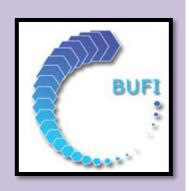


Lithological control on soil chemistry, Northern Ireland

By Nicola Ashton


Supervisors:

Prof. R. A D. Pattrick

Prof. J. R. Lloyd

Dr B. E. van Dongen

Dr A. Tye (BGS)

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

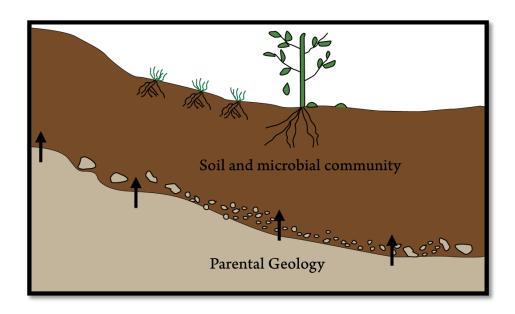
Site Selection

Case study

Introduction

'Soils are different around the world'

But what do we know about the relationships between source rock, soils and microorganisms?


Factors

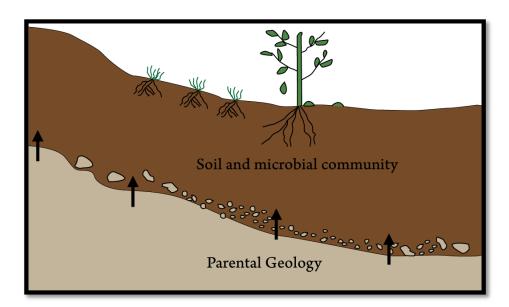
- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Introduction

- Microbes critical for soil fertility and remediation
- Knowledge of the biogeochemical cycles is limited
- Controls on microbial communities and soil chemistry has not been systematically determined


Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

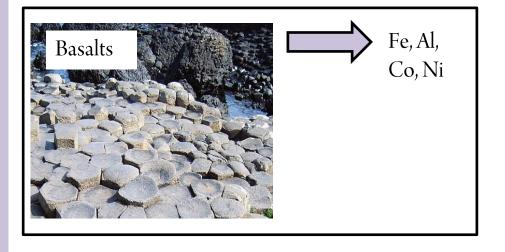
Site Selection

Case study

Introduction

• Importance?

- Understanding of the geochemical behaviour of soil bacteria can improve our knowledge of the release of nutrients and aid in identifying bacterial strains suitable for use
- Bacteria can be used in variety of applications

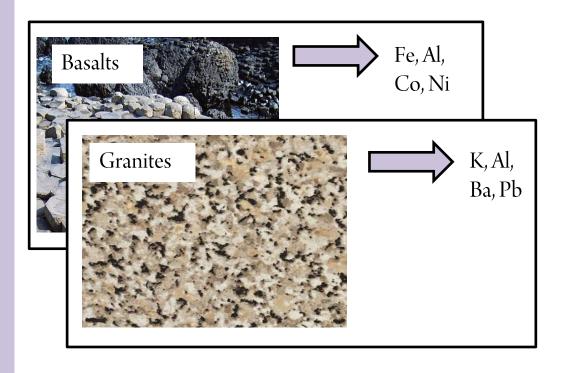

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Factors – Source Rock

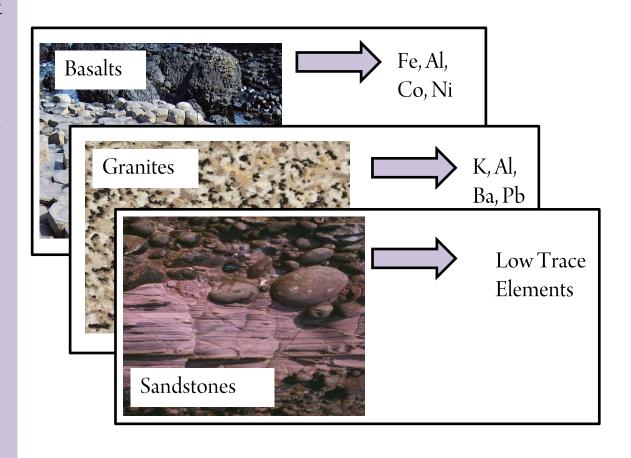

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Factors – Source Rock


Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Factors – Source Rock

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Aims and considerations

To better understand the relationships between the source rock, soil and microorganisms, aims include;

