between virus treatments. Moreover, the differences we
observe in the estimation of the initial masses, Hy and Vj, are largely due to

experimental variation.

3.8. Model Predictions

Using the fitted parameter values we can use Model (1) to predict the
effects of varying the initial dose of virus and the size of the host at the time
of infection.

In Figure 4 (a) we see that an increase in virus dose leads to a reduction
in the yield of virus and host size at the time of host death. At first, this
may seem counterintuitive, as one might expect that an increased dose may
lead to an increased yield. However, the mechanism behind this phenomenon
is a combination of two processes. Firstly, an increased dose has a greater
initial negative effect on the host growth rate, resulting in smaller hosts,
and therefore the dynamic virus ‘carrying capacity’ is reduced. Secondly, a
greater viral dose increases the initial infection rate and therefore the virus
infects a larger proportion of host more quickly, thus causing a decreased
yield at death. Furthermore, extensive parameter variation, such as initial
host size and host growth rate (not presented here), suggests that this is
ubiquitous under our model assumptions.

In Figure 4 (b) we see the effect of varying the size of the host at the time
of initial infection. As one might expect, in most cases, as host size increases,
the virus yield and the size of host at the time of death both increase. This is
because the size increase simply acts as an increased virus carrying capacity
and there is a longer period for the virus to replicate before it has a large

negative effect on the host growth rate. A similar scenario occurs when the
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maximum host growth rate is increased, corresponding to an increase in the
host diet or environmental quality (Figure 4 (c)).

The effects of varying virus parameters can be seen in Figure 4 (d)-(f).
In Figure 4 (d) we see that, as one might expect, increasing the rate at
which the host growth is reduced by the virus infection causes a decrease
in host mass which in turn reduces the virus yield. In contrast, one might
expect that increasing the infection rate of the virus would increase the virus
yield, however, in Figure 4 (e) we see that the opposite is true. This is due
to the increase in maximum infection rate (f3y) causing the virus mass to
utilise more of the host mass more quickly, resulting in earlier saturation.
Therefore, the host is increasingly moribund and suffers from a reduction in
growth rate, final host mass and hence a reduction in virus yield. Finally, in
Figure 4 (f) we show the effect of varying the zero infection virus proportion,
p. Intuitively, we see an increase in proportion of host that the virus can
infect causes an increase in viral yield, which in turn reduces the host mass

since the host growth rate is reduced by the additional virus mass.

4. Conclusions & Discussion

It is well known that genetically similar virus strains show differences in
pathogenicity, speed of kill and yield [19], but here we have shown that they
also differ in how they may impact host growth and replicate within it. We
have demonstrated empirically that virus infection impedes the growth rate
of the host, with some viruses doing so from the early stages of infection,
and that this inhibition increases as the infection progresses and has conse-

quences for the outcome of infection. Four genotypically similar strains of
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pathogen were found to have differences in traits associated with pathogen
fitness (speed of kill, pathogencity), and to impede host growth to differing
degrees (parameter a varied by more than an order of magnitude). This led
to a lack of correlation between the standard phenotypic traits (speed of kill,
pathogenicity) and the efficiency with which the different viruses converted
host tissue to virus (for which AcNPV had the highest ratio of virus DNA
to host DNA and MbNPV had the lowest).

Using the fitted parameter values from the within-host infection model,
we have seen that AcNPV is relatively slow at infecting healthy host tissue.
On the other hand, it is clear from the fitted parameter values and the
simulations that SeNPV is the fastest growing virus, but it does not convert
a high ratio of host mass into virus mass. From these parameter-fitting
results we can conclude that there is a lack of correlation between initial
virus growth rate () and both the speed of kill and mortality. For example,
SeNPV does have the highest initial growth rate and it also has the fastest
speed of kill and mortality. In contrast, PafINPV has the slowest speed of kill
and lowest mortality, but does not have the lowest initial virus growth rate
(this belongs to MbNPV). This would suggest that one cannot predict speed
of kill, mortality and virus yield from initial virus growth rate alone and that
these pathogen fitness parameters are a result of a number of interacting
processes.

