rapid subglacial erosion beneath Pine Island Glacier, West Antarctica

A. M. Smith, C. R. Bentley, R. G. Bingham, and T. A. Jordan

Received 16 March 2012; revised 21 May 2012; accepted 28 May 2012; published 23 June 2012.

[1] We present measurements of ice thickness, gravimetry and surface elevation on Pine Island Glacier, West Antarctica, separated by a period of 49 years. At one station, on the main trunk of the glacier we measured a surface elevation lowering with no significant change in ice thickness. We interpret these as indicating subglacial erosion of 31.8 ± 13.4 m at this location, at a mean rate over the measurement period of 0.6 ± 0.3 m a⁻¹, and suggest that a current erosion rate of ~1 m a⁻¹ is possible. Our results emphasize that locally, basal processes can have a significant effect on ice sheet changes, particularly where fast-flowing ice has an easily erodible bed. Citation: Smith, A. M., C. R. Bentley, R. G. Bingham, and T. A. Jordan (2012), Rapid subglacial erosion beneath Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 39, L12501, doi:10.1029/2012GL051651.

1. Introduction

[2] The subglacial environment remains one of the least explored places on Earth and the processes operating there are still poorly understood. Subglacial erosion is one process that has proved particularly difficult to address, due to problems accessing glacier beds. Hence, progress in understanding contemporary subglacial erosion has been made primarily through proxy evidence and the application of theoretical studies [e.g., Lawson, 1993; Alley et al., 2003]. However, knowledge of subglacial erosion is still limited and its incorporation into numerical ice sheet models remains in its infancy [Hildes et al., 2004].

[3] Soft sediments beneath fast-flowing glaciers play a significant role in controlling ice flow, through their ability to deform, and their contribution to the basal drainage system [Cuffey and Paterson, 2010]. Complete removal of an unthifted sediment layer beneath a glacier could profoundly affect its dynamics. Limited evidence suggests that erosion rates beneath soft-bedded glaciers can be up to three orders of magnitude greater than elsewhere in the subglacial environment [Nolan et al., 1995; Motyka et al., 2006; Smith et al., 2007]. We present a comparison between two data sets from Pine Island Glacier in West Antarctica and assess indications of subglacial erosion.

2. Pine Island Glacier

[4] Pine Island Glacier (PIG) drains part of the West Antarctic Ice Sheet (WAIS) into the Amundsen Sea. Observations have shown major changes in its dynamics and geometry in recent decades. Its speed increased by almost 50% between 1992 and 2007 [Rignot, 2008] and acceleration continues [Scott et al., 2009]. The grounding line has retreated by up to 20 km since 1996 [Joughin et al., 2010], concurrent with lowering surface elevation and changes in the glacier’s dynamics [Rignot, 1998; Shepherd et al., 2001; Scott et al., 2009; Wingham et al., 2009]. Ice discharge from PIG increased by ~30 Gt yr⁻¹ between 1996 and 2007 and it is currently the greatest single contributor to the mass imbalance of WAIS [Rignot, 2008]. Data were first acquired on PIG during the post-International Geophysical Year (IGY) Ellsworth Highland Traverse (EHT) [Shimizu, 1964] of 1960–61. Further data were collected between 2006 and 2009. Henceforth, the 1960–61 work will be referred to as IGY and that during 2006–09 as IPY (International Polar Year). Six IGY sites were revisited in IPY (Figure 1) and some measurements repeated (Table 1).

3. Data Acquisition

3.1. Station Location and Navigation Errors

[5] Navigation during IGY was by dead-reckoning controlled en-route by sun-sights. Position errors at sun-sight locations are ±0.5 km and up to ±5 km elsewhere. During IPY, positions were determined by dual-frequency GPS with a precision of ±1 m. Navigation errors are particularly significant for the comparisons between IGY and IPY data. Where surface topography is variable, failure to reoccupy IGY stations precisely could result in incorrect indications of elevation change. Likewise, where bed topography is rough, navigation errors could lead to incorrect interpretations of ice thickness change. To assess the effect of navigation errors we used additional data (seismic, radar, satellite altimetry and airborne gravity) and determined maximum deviations (of each measured parameter) across an area equivalent to that represented by the navigation error at each location (Table 1). Regional trends and local variability in surface elevation were given by observer’s logs and en-route barometric observations in IGY. For IPY, orthogonal surface elevation profiles (~1 km) were measured with dual frequency GPS, complemented by satellite altimetry [Bamber et al., 2009] and for sites EHT30.9 and EHT31, by additional GPS data [Smith and Scott, 2007]. Airborne radar data [Vaughan et al., 2006] were used to assess bed topography.
at all sites. Ground radar (3 MHz) and seismic reflection lines were also acquired around EHT 30.9 and EHT31 during IPY (Figure 1b). These show that bed topography in the area around these two sites is much smoother than elsewhere (Table 1 and Figure 2). Gravity field gradients were assessed using airborne survey data [Jordan et al., 2010].

