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 43 
Abstract 44 
 45 
This paper examines the weathering processes that have combined to produce the distribution 46 

of soil-regolith (SR) thickness across the Triassic Sherwood Sandstone Group outcrop (750 km2) 47 

in Nottinghamshire, U.K. Archive borehole logs (n=282) taken across the outcrop showed that 48 

soil-regolith thickness had mean and median depths of ~1.8 and 1.5m respectively. Cores were 49 

taken from a forested site to depths ~3m for geochemical analysis. At this site the SR thickness 50 

was ~1.7m. Analysis of the loss of elements, compared to bedrock using mass balance 51 

calculations (τ) showed that all the calcite and gypsum cement had been removed to depths of 52 

>3m. Thus the major difference between the SR and the underlying saprolite was that the former 53 

exists as loose sand as opposed to a semi-durable rock. Scanning electron microscopy (SEM) 54 

analysis of core samples suggested that the non-durable rock or saprolite had greater 55 

cementation of clay particles. We propose that the mechanism through which the clay cement 56 

(and other interlocking grain bonds) were eased apart was through freeze-thaw processes 57 

associated with the summer ‘active layer development’ during the last glacial activity in the UK. 58 

We tested this theory by developing a Monte Carlo simulation based on a simplified version of 59 

the Stefan Equation. Current Arctic datasets of air and ground temperatures were obtained to 60 

provide reasonable starting conditions for input variables. These were combined with known 61 

data for thermal conductivity, bulk density and moisture content of the Sherwood Sandstone 62 

regolith. Model predictions (n=1000) of the distribution of SR thickness accurately reflect the 63 

observed distribution thickness from the borehole logs. This is strong evidence that freeze-thaw 64 

and ‘ALD’ processes are major factors in determining the thickness of SR across this outcrop.        65 

 66 

 67 

 68 
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Introduction 69 

Soil and regolith thickness is important as it contributes to functions such as carbon, nutrient 70 

and water storage as well as filtering capacity. Knowledge of how soil-regolith (SR) thickness 71 

varies over relatively large areas and parent materials is limited. Two such studies are those 72 

undertaken by Phillips et al. (2005) and Hren et al. (2007). The former examined SR thickness 73 

in the Ouachita Mountains on Paleozoic sedimentary rocks whilst the latter surveyed 225 74 

locations in the Washington Cascades. A third study by Tye et al. (2011), examined the 75 

distribution of (i) weathering depths to bedrock and (ii) soil-regolith (SR) thickness across a 76 

Triassic sandstone outcrop (750 km2) in the East Midlands of the UK. Their results reported a 77 

median SR depth of 1.6m, whilst weathering depth from surface to bedrock (including saprolite 78 

or non-durable rock) was generally between 4-6m.  79 

 80 

In this paper we examine the weathering processes responsible for generating the mobile SR 81 

across the Sherwood Sandstone outcrop as previously reported (Tye et al., 2011) that 82 

constitutes the uppermost part of the weathering continuum (Spink & Norberry, 1993). Since 83 

early investigations by Davies (1892) and Gilbert (1909), the concept of convex hillslopes and 84 

‘steady-state’ conditions has been central to many studies of soil thickness. Despite the concept 85 

of ‘steady-state’ being implicit in many landscape evolution models, there are few examples 86 

where steady-state soil thickness is observable (Phillips, 2010). In addition, an early hypothesis 87 

proposed by Gilbert (1909) suggested that the rate of SR production or bedrock lowering is 88 

determined by the thickness of the SR itself, contributing to a negative feedback relationship, 89 

with both the distribution of moisture and heat playing critical roles in determining the rate of the 90 

weathering process. This has been described as the ‘soil production function’ and its shape can 91 

be either humped or linear (Heimsath, 1997). Recent advancements using cosmogenic 92 

radionuclides such as 10Be and 26Al have explored the ‘soil production function’ more fully (e.g. 93 
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Heimsath et al. 2001; Small et al. 1999; Burke et al. 2007; amongst others). The depths at which 94 

maximum SR production or bedrock lowering can occur have been found to be bedrock and/or 95 

climate dependent. For example, maximum SR production rates have been determined as 50m / 96 

Myr for fractured granite in SW Australia (Heimsath et al. 2000), 2080m / Myr for marine shales 97 

(McKean et al. 1993) and 10m / Myr for sandstone in Australia. (Heimsath et al. 2009). In the 98 