Surprisingly, empirical investigation into parasite growth rates has been
largely neglected in invertebrate hosts [13]. Our experimental data highlight
the initial fast speed at which virus replication occurs. Using an approxima-

tion of our mathematical model (B.3), we have shown that the initial virus
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growth rate is double exponential (V(t) =~ e°). This is in stark contrast
to previous theory of obligate killing parasites, where more simplistic logis-
tic growth curves have been assumed [15], thus underestimating initial virus
growth. Indeed, for the prodigious theory of human diseases the within-host
growth of viruses is often shown to be significantly slower (V(¢) = e') [25],
even before innate or adaptive immune responses slow the within-host spread
of disease. This further highlights the differences between the complexity of
vertebrate and simplicity of invertebrate hosts and their diseases. The main
reason for this difference is the speed at which the host grows. In vertebrate
systems host growth is assumed to be constant, since the speed of replication
of the pathogen is much faster than the growth rate of the host (Steinmeyer
et al. [26] for example).

Interestingly, the fitted statistical model (Figure 2) shows a decline in
virus abundance for each of the virus genotypes at approximately 10-20 hours
post infection. Why this occurs remains unclear. A possible explanation is a
sloughing defence mechanism [27] or simply loss of virus particles on the outer
body of the larva from droplet feeding, which illustrates the sensitivity of the
molecular method used. It may also be attributed to more complex cellular
and humoral mechanisms of immunity and both have been implicated in
insect resistance to baculoviruses [28|. In terms of our results, the decline of
the virus abundance is likely to have some small effect on the fitted parameter
values, in particular underestimating the [y values. Further study is clearly
required to ascertain the precise cause of the reduction in virus abundance
at the early stages of an overt infection and to understand the implications

for the host and virus growth dynamics.
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From our observations we hypothesise that the speed of kill is strongly
dependent on the rate at which the virus grows within the host, how quickly
the virus replication rate reaches a plateau (if at all) and how much the virus
impedes host growth, but the exact relationship is not immediately obvi-
ous. For example, PafiINPV has the slowest speed of kill, whilst in contrast
MbNPV has the smallest maximum infection rate, 3. Therefore, using a
simple single parameter to predict the speed of kill is not possible. Further-
more, the biological mechanism behind host death (i.e. timing of host death
relative to infection levels) is still relatively undetermined. Previous models
have assumed that host death occurs when pathogen fitness is maximised
[15]. Ebert and Weisser [15] assumed that the fitness of the obligately killing

pathogen, F', is given by
F(tkill> = V(tkin)e_mtkm (3)

where V (t,;,) is the number of transmission stages at the time of host death,
tim, and m is the background host mortality. Maximising (3) with respect to
the time of host death gives the optimal speed of kill. Ebert and Weisser [15]
found that under their model assumptions for the within-host virus growth
the optimal killing time approximately corresponded to the period of time
during which viral replication rate significantly decreases. However, applying
this optimisation to our within-host viral growth model, parameterised for
our 4 strains of NPV, results in nonsensical optimal speeds of kill, even for
a wide range of background mortalities. This suggests that the speed of
kill of baculovirus infections may be more complex than simple pathogen
fitness optimisation or that pathogen fitness is not suitably described by (3).
Moreover, our empirical data do not support the finding that the killing

18



361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

378

379

380

381

382

383

384

385

time occurs at a point of rapid deceleration in the viral replication rate. In
contrast, we find that rapid viral growth, which has been shown in many
host-pathogen systems [29], is followed by a prolonged period of deceleration
towards a stationary final viral mass (see also Evans et al. [30]). However, this
deceleration is less pronounced for some viral strains, in particular SeNPV.
To this end, in the ESM we have covaried the speed of kill alongside the
other model parameters for two contrasting strains: AcNPV and SeNPV,
where the former exhibits a strong saturation effect. In each case, a faster
speed of kill leads to reduced viral yield and small hosts at the time of
death, as one would expect. However, for AcNPV, some parameters are more
sensitive to the speed of kill than others - the most sensitive parameters being
the initial host mass and viral dose parameters. In contrast, for SeNPV, the
speed of kill has a large effect on host mass at the time of death and the
viral yield for each parameter variation. Therefore, we must conclude that
for viruses that exhibit weak saturation, the speed of kill will have a large
effect on the viral yield. Moreover, if the speed of kill is greatly altered by
either (i) inoculating different insect instars or (ii) changing the viral dose
concentration, then viral yield will be greatly affected. Conversely, if the
host’s environment can affect other model parameters, resulting in different
speeds of kill, then there may be no significant change in the viral yield.
Our results show that pathogen infection slows the growth rate of the
host, even at the early stages of infection. Surprisingly, there are relatively
few studies that empirically demonstrate a reduction in host growth rate (but
see Burand and Park [24]), but this is often suggested since parasites cause