- Choosing suitable sites
- Analysing the collected samples to understand current conditions
- Use selected soil samples in microcosm experiments under varying conditions and monitor changes

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Aims and considerations

Choosing sites of interest

Other considerations need to be taken into account:

- Climate
- Age
- Topography
- Biota

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography


Site Selection

Case study

Factors - Climate

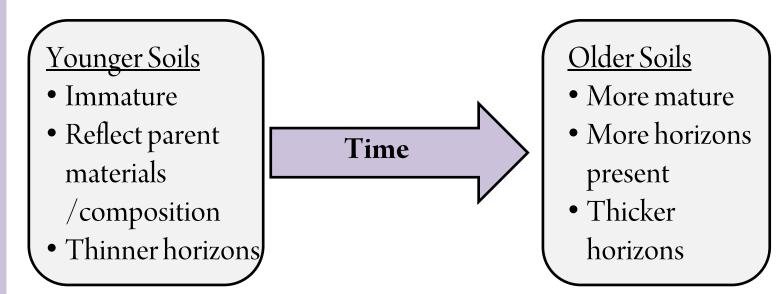
Climatic input varies with respect to location;

- Chemical and physical weathering
 - Temperature
 - Precipitation
- Glacial, fluvial and aeolian movement

Need to study soils which are in close proximity

The University

Introduction


Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Factors - Age

Need to study samples of similar age

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Factors – Biota

Interactions of plants, soil organisms and anthropogenic activity

- Plants influence amount of organic matter build up
- Soil organisms soil mixing, element mobility
- Anthropogenic influence industrial waste, fires

Need samples with comparable vegetation and limited human impact

The University

Introduction

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Casestudy

Factors - Topography

Slope affects;

- Rate of water infiltration and surface runoff
- Soil erosion
- Hillside shading

Need samples from comparable relief and limited human impact

Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

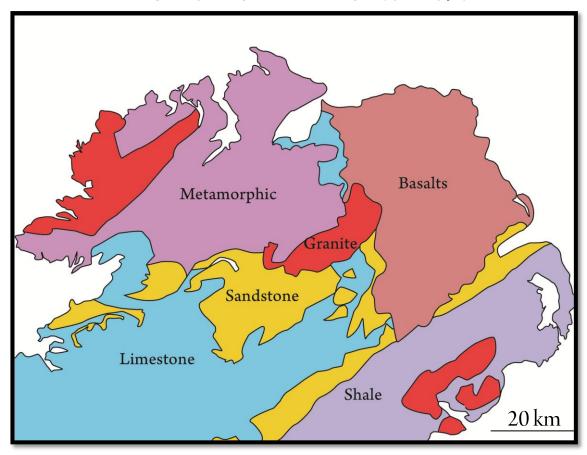
Case study

Considerations?

Samples need:

- to originate from a variety of different parent rocks
- to be in close proximity to each other
- to be of similar age
- to be of comparable vegetation and topography

Where


Factors

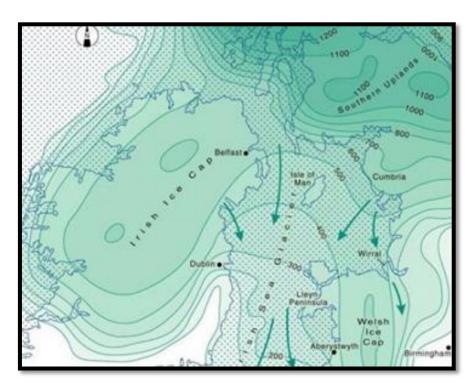
- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Northern Ireland!