U.K. few data are available relating to the use of cosmogenic radionuclides to measure bedrock 99 

lowering. However, Riggins et al. (2011) found SR production rates on the granite rocks of 100 

Bodmin Moor, England, to be 10-20m / Myr. Maximum SR production rates determined using 101 

cosmogenic radionuclide analyses have been found to occur under soil depths of between 15 102 

and 100cm (Small et al. 1999; Burke et al. 2007; Riggins et al. 2011). For soils formed from 103 

sandstones, Heimsath et al. 2009 found that maximum SR production rates occurred at depths 104 

of ~35cm in Arnhem Land, Australia.   105 

 106 

Beyond bedrock lowering by chemical and physical weathering processes, there are additional 107 

factors contributing to the variation in SR thickness including non-linear transport processes 108 

such as shallow landsliding (Roering et al., 2001), glacial / periglacial processes such as 109 

gelifluction (Carter & Ciolkosz, 1986), tree throw (Carter & Ciolkosz, 1991) and bioturbation by 110 

burrowing animals such as pocket gophers (Yoo et al. 2005). However, the ‘soil production 111 

function’ and the concept of ‘steady-state’ have been used to constrain many theoretical and 112 

measurement-based soil thickness and bedrock lowering models (e.g. Braun et al. 2001; 113 

Misasny & McBratney, 1999; Mudd and Furbish 2004; Fernandes & Dietrich, 1997; Yoo et al. 114 

2009).  115 

 116 

When assessing likely processes contributing to SR thickness on regional scales, the influence 117 

of tectonics and how it controls uplift, fracturing and weathering of new rock has been 118 
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considered (Berner et al. 1983; Molnar et al. 2007). In the Washington Cascades, Hren et al. 119 

(2007) identified the weathering zone depth and rock exhumation rate as being important in 120 

explaining dissolved Si fluxes. Additionally, increased weathering has been found around 121 

regional faulting and associated smaller fractures in rocks as they can act as drainage networks 122 

(Milodowski et al. 1998; Akhurst et al. 1998). Digital Terrain Models (DTM’s) have been used to 123 

explore relationships between slope properties and soil thickness on regional scales. However, 124 

generally only weak relationships have been found. Hren et al. (2007) found a weak relationship 125 

(R2 = 0.27) between log slope angle (m/m) and log soil depth in their study. Phillips et al. (2005) 126 

found that despite individual slopes showing relationships between slope characteristics and soil 127 

thickness there were no significant relationships between soil thickness, slope angle and 128 

curvature in their wider survey in the Ouachita Mountains. Similarly, Tye et al. (2011) found no 129 

relationships between landscape characteristics and soil thickness across a sandstone outcrop. 130 

A further finding from this study was that there was only a very weak Spearman’s Rank 131 

correlation (rs = 0.25, p<0.001, n=192) between the soil depth and total weathered depth to 132 

bedrock. This result suggests that the weathering process was not just chemical (e.g. dissolution 133 

of carbonate, anhydrite and gypsum cements (Burley & Kantorowicz, 1986; Bath et al. 1987) but 134 

also required a physical weathering process to develop the mobile SR thickness.    135 

 136 

One physical weathering process that could influence the spatial distribution of the SR across 137 

the Sherwood Sandstone outcrop, and is likely to have been widespread in the UK is that of 138 

Active Layer Development (ALD) and seasonal freeze thaw during the peri-glacial climates that 139 

affected the UK around the Last Glacial Maximum (~19000 BP). A review of depths of ‘ALD’ in 140 

current polar regions reveals similar values to the mean and median values of soil thickness 141 

found in our original study (Tye et al. 2011). For example, in Antarctica, Adlam et al. (2010) 142 

found that at latitude 77° South, active layers were > 90cm. Leszkiewicz and Caputa (2004) 143 
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examined ALD at Hornsund, Spitsbergen and found the thawed layer extended to ~1.3 m whilst 144 

Wollschalager et al. (2010) found the thickness of the active layer in bare soil to extend to ~1.6 145 

m at a permafrost site on the Tibetan plateau. Klene et al. (2001) found that the extent of ALD 146 

influenced locally by vegetation cover, rock type, porosity, peat or snow cover and soil moisture.  147 

 148 

This study builds on the work of a previous paper (Tye et al. 2011) which examined the factors 149 

influencing the spatial distribution of weathering depths to competent bedrock. In this paper we 150 

specifically address the issues related to the distribition of SR depths across the Sherwood 151 