harm to their hosts as an unavoidable consequence of parasite reproduction.
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Our model predicts that a greater virus dose will increase this effect, which
agrees with evidence from a similar host-pathogen system [24]. To date, the
exact reason behind the reduction of host growth rate is unknown, but a
number of possible mechanisms have been put forward. These include host-
virus competition for nutrients at the cellular level [24] and the expression of
the viral ecdysteroid UDP-glucosyl transferase (EGT) gene which alters host
hormones related to host development [31]. Our model does not explicitly
state the origins of the growth rate reduction, but we simply incorporate
this effect as a composition parameter on the host-virus growth dynamics,
which produces a good fit. This enables us to detect differences between virus
strains and thus yields, which in terms of transmission in the field is critical,
as yield has a direct effect on the abundance of overwintering inoculum.
Our model predicts that larger hosts at the time of infection result in
larger viral yields, which supports experimental results of others [30]. Coun-
terintuitively, our model reveals that larger viral doses may decrease viral
yield. This result has been discovered experimentally in other closely related
systems [30, 32|, but this is not always the case [33|, perhaps due to the trade-
offs between dose, speed of kill and virus yield obscuring this phenomenon. In
terms of maximising transmission, the virus will increase its yield with lower
doses, but this will trade-off against the probability of infection. Therefore,
transmission is likely to be maximised for some intermediate dose. Our result
also contrasts with vertebrate within-host theory, where Steinmeyer et al. [26]
found that increasing viral dose increased the peak viral load, whilst empiri-
cal evidence suggests the contrary, as found in sheep inoculated intranasally

with a type O foot-and-mouth disease virus [34]. Here the authors suggested
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the reason for this is that cell-mediated immune mechanisms responded more
quickly to high doses than lower doses, the result being increased inhibition
of viral replication.

It has been suggested that environmental stress increases host suscep-
tibility to infections and reduces host ability to resist parasite growth and
reproduction, thus benefiting parasites. This suggestion stems from expected
costs of immune defence; hosts in poor condition should have fewer resources
to be allocated to immune function. However, the alternative hypothesis
for the response to environmental stress is that hosts in poor condition pro-
vide fewer resources for parasites and/or suffer higher mortality, leading to
reduced parasite growth, reproduction and survival [35]. Under the assump-
tion that poorer quality diet results in a lower host growth rate (rg), our
model predicts a reduction in virus yield, and so supports the latter hypoth-
esis.

Despite the focus of most host-pathogen work concentrating on single in-
fections, as we have studied here, molecular techniques have revealed that
many infections in insect hosts are caused by several pathogen genotypes
which differ phenotypically in their interaction with the host [19]. One ex-
ample is the pine beauty moth, Panolis flammea, in which a plethora of
genetically distinct strains of NPVs have been isolated from a single host.
These strains have been found to differ phenotypically in parameters corre-
lated with fitness, including the speed with which the pathogen kills the host
and the subsequent yields of OBs [19], which may act as non-lethal syner-
gists by interacting with secondary virus strains but are not themselves lethal

[36]. The simplest assumption would be that competition between genotypes
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within a host is a race to gain the greatest share of resources (host tissues)
[37], as in the tragedy of the commons [38]. As a consequence, mixed infec-
tions may lead to reduced transmission between hosts. Hence, understanding
within-host dynamics of multiple infections is essential for understanding the

impact of multiple pathogens in the field.
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Appendix A. Model Analysis

Since r(t) — 0 as t — oo the nullclines are given by £(t) = 0 for both
H =V’ =0, and thus are given by

Vv
p(H+V)

Hence, the nullclines for both of the coupled differential equations completely

overlap and therefore the equilibria, which are given by the intersection of
the nullclines, are defined by a curve.