- Large variety of geology
- Small land area 13,550 km² (approximately the same size as Yorkshire!


Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

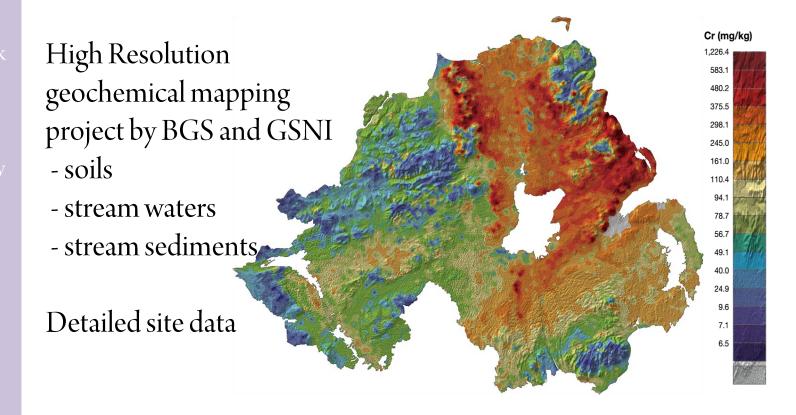
Northern Ireland!

- Soils of similar ages
- Soils have undergone similar climatic conditions

Palaeogeographical reconstruction of the last British-Irish Ice sheet and Irish Sea glacier, Aberystwyth University

The University

Introduction


Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Tellus Database

20 km

Cr geochemical base line map from Tellus Survey. Provided by GSNI, crown copywrited.

The University

Introduction

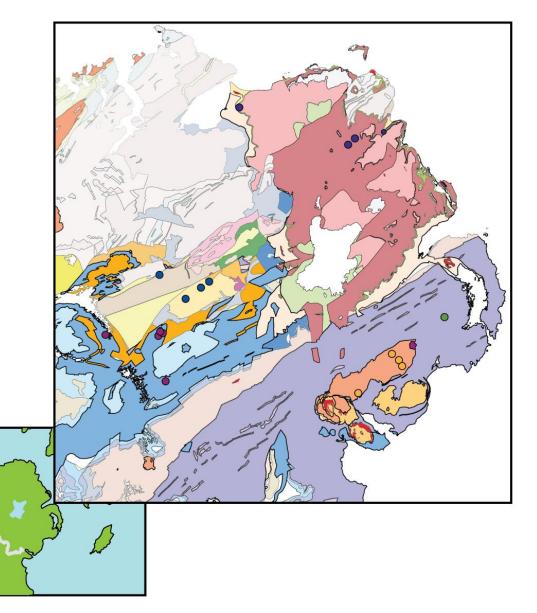
Basalts

Granite

Limestone

Sandstone

Shale


Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Site Selection

Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Sampling

Organic Analysis

Case study

Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Summary

Northern Ireland is the ideal location to sample

- Varied lithology
- Soils are of same age and undergone same climatic conditions
- Easily identifiable area's of interest
- Tellus database

Already collected samples from Basalts

Future lithologies: Sandstone, Limestone, Granite and Shale

Factors

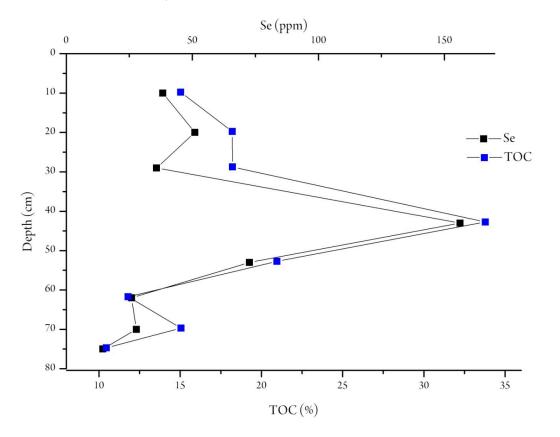
- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Case study