Sandstone outcrop. Firstly, we examine the long-term chemical weathering processes in relation 152 

to the physical properties of the soil-regolith-saprolite. Secondly, we propose that periglacial 153 

activity and ‘active layer development’ (ALD) has left a physical weathering imprint on the 154 

thickness of the soil and regolith by breaking the clay cement that had previously held the soil-155 

regolith intact after the carbonate and gypsum cements had been removed. Thirdly, we test this 156 

proposal by applying a Monte Carlo simulation based on the Stefan equation for predicting the 157 

depth of ‘ALD’ (Klene et al., 2001) to describe the likely distribution of soil thickness across the 158 

outcrop if this process was a major control on soil thickness.      159 

 160 

2. Materials and Methods 161 

2.1 Study area 162 

The study area (outcrop) is situated in the county of Nottinghamshire, U.K., and is approximately 163 

50 km long and 15 km wide (750 km2). It is a gentle, undulating low relief landscape. A full 164 

description of the geology can be found in Tye et al. (2011). The Quaternary history of the study 165 

area is poorly understood. The area was last glaciated during the Anglian period (450 000 BP) 166 

although two subsequent major glaciations have occurred during which the area would have 167 

been subjected to intense periglacial weathering. Evidence of periglacial climates have been 168 
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found in the form of ice-wedge casts in the Holme Pierrepoint sand and gravel terraces of the 169 

River Trent (Howard et al. 2009) aged ~26000 yrs BP. It is assumed that the Sherwood 170 

Sandstone Group outcrop has largely been weathered in-situ leaving a soil, classified by the Soil 171 

Survey of England and Wales as the Cuckney Series, described as very slightly stony sand to a 172 

depth of ~70 cm, with sand below (Ragg et al., 1984). Land-use on about 80 % of the outcrop is 173 

agriculture (mainly arable) and ~18 % is either deciduous or coniferous woodland.  In Tye et al. 174 

(2011) a full weathering description of the profile is presented. The profile consists of a top 175 

section of soil and loose sand which we refer to as the ‘soil-regolith’ and which at the base soil 176 

production is initiated. Beneath the soil-regolith is the ‘saprolite’ or non-durable rock (an 177 

engineering geology description; Spink & Norberry, 1993) of variable thickness overlying hard or 178 

competent sandstone. The spatial variation of the saprolite thickness is reported in Tye et al. 179 

(2011).       180 

 181 

2.2 Collection of samples and archive data  182 

2.2.1 Borehole logs  183 
 184 
The National Geoscience Data Centre (NGDC) at the British Geological Survey holds 185 

information recorded from the majority of boreholes (>10m in length) taken in the UK. A total of 186 

~2500 borehole records were identified from the study area; of these 282 had information 187 

relating to the thickness of the SR which was recorded along with the borehole’s grid reference. 188 

The borehole records were mostly produced by engineers during road construction and the 189 

drilling of water abstraction wells. Figure 1 shows the borehole distribution across the Sherwood 190 

Sandstone outcrop, along with the SR depth. 191 

 192 

2.2.2 Soil-regolith-saprolite core sampling and Bedrock Sandstone samples  193 
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Cores (n=4) of SR and saprolite (diameter 7.5cm) were extracted from a mixed woodland site in 194 

Sherwood Forest (British National Grid: 461100m Easting 362300m Northing) to depths of ~3m 195 

using a vibracore drilling rig. Once extracted the cores were placed at 4°C in a core store, prior 196 

to being cut into 30cm sections. The core material was air dried before being disaggregated to < 197 

2mm for geochemical analysis. One core was cut to calculate the variation of bulk density with 198 

depth. Samples of sandstone from different depths (3, 6, 7, 17m) were collected from the 199 

Bestwood Quarry in Nottinghamshire (British National Grid: 456800m Easting 352000m 200 

Northing), approximately ~10 km from the site that the SR cores were collected. In addition, we 201 

analysed samples of Sherwood Sandstone Group Bedrock from a depths of ~50m from 202 

Gamston in Lincolnshire (British National Grid: 470330m Easting 376550m Northing), 203 

approximately 30 km to the NE (Bath et al. 1987). These samples represent a range of 204 

Sherwood Sandstone Group lithologies which can be used to compare the nature of weathering 205 

processes in soil, near-surface rock and deeper bedrock.  206 

 207 

2.3 Physical characterization of samples and regolith 208 

Bulk density of the fine earth (< 2 mm) fraction was determined by the method of Smith & 209 