Proof of our claims on stability will be reported elsewhere; here we sim-
ply sketch the details. Straightforward linear stability analysis reveals the
existence of a centre manifold. The long-term behaviour critically depends
on the initial conditions. The system will blow up if the initial dose is suf-
ficiently large relative to the initial host size, that is, if 3(0) < 0. However,
given that the virus dose is small compared to the initial host size it is bio-
logically reasonable to assume that $(0) > 0. Then, since the equilibrium is
given by 3(t) = 0 it can be shown that the system tends to the equilibrium.

Moreover, the fast and slow dynamics are calculable for the manifold.

Appendix B. Parameter Fitting

Here we outline the method used for the parameter fitting of the math-
ematical model (1). The results of these methods are listed in Table 1 and

shown graphically in Figure 3. For this we use a two-stage process:

1. Since we have assumed that in the absence of virus the host initially

grows exponentially, we fit the curve

H(t) = H(0)ert (B.1)
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where H(0) = H,,,,,, to the initial growth phase of the control data,
thus giving the initial estimate of the maximum growth rate ry and the
initial host mass Hy_ for the control data. We then use ry and the
total mass of the infected hosts data to find the initial size of the host,
Hy.

To find the initial estimates of the maximum infection rate, 3y, and
the initial dose, V4, we use the fact that initially the amount of virus

within the host is small. Hence we may approximate model (1) by

dH

E = ToH (BQ&)
dv
— = [BoHV. B.2
dt o (B.2b)
Solving (B.2) we obtain
V(t) = Vyexp {@ (et — 1)} (B.3)
0

where V(0) = V;, for the initial growth of the virus. Hence one can
use (B.3) to fit to the initial part of the virus data to find the initial
parameter estimates for 3y and V4.

It is not possible to find initial estimates for the host growth reduction
rate, a, and the zero infection virus proportion, p, using techniques
similar to those above. Therefore, we fit the model to both the total
host mass and virus mass data simultaneously by making use of the

previously found initial parameter estimates.

. The set of six initial parameter estimates are then fitted to the data si-

multaneously where the previously found parameter estimates are used

as ‘good’ initial guesses. Since the data exhibit growing variance over
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the course of the infection, we perform a log-transformation to account

for this [39].

All fitting is achieved by the method of least squares using a modified
Levenberg-Marquardt algorithm [40] and implemented in MATLAB®), using
a Runge-Kutta method for solving the differential equations numerically.
This fitting method, often referred to as “trajectory matching” [41] or “model
calibration” [42], has been successful in fitting in other biological datasets (see
Harrison [43] for example). Our method works well here since the time-series
has little process noise and we assume that all the error is from observation,
but for noisy data more complex methods can be used, such as a gradient
matching method [44].

The bootstrapped confidence intervals are calculated from 10000 boot-
strapped data sets (with replacements), to which the model is fitted using

the parameter estimates as initial guesses.
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Figure 1

Mean weight of third instar larvae infected with AcNPV, MbNPV, PafiINPV,

SeNPV and uninfected control. The lines show the fitted values for (a)
AcNPV (log weight = —2.2827 + 0.0104 x time + 1.4605 x 10~* x time? —
1.3546 x 1076 x time®), (b) MbNPV (log weight = —2.3446 + 0.0180 x time —
4.9347 x 107% x time? — 4.0265 x 1077 x time?), (c¢) PafINPV (log weight =
—2.3832 + 0.0183 x time — 9.0041 x 107° x time* + 1.1677 x 1077 x time?),
(d) SeNPV (log weight = —2.2662 + 0.0146 x time — 4.7435 x 107 x time? +
1.8663 x 1077 x time®) and (e) uninfected controls (log weight = —2.2718 +
0.0119 x time + 1.3297 x 107 x time* — 9.8279 x 10~7 x time®*). In (f)
the mean weights are plotted for the various treatments, along with fit-
ted lines for uninfected controls (log weight = —2.2829 + 0.01644 X time),
AcNPV (log weight = —2.2973 + 0.01444 x time), MbNPV (log weight =
—2.296340.01527 x time), PafINPV (log weight = —2.2947+0.01131 X time)
and SeNPV (log weight = —2.2392 4 0.01219 x time).