3.2. Seismic Data

Both projects used the travel times of seismic reflections from the glacier bed to determine ice thickness. Corrections were made for shot depths, based on snow and firn density measurements and supplementary seismic refraction data. Data quality influences the accuracy of the measured two-way travel times (twtt), giving an uncertainty of ∆1 ms. There is little information from which to quantify the inherent repeatability of the seismic method, but repeat surveys elsewhere [Smith et al., 2007] suggest a precision of ±5 m. The twtt data, with equivalent ice thicknesses, are given in Table 1. A slight increase in firm density (~50 kg m⁻³), with a corresponding increase in seismic velocity, is the reason why a small twtt decrease at site EHT31 indicates a slight thickening, rather than thinning of the ice.

3.3. Gravimetry

Gravity observations were made using Lacoste and Romberg meters. In IGY, ties to Byrd Station were made at the beginning and end of the 3 month traverse. In IPY, a two-way aircraft tie (25 hours) was made to site EHT31 from a field camp on Rutford Ice Stream. Byrd and Rutford were tied, respectively, to base stations at McMurdo and Rothera and hence, to the international gravity network [Morelli et al., 1974]. Meter calibrations were checked using standard baselines. Both meters have long histories of slow, steady drift, and showed similarly low values during the surveys (~0.02 mGal d⁻¹), with no tares. Corresponding adjustments were distributed linearly with respect to time. Observed gravity at EHT31 increased by 6.6 ± 0.23 mGal between IGY and IPY.

3.4. Surface Elevation

Surface elevation during IGY was determined barometrically [Bentley and Ostenso, 1961]. Control was given by one return visit and an air-supported tie to sea level. During IPY, surface elevation was determined by dual frequency GPS. A geoid (Eigen-GL04C) correction of +24 m enabled direct comparisons with the IGY data. All locations show a lowering of surface elevation (Table 1) but most errors are high (46–58 m) primarily due to the IGY altimetry and navigation uncertainties. Hence, although measured differences are large, most are less, or only slightly greater than the errors. At EHT31 however, the navigation error is reduced by a set of IGY sun-sights, giving a change in surface elevation of −66 ± 40 m.

3.5. Combined Errors

The combined errors (Table 1) show a simple pattern. In the centre of the glacier, smooth surface and bed topography, combined with low navigation errors, give a low uncertainty in measured changes. Elsewhere, errors are much greater and less can be concluded with certainty about changes since IGY. We therefore concentrate on results from EHT31; the other sites emphasize that not all re-measurements of earlier data will give significant results, even though indicated changes may be large.

4. Rapid Subglacial Erosion

The elevation data at EHT31 show surface lowering between IGY and IPY whilst the seismic data show no significant change in ice thickness. These two results can only be reconciled by subglacial erosion, removing mass from beneath the ice and lowering the glacier surface without...
Measurements, Uncertainties and Results