Thomasson (1982) on each of the 30cm sections, taking into account the weight and volume of 210 

stones (>2mm). Particle density was calculated using a pycnometer according to BS 1377: Part 211 

2 (1990) and results were used in the determination of % porosity by volume of each segment of 212 

the core using equation 1. 213 

   1001% 









nsityParticleDe

yBulkDensit
Porosity   eqn. 1 214 

Changes in the resistance of the SR at the Sherwood Forest site was measured in the field 215 

using a Panda penetrometer (Langton, 1999). Measurements were made to depths of ~2.5m. 216 

 217 
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2.4 Geochemical analysis 218 

Total soil element concentrations were determined by X-ray fluorescence spectroscopy (XRFS) 219 

using a PANalytical Axios Advanced spectrometer. Fused beads were created by mixing 9g 220 

(66% Lithium tetraborate and 34% Lithium metaborate) with 0.9g soil and heating at 1200°C.  221 

 222 
2.5 X-ray diffraction (XRD)  223 
 224 
2.5.1 Whole-soil preparation 225 

Subsamples of soil from the cores and disaggregated quarry samples were removed and initially 226 

ball-milled to a fine powder. In order to achieve a finer and uniform particle-size for powder XRD 227 

analysis, a portion of the ball-milled material was micronised under deionised water for 228 

10 minutes with 5 % zincite (National Institute of Standards and Technology (NIST) standard 229 

reference material (SRM) 674, ZnO).  The addition of an internal standard allows validation of 230 

quantification data and also the detection of any amorphous species in the samples. The zincite-231 

spiked whole-soil samples were spray-dried following the method and apparatus described by 232 

Hillier (1999).  The spray-dried materials were then front-loaded into standard stainless steel 233 

sample holders for analysis. 234 

 235 

2.5.2 Isolation of a <2 µm fraction 236 

<2µm fractions were isolated using the methodology outlined by Tye et al. (2009).  237 

 238 

2.5.3 Oriented mount X-ray diffraction preparation 239 

Approximately 100 mg of the <2 µm material was re-suspended in a minimum of deionised water 240 

and pipetted onto a ceramic tile in a vacuum apparatus to produce an oriented mount.  The 241 

mounts were Ca-saturated using 2 ml 0.1M CaCl2.6H2O solution and washed twice to remove 242 

excess reagent and allowed to dry at room temperature. 243 



 10

2.5.4 XRD Analysis 244 

XRD analysis was carried out using a PANalytical X’Pert Pro series diffractometer equipped with 245 

a cobalt-target tube, X’Celerator detector and operated at 45kV and 40mA.  The random powder 246 

mounts were scanned from 5-85°2θ at 0.82°2θ/minute.  The diffraction data were then initially 247 

analysed using PANalytical X’Pert HighScore Plus software coupled to the latest version (2008) 248 

of the International Centre for Diffraction Data (ICDD) database. Following identification of the 249 

mineral species present in the samples, mineral quantification was achieved using the Rietveld 250 

refinement technique (e.g. Snyder & Bish, 1989) using Siroquant v2.5 software.  This method 251 

avoids the need to produce synthetic mixtures and involves the least squares fitting of measured 252 

to calculated XRD profiles. Errors for the quoted mineral concentrations are typically ±2.5% for 253 

concentrations >60 wt%, ± 5% for concentrations between 60 and 30 wt%, ±10% for 254 

concentrations between 30 and 10 wt%, ±20% for concentrations between 10 and 3 wt% and 255 

±40% for concentrations <3 wt% (Hillier et al., 2001).  Where a phase was detected but its 256 

concentration was indicated to be below 0.5%, it is assigned a value of <0.5%, since the error 257 

associated with quantification at such low levels becomes too large. 258 

 259 

2.5.5 Oriented mount analysis 260 

The <2 µm oriented mounts were scanned and analysed using the same approach detailed by 261 

Tye et al. (2009).  262 

 263 
2.6 Scanning Electron Microscope (SEM) analysis 264 
 265 
Samples of SR and sandstone were characterised using scanning electron microscopy (SEM) 266 

techniques. Samples from the SR borehole were mounted on 10 mm diameter aluminium stubs 267 

using conductive carbon cement and examined using Secondary Electron Imaging (SEI). The 268 

stub-mounted samples were coated with 250Å of carbon by vacuum evaporation. SEM (SEI) 269 
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and Back Scatter Election Microscopy (BSEM) observations were undertaken using a LEO 270 