Figure 2

The within-host growth of (a) AcNPV, (b) MbNPV, (¢) PafINPV and
(d) SeNPV in third instar larvae of S. exigua as measured by the proportion
of total DNA represented by viral DNA. The lines show the fitted values
for AcNPV (log proportion = —4.6000 — 0.3706 x time + 0.0181 x time? —
2.7824 x 10~* x time® +1.8302 x 107 x time* —4.4369 x 10~ x time”), MbNPV
(log proportion = —5.4454 — 0.0473 x time + 0.0010 x time? + 2.0390 x
107° x time® — 3.3223 x 1077 x time* + 1.1557 x 107° x time®), PafINPV
(log proportion = —5.6825 — 0.1018 x time + 0.0062 x time* — 8.3174 x
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1072 x time® 4 4.3875 x 1077 x time* — 8.0036 x 1071% x time®) and SeNPV
(log proportion = —6.2862 —0.2996 x time+0.0172 x time? —2.8257 x 107* x
time® + 1.9346 x 107¢ x time* — 4.8002 x 107 x time®).

Figure 3

The total host mass and within-host mass growth of (a) AcNPV, (b)
MbNPV, (c) PafiINPV and (d) SeNPV in third instar larvae of S. exigua.
The asterisks denote total host mass, plus signs denote virus mass from the
experimental data and the solid and dashed lines show the results of the
fitted Model (1) for the parameter values in Table 1. Note that the virus

axes are in a log;, scale.

Figure 4

The effects of the virus parameters in infections. Here we run simulations
of Model (1) using the parameters in Table 1 for AcNPV. In each graph the
total host mass (solid line) and the virus yield (dashed line) at the time of
host death is plotted against (a) virus dose, Vp, (b) initial host mass, Hy,
(¢) maximum host growth rate, rg, (d) host growth reduction rate, a, (e)
maximum infection rate, 5y, and (f) zero infection virus proportion, p. The
time to death is 160 hours. Note that qualitatively similar results hold for
MbNPV, SeNPV and PafINPV.
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1 Insect and virus stocks

Spodoptera exigua larvae were obtained from Syngenta (Jeallotts Hill, UK) in 2003 and
reared in continuous culture on artificial diet [1]. This population was shown to be free from
persistent baculovirus infections by PCR and RT-PCR for the viral polyhedrin gene using
total insect DNA as a template.

Four different baculoviruses were used in this study; the Oxford strain of Mamestra bras-

sicae nucleopolyhedrovirus (MbNPV) [2]|, Panolis flammea nucleopolyhedrovirus ( PafiINPV)

variant 4 [3], Autographa californica nucleopolyhedrovirus (AcNPV) strain C6 [4] and Spodoptera

exigua nucleopolyhedrovirus (SeNPV) [5]. Stocks of each virus were made by dosing third
instar S. erigua larvae with 10® occlusion bodies (OBs) by diet plug feeding [6], and puri-
fying the virus by density gradient centrifugation [1]. The titre of the purified virus stock
was estimated using an Improved Neubauer haemocytometer (B.S. 748, Weber, UK) and

the virus stored at -20°C. Virus stocks were re-counted before each use.

2 Statistical Methods

The data were analysed using generalised linear modelling techniques (GLIM version 3.77,
Royal Statistical Society, 1985). For the analysis of mortality all explanatory variables
(virus concentration, virus, block) and their interactions were fitted to the mortality data.
A binomial error structure was assumed, which was substantiated by subsequent inspection
of the scale parameter [7]. The contribution of each term was tested for significance and non-
significant terms removed to leave the minimal adequate model. Box-Cox transformations

indicated an inverse transformation was required for data on time to larval death.