Table 1. Measurements, Uncertainties and Results

<table>
<thead>
<tr>
<th>Station</th>
<th>Surface Elevation (barometric), IGY (m)</th>
<th>Surface Elevation (GPS), IPY (m)</th>
<th>*Surface elevation uncertainty, IGY</th>
<th>*Surface elevation uncertainty, IPY</th>
<th>*Regional (1–10 km) surface elevation variability</th>
<th>*Local (<1 km) surface elevation variability</th>
<th>Surface elevation change, GPS-barometric (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHT29</td>
<td>949</td>
<td>890</td>
<td>±40 m</td>
<td>±1 m</td>
<td>±37 m</td>
<td>±20 m</td>
<td>−59 ± 58</td>
</tr>
<tr>
<td>EHT30</td>
<td>789</td>
<td>738</td>
<td>±40 m</td>
<td>±1 m</td>
<td>±14 m</td>
<td>±20 m</td>
<td>−51 ± 47</td>
</tr>
<tr>
<td>EHT30.9</td>
<td>683</td>
<td>683</td>
<td>±40 m</td>
<td>±1 m</td>
<td>±2 m</td>
<td>±2 m</td>
<td>−66 ± 40</td>
</tr>
<tr>
<td>EHT31</td>
<td>752</td>
<td>686</td>
<td>±40 m</td>
<td>±1 m</td>
<td>±10 m</td>
<td>±2 m</td>
<td>−44 ± 46</td>
</tr>
<tr>
<td>EHT32</td>
<td>791</td>
<td>747</td>
<td>±40 m</td>
<td>±1 m</td>
<td>±18 m</td>
<td>±20 m</td>
<td>−13 ± 48</td>
</tr>
<tr>
<td>EHT33</td>
<td>798</td>
<td>785</td>
<td>±40 m</td>
<td>±1 m</td>
<td>±20 m</td>
<td>±20 m</td>
<td></td>
</tr>
</tbody>
</table>

Seismic twtt, ms (ice thickness, m) IGY

|---------|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|

Gravimetry

<table>
<thead>
<tr>
<th>Station</th>
<th>Observed gravity, IGY (mG)</th>
<th>Observed gravity, IPY (mG)</th>
<th>*Uncertainty from assuming linear drift (mG)</th>
<th>*Effect of navigation uncertainty (mG)</th>
<th>*Uncertainty from repeated gravity measurements (mG)</th>
<th>*Maximum gravity field gradient of 0.36 mGal km⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHT29</td>
<td>982639.3</td>
<td>982645.94</td>
<td>±0.1</td>
<td>±0.18</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>EHT30</td>
<td>982639.3</td>
<td>982645.94</td>
<td>±0.1</td>
<td>±0.18</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>EHT30.9</td>
<td>982639.3</td>
<td>982645.94</td>
<td>±0.1</td>
<td>±0.18</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>EHT31</td>
<td>982639.3</td>
<td>982645.94</td>
<td>±0.1</td>
<td>±0.18</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>EHT32</td>
<td>982639.3</td>
<td>982645.94</td>
<td>±0.1</td>
<td>±0.18</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>EHT33</td>
<td>982639.3</td>
<td>982645.94</td>
<td>±0.1</td>
<td>±0.18</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
</tbody>
</table>

Subglacial Erosion

<table>
<thead>
<tr>
<th>Station</th>
<th>Net erosion (m)</th>
<th>Mean erosion rate, 1961–2009 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHT29</td>
<td>31.8 ± 13.4</td>
<td>0.6 ± 0.3</td>
</tr>
</tbody>
</table>

Individual uncertainties marked * are r.m.s., for those marked † the maximum range of variation within the navigation uncertainty was used (i.e., more conservative than r.m.s.). Final uncertainties given for changes in surface elevation, ice thickness and gravity, and for erosion and erosion rate, are combinations of the individual uncertainties.

Reducing the ice thickness. Seismic data [Smith and Scott, 2007] show the bed in this area is soft water-saturated sediments which will erode easily. Hence, we conclude that a significant quantity of sediment has been eroded from the glacier bed at this location since IGY. As the errors in the surface elevation data are high, we used the gravity data to calculate how much sediment has been removed. This required corrections for change in distance from the centre of the Earth (Free Air Correction) and the gravitational effect of the sediment itself (Bouguer Correction). These are −0.3086hₚ and + 0.04188hₚρₛ, respectively, where hₚ (m) is the change in sediment thickness and ρₛ (g cm⁻³) is the sediment density. Sediment density is unknown but is unlikely to be <1.8 g cm⁻³ or >2.2 g cm⁻³ [Smith, 1997]. Hence, we assumed a value of 2.0 ± 0.2 g cm⁻³. We also applied Free Air and Bouguer corrections for the measured increase in ice thickness, hᵢ, (+2 m), assuming an ice density, ρᵢ, of 0.915 g cm⁻³. The change in thickness of eroded basal sediments is thus given by hₛ = (Δg − hᵢ(−0.3086 + 0.04188ρₛ))/(−0.3086 + 0.04188ρᵢ). From the gravity measurements, Δg = 6.6 mGal. Hence, including the uncertainties in gravimetry (±0.23 mGal), ice thickness change (±11 m) and assumed sediment density (±0.2 g cm⁻³), we calculated a net erosion of 31.8 ± 13.4 m. Allowing for the ice thickness increase, surface elevation lowering measured gravimetrically is 29.8 ± 13.4 m. As our data points are few and our main results are from just one location, we cannot unequivocally rule out a simple observation error. However, the ice thickness measurements at EHT30.9 and the surface elevation measurements at EHT31, respectively, support our seismic and gravity interpretations at EHT31, so such an error is highly unlikely. Models of isostatic rebound in the area [Ivins and James, 2005; Riva et al., 2009] suggest an error...
for the recent advance. The Editor thanks Huw Horgan and John Anderson for assisting in the evaluation of this paper.