435VP variable pressure SEM instrument, equipped with a solid-state, four-element (diode) 271 

backscattered electron detector. The SEM instrument was also fitted with an Oxford INCA 272 

energy-dispersive X-ray microanalysis (EDXA) system, which was used to aid mineral 273 

identification by interpretation of semi-quantitative micro-chemical information from X-ray spectra 274 

recorded simultaneously during SE and BSEM observation. The SEM instrument was operated 275 

in conventional high vacuum mode (better than 1 x 10-4 torr), with an 10-20 kV electron beam 276 

accelerating voltage and beam currents of 100-200 pA for SEI and 300-700 pA for BSEM 277 

analysis. 278 

 279 

2.7 Calculation of Tau values 280 

Taking the solid phase elemental results we can apply the mass balance model of soil formation 281 

developed by Brimhall and co-workers (Brimhall et al. 1987; Brimhall et al. 1991) and 282 

subsequently used by others (e.g. Anderson et al. 2001) to examine the extent of elemental 283 

losses or gains during soil formation whilst taking into account changes in volume (strain) during 284 

pedogenesis. From Amundsen (2003), the mass gains or losses of a given chemical element (j), 285 

in the transition from parent material (p) to soil (s) in terms of volume (V), bulk density (ρ) and 286 

chemical composition (C) is   287 

pjsjfluxj mmm ,,,        eqn. 2 288 

where mj,flux (g cm-3), is the mass (%) of element (j) added/lost (flux) in the soil (s) or the parent 289 

material (p). Incorporating volume (cm3), density (g cm-3), concentration (%) into the model gives 290 

100

,

100

, pjppsss
jflux

CVCjV
m


     eqn. 3  291 

Mjflux is the mass of element (j) lost/gained from the parent material volume 292 

VsρsCj,s/100  = mass of element (j) in soil volume of interest and    293 
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VpρpCj,p/100 = mass of element (j) in parent material volume 294 

 295 

During soil development, volumetric collapse (∆V) may occur through weathering losses while 296 

expansion may occur through biological or physical processes. Volumetric change is defined in 297 

terms of strain (ε)  298 





















 1

,

,
1,

ssCi

ppCi

Vp

Vs

Vp

V
si


    eqn. 4 299 

Where the subscript ‘i’ refers to the immobile, index element, which in this case is Zr. The 300 

fractional mass gain or loss of an element j relative to the mass in the parent material (τ) is 301 

defined by combining Equations 2-4: 302 

 







 1)1,(

,

,

,

,
si

ppCj

ssCj

pmj

fluxmj 

    eqn. 5 303 

Through substitution, equation 5 reduces to  304 

 1
Rp

Rs        eqn. 6 305 

Where Rs = Cj,s/Ci,s and Rp = Cj,p/Ci,p. Thus τ can be calculated readily from commonly available 306 

geochemical data and does not require bulk density data. 307 

 308 

2.8 Statistical and modelling methods  309 

The objective of the modelling was to use a Monte Carlo simulation based on a simplified 310 

version of the Stefan equation (Klene et al. 2001) to provide estimates of  the depth of ‘active 311 

layer development’ (ALD) during arctic summers. By undertaking this analysis we wished to 312 

investigate whether the physical process of freeze thaw was a fundamental control on the depth 313 

of the soil-regolith across the outcrop. The outcomes of the Monte Carlo simulation represent a 314 

distribution of soil depths across the Sherwood Sandstone outcrop given the assumed statistical 315 
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distribution for the model parameters and input variables. These could then be compared with 316 

the observed frequency of empirical observations made from the boreholes logs.   317 

 318 

The ALD modelling was undertaken using the Stefan Equation within a Monte Carlo simulation. 319 

Klene et al. (2001) suggest that the simplified form of the Stefan solution does not yield an exact 320 

solution for thawing, but it does provide an adequate approximation when a single subsurface 321 

layer is considered. The form of the Stefan equation used by Klene et al. (2001) is   322 

   323 

pwL

DDTnsk
z att
i

)(2
      eqn. 7. 324 

        325 
 326 
Where: 327 
 328 
Zi = Active layer thickness 329 
Kt= Thermal conductivity of the thawed soil (W m-1 °C-1) 330 
S =  Scaling factor of 86400 seconds day-1 331 
Nt =  n-factor for the thaw season = (Soil thawing degree days/air thawing degree days) 332 
DDTa = Air temperature thawing degree day sum (°C days) 333 
P =    Bulk density (kg m-3) 334 
W =    Soil moisture proportion by weight 335 
L =    Latent heat of fusion (j kg-1) 336 
 337 
 338 
The Monte Carlo simulation was run in the statistical package ‘R’. We collected proxy data 339 