3 DNA Extraction & Quantification

DNA (insect and viral) was extracted from the frozen larvae by first thawing them and
then disrupting them using a manual tissue grinder. Total DNA was then extracted from

this material using a DNEasy mini kit (Qiagen). The DNA was eluted from the column into

1
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200pul of elution buffer and quantified by spectrophotometry at 260nm and 280nm. Extracted
DNA was stored at -20°C. DNA was extracted from 5 of the larvae harvested at each time
point.

Viral DNA was quantified by real-time PCR using a Rotor Gene RG-3000 (Corbett
Research) and a CAS-1200 liquid handling system (Corbett Research). Primer pairs were
designed, specific to the sequence of each virus, to amplify a region of approximately 200
base pairs (bp) from the viral iel gene (AcIE1-1 AAGGTGTGGTGGGCCAGTTT, AclEl-
2 TGGTCGGAGAACCTGTTGGA, MbIE1-1 TTGCTTCCGAAGGACCACAA, MbIE1-2
ATCCCGTGTCGAGCAAATGA, PfIE1-1 CGTCAACGGCATCAACAACA, PfIE1-2 TG-
GCAGCTCCTTTTCCAACA, SelE1-1 TCGACAACAGCGGCATCTTT, SelE1-2
CGGTAGCGTTCGATGGTGAC).

Each real-time PCR reaction mixture consisted of Platinum SYBR Green qPCR SuperMix-
UDG (Invitrogen) (10ul), sterile distilled water (6.2ul), BSA (1ul), and the appropriate
primers (10pmol/ul, 0.4ul of each primer) to which was added 2ul of the extracted total
DNA. The reaction profile was a single cycle of 50°C for 2 minutes, followed by 40 cycles of
95°C for 15 seconds, 57°C for 15 seconds and 72°C for 15 seconds. This was followed by a
stage in which the temperature was raised from 57°C to 99°C in 1°C intervals to allow for
subsequent melt curve analysis.

For each sample duplicate real-time PCR reactions were run and each PCR run included
duplicate negative controls in which the template DNA was replaced by 2ul of sterile distilled
water. For the quantification of the samples, genomic DNA from the appropriate virus was
used to generate a standard curve. Viral genomic DNA was purified by caesium chloride
gradient purification of DNA released from virus particles [6]. For each set of quantification
reactions a series of five decimal dilutions of the viral genomic DNA was set up using the
CAS-1200 system. This dilution series was made from an initial sample of the virus DNA
which had been quantified by spectrophotometry at 260nm and 280nm. Standard samples
were also run in duplicates. A standard curve was generated based on this dilution series

using the software associated with the RG-3000, which also quantified the samples based on
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this curve. Standard curves with an R2 value of less than 0.99 were rejected. Samples were
only regarded as giving a positive real-time PCR result if the take-off point of the reaction
was before that seen with any primer dimers produced in the negative control reactions and a
product with the appropriate denaturation temperature was seen on the melt-curve analysis.

An average of two duplicates was taken to be the quantification for a given sample. As
the total amount of DNA in the PCR reaction was known (2ul of known concentration in

each reaction) the proportion of this which was viral could therefore be calculated.

4 Consequences of Censoring Technique

One drawback of our sampling method is that data points towards the end of the time
series are censored. Some insects died before the final time point, so those censored at the
final time point are selected from those that survived. There are likely to be yield differences
depending upon time of death, and therefore the final sub-sample will be biased. It is unclear
how this affects our results, but it is most likely to affect host-pathogen systems where one
compares a virus with a high degree of variance in the speed of kill to a virus with a low
degree of variance (which does not apply here) as this will influence the degree of bias. To
combat this, the only solution would be to monitor the growth of virus in individual larvae
by subsampling from the same insect throughout the course of infection. However, there
are a number of technical issues with sampling tissue and accurately estimating total virus

abundance within the host without killing the insect.