- Location: County Meath, Republic of Ireland.
- Work of Jon Fellowes, organic analysis by Wafa al Lawati
- Focus upon understanding the chemical behaviour of Se
- Previous sites identified showed specific localities with very high concentrations
- Se is required for many cellular processes but is toxic at high concentrations, although this is not easily defined

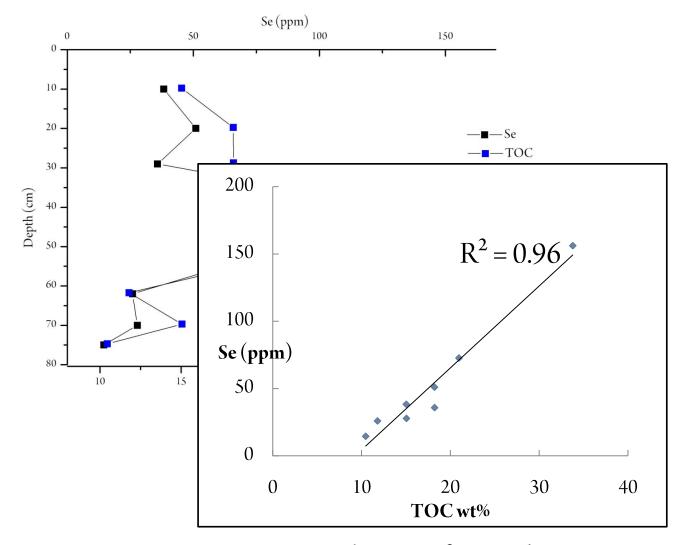

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Se/TOC correlation


Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Se/TOC correlation

Suggests Strong correlation of Se with TOC

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Se / Biomarkers?

Is Se associated with any specific biomarkers?

Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Se / Biomarkers?

Is Se associated with any specific biomarkers?

Correlation with Se

Biomarker Class	\mathbb{R}^2
HMW <i>n</i> -alkanes	0.48
HMW Alkanoic Acids	0.77
HMW Alkanols	0.14
LMW Alkanoic Acids	0.86
LMW Alkanols	0.81

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Se / Biomarkers?

Correlation with Se

Biomarker Class ¹	\mathbb{R}^2
HMW <i>n</i> -alkanes	0.48
HMW Alkanoic Acids	0.77
HMW Alkanols	0.14
LMW Alkanoic Acids	0.86
LMW Alkanols	0.81

• Of the functional groups alkanoic acids have generally the strongest correlations

The University

Introduction

Factors

- Source Rock
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Se / Biomarkers?

Correlation with Se

Biomarker Class ¹	\mathbb{R}^2
HMW <i>n</i> -alkanes	0.48
HMW Alkanoic Acids	0.77
HMW Alkanols	0.14
LMW Alkanoic Acids	0.86
LMW Alkanols	0.81

- Of the functional groups alkanoic acids have generally the strongest correlations
- Based upon molecular weight, LMW correlation is stronger suggesting a possible correlation with microbial biomass?
- However strongest correlation is still observed between Se and TOC

Factors

- Source Rocl
 - Climate
 - Age
 - Biota
- Topography

Site Selection

Case study

Summary

- Ireland site location
- Interesting correlation of Se with TOC, suggesting that the processes which are responsible for mobilisation of Se and TOC are the same
- Correlation with specific classes of compounds varied, generally strongest with alkanoic acids.
- Stronger correlations for LMW compounds if compared to HMW counterparts, suggesting a possible correlation with biomass.

References

- Work in progress by Jon Fellowes
- Basalts, www.irelandtourismguide.com
- Granites, www.stonecontact.com
- www.habitas.org.uk
- http://environmentalchemistry.com/yogi/periodic/Se.html#Regulatory
- GSNI
- http://www.aber.ac.uk/en/iges/research-groups/centre-glaciology/research-intro/welsh-glacial-palaeoenvironments/