(combined soil surface and air temperature) for current Arctic environments from the 340 

Circumpolar Active Layer Monitoring (CALM) website (http://www.udel.edu/Geography/calm/). 341 

This allowed us to produce initial estimates of Nt and DDTa. As climatic conditions for the late 342 

Devensian LGM to early Holocene are known to vary considerably we selected data according 343 

to the following criteria. During the Loch Lomond stadial (11000 – 10000 yrs BP) in East 344 

Yorkshire, England, mean July temperatures of between 9-11°C and winter temperatures as low 345 

as -15 to -20°C were found (Walker et al. 1993). These temperatures are perhaps slightly 346 

warmer than modern day Spitsbergen where Leszkiewicz & Caputa (2004) examined ALD at 347 
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Hornsund, Spitsbergen and found the thawed layer extended to ~1.3 m. Thus Spitsbergen was 348 

considered a suitable starting point to generate values for the modelling exercise. However, 349 

combined soil surface and air temperature data on the CALM website for sites in Spitsbergen 350 

were not available. Therefore we selected proxy data from polar sites with latitudes not dissimilar 351 

to those of the UK (Table 6). This was essentially a pragmatic exercise to derive a range of 352 

realistic values to be used within the Monte-Carlo simulation. We did not attempt to define a 353 

specific climate more fully. For values of Kt, P, and W, mean ± 1 standard deviation (SD) values 354 

were required. We calculated the SD for each mean value by determining the range of values. 355 

This effectively represents the 95% Confidence Interval (CI) which equates to 4 standard 356 

deviations. Therefore the range was divided by 4 to give values for SD. More specifically, the 357 

following values were used to run the Stefan solution within the Monte Carlo simulation:  358 

 359 

Kt - The mean ± SD for the thermal conductivity of thawed soil was given as 1 ± 0.5 on a range 360 

extending from 0.15 to 2.24 W m-1 °C-1. It is envisaged that the soil-regolith-saprolite will be 361 

composed of some soil, loose sand and cracked rock. The thermal conductivity of typical solid 362 

Sherwood Sandstone Group bedrock is 2.24 W m-1 °C-1 (Gunn et al. 2005) and would represent 363 

one end member of the weathered material continuum. The other end of the continuum would be 364 

dry sand that has a thermal conductivity of between 0.15 and 0.25 W m-1 °C-1. Chen (2008) 365 

assessed the thermal conductivity of sands with respect to porosity and saturation. Thermal 366 

conductivity was found to decrease with increasing porosity whilst increasing moisture contents 367 

increased the thermal conductivity for similar porosity values. Where moisture saturation of 0.1 368 

by weight (a typical value for the Sherwood Sandstone Group) was tested, thermal conductivity 369 

values of ~1 for sands were reported (Chen, 2008). A further consideration was that at least 370 

some of the surface may be moss or lichen covered (the expected dominant vegetation in 371 
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periglacial environments) at some stage and this will decrease the thermal conductivity 372 

compared to that of bare rock (Klene et al. 2001).    373 

 374 

Nt and DDTa – The mean Nt value calculated from 3 arctic sites (Table 6) was 0.89. Values for 375 

DDTa were calculated from the same data sets as for Nt. The mean value of DDTa was 940. 376 

There is likely to be a strong linear correlation between DDTa and Nt because the two are 377 

related; the sum of the former is used as the denominator in the calculation of the latter. To 378 

account for this correlation we simulated a multivariate normal distribution using the MVRNORM 379 

function in the MASS library of the R environment (R Development Core Team, 2006).  This 380 

gave a linear correlation of 0.791 between DDTa and Nt. We used the function to generate 381 

correlated distributions (n=1000) of DDTa and Nt. 382 

 383 

P – Mean bulk density of sandstone bedrock samples (n = 5) from the Bestwood quarry were 384 

found to be 2000 kg m-3, whilst top soil bulk density was found to be ~1000 kg m-3. We therefore 385 

selected values of 1500 ± 250 kg m-3 to be used within the model as it is the average value 386 

found across the depth range (Fig 3b).   387 

 388 

W – The proportion moisture content by weight value used within the Monte Carlo simulation 389 

was 0.1 ± 0.04. These values were based on a compilation of data collected from the archived 390 

borehole logs down to depths of 5 m. No knowledge of the yearly precipitation in the Pleistocene 391 

exists but an assumption was made that it was similar to the present day. Inevitably during 392 

spring melt, saturation of the soils may occur for short periods.   393 

 394 

We compared our modeled distribution of ‘ALD’ depths with (i) the observed borehole data and 395 