5 Virus Growth Rate

By equation (B.3), the model predicts that the initial growth rate is double exponential. This
is faster than the single exponential growth rate that is common in many other infection

models. Indeed, using an approximation to equation (B.3) such that

V(t) = Vo exp {BoHot } (1)
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equation (1) underpredicts the growth of virus (see Figure S2).

6 Prescribing 7y

In the main text we show the results of the model fitting whereby all model parameters are
fitted to the data from infected individuals simultaneously. This is done so that we account
for stochastic differences between treatments and to allow the value to be and emergent
property of the simultaneous fitting. However, rg, the maximum host growth, is the innate
parameter of host growth and should be independent of the infection. Hence, an alternative
fitting strategy could be to fit r¢ from the initial control data (i.e. before any pupation effects
occur), fix this parameter and fit the remaining parameters as described by the previous
method. In this section, we carry out this fitting and discuss the implications.

The results of prescribing rq are shown in Table S1. Comparing this result to our previous
result (Table 1 in the main text), we see that the biggest effect is on the host growth reduction
rate, a. Here we see a large increase in this parameter value compared to the previous fitting.
This difference would suggest that, by not fitting fixing the maximum host growth rate to
the control data, the fitting method underestimates the host growth slow-down caused by

the virus.

7 Dependence on the Speed of Kill

In Figures S3 and S4 we have further explored the impacts of the speed of kill on the host
mass (left hand column) and yield (right hand column) for all 6 parameters (rows) in the
model for two contrasting virus strains: AcNPV and SeNPV. The results are discussed in

the main text Discussion.
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Table S1: Fitted parameter values for the infection model using the method outlined in
Section 3.2 with the rq prescribed by fitting it to the first 7 census points of the control data.
See Table 1 in the main manuscript for a comparison.

Parameter AcNPV PafINPV MbNPV SeNPV
Initial Host Mass (g), Ho 4.437 x 10~°  3.512 x 10~ °  5.5512 x 10~ 2 3.763 x 10— °
Virus Dose (g), Vo 1.25 x 1079 4.56 x 1077 9.72 x 1077 5.19 x 10710
Max. Host Growth Rate (h™1), rq 3.642 x 1072 3.642 x 102 3.642 x 1072 3.642 x 1072
Zero Infection Virus Proportion, p 2,439 x 101 4.058 x 102 2.726 x 1072 1.709 x 10~ 1
Max. Infection Rate (g~ *h™1), Bg 19.859 18.130 6.881 16.354

Host Growth Reduction Rate (h™ 1), a 1.116 26.775 37.104 1.281
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Figure S1: In (a) dose-mortality curves for AcNPV, MbNPV, PafINPV and SeNPV.
The lines show the fitted values for AcNPV and MNPV (logit = —6.948 + 1.725 x
log(virus conc)), PafINPV (logit = —7.2812 + 1.725 x log(virus conc)) and SeNPV (logit =
—5.802+1.725 x log(virus conc)) and proportional mortality is given by p = 1/(1+4(1/¢°8it)).
In (b) mean time to death vs dose curves for AcNPV, MbNPV, PafiINPV and SeNPV. The
lines show the fitted values for AcNPV (time to death = 1/(0.005454+4-0.0004807 x log dose)),
MbNPV (time to death = 1/(0.00537152+0.0002615xlog dose)), PafINPV (time to death =
182.48) and SeNPV (time to death = 1/(0.0051692 + 0.0007172 x logdose)). The analysis
carried-out was inverse transformed with normal errors.
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Figure S3: Quantifying the effects of the speed of kill on host mass and yield of virus for
AcNPV. Here we run simulations of Model (1) using the parameters in Table 1 for AcNPV.
We have plotted the total host mass (left hand column) and viral yield (right hand column)
for all 6 parameters (rows). The colours indicate the masses for each parameter and speed
of kill combination.
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Figure S4: Quantifying the effects of the speed of kill on host mass and yield of virus for
SeNPV. Here we run simulations of Model (1) using the parameters in Table 1 for SeNPV.
We have plotted the total host mass (left hand column) and viral yield (right hand column)
for all 6 parameters (rows). The colours indicate the masses for each parameter and speed
of kill combination.
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