The Editor thanks Huw Horgan and John Anderson for assisting in the evaluation of this paper.

315 is possible. In contrast, there are 394 Helsen et al. Mean erosion rate compared with mean rates of Pritchard et al. [2010]. Modern navigation, surface elevation and ice thickness measurements could detect an erosion rate of 1 m a⁻¹ after as little as 5 years. Where the eroded sediment has been moved to is unknown, but considering ice flow and subglacial hydraulic gradients, it is most likely to have been transported downstream. The bed beneath the ice plain upstream of the grounding line [Corr et al., 2001] is one likely deposition site; eventual incorporation into till deposits at the grounding line [Anandakrishnan et al., 2007] is another. Recent, high sedimentation rates, associated with emerging meltwater plumes have been interpreted offshore in Pine Island Bay [Lowe and Anderson, 2002]. This is another possible location for deposition of the eroded material and would be consistent with our interpreted high erosion rates.

Our results have implications for interpreting ice sheet change from satellite altimetry and, in particular, measuring ice thinning from surface lowering. As well as surface processes [Wingham, 2000; Helsen et al., 2008], basal mechanisms must also be considered. High subglacial erosion rates could lead to unrecognized errors if change is assessed from surface elevation measurements alone [Motyka et al., 2006]. Locally, it cannot be assumed that surface lowering over grounded ice can be attributed wholly to ice thinning. At wider scales, ice sheet mass balance estimates encompassing whole drainage basins agree well in some cases [Thomas et al., 2004; Rignot, 2008; Chen et al., 2008] although there is considerable variability [van den Broeke et al., 2011]. Our results do not bring into question these studies at the ice sheet scale, but do advise caution locally. This is particularly so where fast-flowing ice has a soft, easily erodible sediment bed.

Our results have implications for interpreting ice sheet change from satellite altimetry and, in particular, measuring ice thinning from surface lowering. As well as surface processes [Wingham, 2000; Helsen et al., 2008], basal mechanisms must also be considered. High subglacial erosion rates could lead to unrecognized errors if change is assessed from surface elevation measurements alone [Motyka et al., 2006]. Locally, it cannot be assumed that surface lowering over grounded ice can be attributed wholly to ice thinning. At wider scales, ice sheet mass balance estimates encompassing whole drainage basins agree well in some cases [Thomas et al., 2004; Rignot, 2008; Chen et al., 2008] although there is considerable variability [van den Broeke et al., 2011]. Our results do not bring into question these studies at the ice sheet scale, but do advise caution locally. This is particularly so where fast-flowing ice has a soft, easily erodible sediment bed.

Conclusions and Discussion

Over the 49 year period, the mean erosion rate was 0.6 ± 0.3 m a⁻¹. Measured and interpreted subglacial erosion rates are normally in the range 0.1–100 mm a⁻¹ [Hallet et al., 1996], significantly less than our value from PIG. The only comparable results from a similar setting are from Rutford Ice Stream [Smith et al., 2007] where 6 m of erosion was measured over a 6-year period. High erosion rates have also been reported from Iceland and Alaska: up to 3 m a⁻¹ during Little Ice Age glacier advances [Björnsson, 1996; Nolan et al., 1995] and up to 4 m a⁻¹ for the recent advance of Taku Glacier [Motyka et al., 2006]. Together with our new data from PIG, these represent a growing body of evidence for high erosion rates beneath soft-bedded, fast-flowing ice.