(ii) a modelled distribution of observations where the data had been declustered. This was 396 
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undertaken because the sample points are not distributed according to a statistical design and it 397 

is evident that they show a degree of clustering (Figure 3). This may affect the raw statistics of 398 

the data on soil thickness through oversampling in unrepresentative regions. For instance there 399 

are two major clusters along road routes between Northing 360000 and 365000 (Figure 1). 400 

When data cannot be treated as independent random variables because they have been 401 

obtained by non-random sampling design, a model-based analysis is necessary (de Gruijter et 402 

al., 2006).  In a model-based analysis we assume that the data are a realization of a spatially 403 

correlated random process, and we estimate parameters for the model. This is the fundamental 404 

approach in geostatistics. The objective here was to estimate the model mean and variance of 405 

SR thickness for the Sherwood Sandstone Group for comparison with expectations under the 406 

Stefan Solution. The proposed statistical model is the linear mixed model 407 

 408 

Z (x)=  µ + η(x) + ε(x),       eqn. 8 409 

 410 

where Z is soil depth at location x.  The model is called a mixed model because it has a fixed 411 

effect, µ, which is the mean depth.  The other two terms are random effects; η is a spatially auto-412 

correlated second order stationary random variable of mean zero and variance σ2
1 and ε is an 413 

independently and identically distributed random variable of mean zero and variance σ2
0.  The a 414 

priori variance of the random variable, the variance that is required for comparison to the Monte 415 

Carlo output, is σ2
0 + σ2

1 and the mean is µ. The estimation of these model parameters was 416 

undertaken using residual maximum likelihood (REML). For more detail, the reader is referred to 417 

Lark and Cullis (2004). Estimation was undertaken using the LIKFIT procedure in the geoR 418 

package for the ‘R’ statistical platform (Ribeiro and Diggle, 2001) 419 

 420 
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We undertook exploratory analysis of the data and selected an appropriate transformation (see 421 

Results Section 3.1). The linear mixed model was fitted to the transformed data using LIKFIT 422 

and the REML option. Models were fitted with exponential, spherical and Matérn covariance 423 

functions. The Matérn function failed to converge. Of the other two, the exponential model fitted 424 

best, as judged by the maximized residual likelihood (which is a valid basis for selection since 425 

the models had common fixed effects and the same number of variance parameters to describe 426 

the random effects).  The parameters of the exponential model are the two variances, σ2
0 and  427 

σ2
1, and a distance parameter, a, which expresses the autocorrelation of the values of η at two 428 

locations x1 and x2 by the expression 429 

ρ (x1, x2) = exp {-| x1 – x2|/a}.     eqn. 9. 430 

 431 

 432 
3. Results  433 
 434 
3.1 Soil thickness across the outcrop 435 

Figure 2 shows the distribution of soil depths obtained from the borehole logs as previously been 436 

reported by Tye et al. (2011). Median and mean soil-regolith thickness are ~1.5 and 1.8m 437 

respectively. Although occasional values are in excess of 4m, the majority of sites have SR < 2m 438 

thick. The potential effects of clustering on the mean and median values of soil thickness were 439 

examined using the linear mixed model (Section 2.8) with parameters estimated by residual 440 

maximum likelihood (REML). Table 1 shows summary statistics for the original data. These are 441 

pronouncedly skew and so were transformed to natural logarithms before further analysis. The 442 

transformed data possess a more symmetrical distribution. The REML estimates of the variance 443 

parameters and the model mean (transformed soil depth) using the exponential function, are 444 

reported in Table 2. The mean and variance of the log-transformed variable, µt and σ2
t, can be 445 
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transformed back to values on the original scales of measurement, µt and σ2, by the 446 

expressions: 447 

µ = exp{µt + σ2
t/2}     eqn. 10 448 

σ2 = exp{2µt + σ2
t}(exp{σ2

t}-1).   eqn. 11 449 

From these we obtain a model mean depth for the soil over the Sherwood Sandstone Group of 450 