The nature of the subglacial material can influence ice flow [Anandakrishnan et al., 1998] and sustained rapid erosion increases the possibility that the eventual removal of soft sediment beneath a glacier will expose a different substrate, changing the ice dynamics [Motyka et al., 2006]. Seismic and airborne-gravity data from ~20 km upstream of EHT32, respectively indicate a thin (<10 m) sediment layer beneath the ice, and underlying igneous rocks [Scott et al., 2010]. If current erosion rates are high, removal of this layer could occur over the next few decades. Considering the changes already happening on PIG, this possibility is of considerable significance; if erosion removes the intervening soft sediment, bringing the ice into direct contact with crystalline rocks, the basal drag is likely to increase, reducing the ice flow.

PIG has been affected by both ice thinning and subglacial erosion over recent decades. Figure 3 compares the mean erosion rate with satellite- and GPS-derived surface lowering from the EHT31 area. Estimates of surface lowering since 2000 greatly exceed our mean erosion rate. Nevertheless, on decadal timescales, erosion can clearly be a significant component of the surface lowering at this location. We do not know the sequence of erosion that occurred. Discrete events or a continuous, variable-rate mechanism, are more likely than a constant rate over 49 years. For a continuous mechanism, erosion rate will probably be proportional to ice speed and the present-day rate will be much higher than the 49-year mean, as ice speed on PIG has increased in recent decades [Rignot, 2008], hence, a present-day erosion rate in the order of 1 m a⁻¹ is possible. In contrast, there are no recent indications (e.g., from satellite data) of large, discrete erosion events that could result from subglacial floods or meandering subglacial drainage channels. This suggests erosion by a continuous ice-bed interaction mechanism (e.g., subglacial sediment deformation). However, we cannot yet rule out discrete, water-related events, particularly as there is bathymetric evidence offshore for large volumes of water flowing beneath the ice in the past [Lowe and Anderson, 2003] and there is seismic evidence for free water in places beneath the glacier [Smith and Scott, 2007; Scott et al., 2010].

Modern navigation, surface elevation and ice thickness measurements could detect an erosion rate of 1 m a⁻¹ after as little as 5 years. Where the eroded sediment has been moved to is unknown, but considering ice flow and subglacial hydraulic gradients, it is most likely to have been transported downstream. The bed beneath the ice plain upstream of the grounding line [Corr et al., 2001] is one likely deposition site; eventual incorporation into till deposits at the grounding line [Anandakrishnan et al., 2007] is another. Recent, high sedimentation rates, associated with emerging meltwater plumes have been interpreted offshore in Pine Island Bay [Lowe and Anderson, 2002]. This is another possible location for deposition of the eroded material and would be consistent with our interpreted high erosion rates.

Our results have implications for interpreting ice sheet change from satellite altimetry and, in particular, measuring ice thinning from surface lowering. As well as surface processes [Wingham, 2000; Helsen et al., 2008], basal mechanisms must also be considered. High subglacial erosion rates could lead to unrecognized errors if change is assessed from surface elevation measurements alone [Motyka et al., 2006]. Locally, it cannot be assumed that surface lowering over grounded ice can be attributed wholly to ice thinning. At wider scales, ice sheet mass balance estimates encompassing whole drainage basins agree well in some cases [Thomas et al., 2004; Rignot, 2008; Chen et al., 2008] although there is considerable variability [van den Broeke et al., 2011]. Our results do not bring into question these studies at the ice sheet scale, but do advise caution locally. This is particularly so where fast-flowing ice has a soft, easily erodible sediment bed.

Acknowledgments. We thank numerous colleagues during IGY and IPY who helped collect the data and NERC Geophysical Equipment Facility (loan 847). Comments from M.A. King and a number of reviewers improved the paper.

The Editor thanks Huw Horgan and John Anderson for assisting in the evaluation of this paper.

References

Bamber, J. L., J. L. Gomez-Dans, and J. A. Briggs (2009), A new 1 km digital elevation model of the Antarctic derived from combined satellite

Figure 3. Mean erosion rate compared with mean rates of elevation change from satellite and GPS observations [Shepherd et al., 2001; Scott et al., 2009; Pritchard et al., 2009]. Coincidentally, the mean erosion rate since IGY equals the 1990–2001 surface lowering rate.