2.16 m, and a variance of 2.95 m2. Note that the mean is somewhat larger than the mean of the 451 

raw data, suggesting that there was preferential clustering of observations in areas with 452 

shallower soil (Figure 1). The variance of the raw data was somewhat lower than the model a 453 

priori variance. This is expected when there is clustered sampling since observations within a 454 

cluster will tend to be more uniform than a comparable number of independent observations. 455 

Figure 4 shows the empirical cumulative frequency distribution of the observed values of 456 

thickness and the corresponding model distribution obtained by back-transforming points on the 457 

normal frequency distribution with parameters µt and σ2
t.    458 

 459 

3.2 Physical Properties of the cores extracted from Sherwood Forest 460 

The penetrometer profile through the soil-regolith shows a marked change in resistance at 461 

~1.7m (Figure 3a), identifying the boundary between the loosely weathered SR and the start of 462 

the non-durable rock or saprolite. The depth at which this change in resistance occurs is close to 463 

the median and mean depths found in the borehole log survey across the outcrop. Bulk density 464 

(Bd) values were calculated (Fig. 3b). In the top 30 cm, a value of 1.03 g cm-3 was found, 465 

increasing to ~1.5 g cm-3 at 30-60 cm depth, with further small progressive increases found with 466 

increasing depth. The Porosity (Fig. 3c) was calculated (Eqn. 1) and was ~ 60 % in the top 30 467 

cm, with small decreases with increasing depth to values ~ 40 %. Both the bulk density and 468 

porosity results show that below the top 30cm there were relatively small changes within the 469 
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profile. In particular, there were only small differences found between the base of the regolith 470 

and the saprolite or non-durable rock. 471 

 472 
3.3 Total Element concentrations in soil-regolith core and bedrock samples  473 

Changes in the total elemental concentrations of the major weathering elements (Ca, Mg, Si, Al, 474 

K, Na, Fe and Ti) in each of the 30 cm segments of the core samples extracted from Sherwood 475 

Forest (SP3) are shown in Table 3. In addition results of elemental concentrations from the 4 476 

rock samples collected at different depths at Bestwood Quarry and those from the Gamston 477 

borehole are reported. The major differences in total elemental concentrations through the soil-478 

regolith-saprolite profile to depths of 3m occur in the top 60cm. There is evidence of CaO 479 

enrichment in the top 30 cm, probably through elemental uplift by vegetation and the subsequent 480 

recycling of plant material (Jabbágy & Jackobsen, 2004). Both TiO2 and Zr, considered to be 481 

relatively immobile are slightly enriched in the top 30 cm, possibly as a result of the loss of other 482 

elements. Within the top 30 cm there were evident decreases in Al2O3, SiO2 and K2O 483 

concentrations compared to the rest of the core; a result of low soil pH (pH ~4 in the top 30 cm) 484 

and the dissolution and removal through leaching of minerals such as K-feldspar. Between 30 485 

and 300 cm there was relatively little variation in elemental concentrations. There was a slight 486 

increase in concentrations of Al2O3 and FeO3 between 30-60 cm suggesting that the slight 487 

increase in soil pH (Table 1) in comparison to the top 30 cm of soil was sufficient for possible re-488 

precipitation of these elements as oxide species.  489 

 490 

In the rock samples from the Bestwood Quarry (depths of 3, 6 and 7m), there was generally little 491 

variation in elemental concentrations compared to those found in the soil core for most 492 

elements. There appeared to be a slight increase in K2O concentrations, with values rising 493 

above 2.5%. Concentrations of CaO and MgO both slightly increase at depths of 7m. However, 494 
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the bedrock sample collected at 17m has larger concentrations of CaO, K2O and Na2O, when 495 

compared to the soil samples below 30cm and the shallower rock samples (3, 6 & 7m), 496 

suggesting that the weathering process may not have entirely removed the carbonate and 497 

gypsum cements at these depths. There is also evidence of larger S concentrations at this depth 498 

that may originate from gypsum cements. Elemental analysis of the much deeper (~50m) 499 

Gamston borehole sandstone bedrock material shows that concentrations of CaO and MgO are 500 

greatly enriched compared to the soil and Bestwood Quarry samples because they still preserve 501 

significant amounts of early diagenetic dolomite and calcite cement that have not been leached 502 

by weathering experienced at shallower depths (Milodowski et al. 1987).  503 

 504 

3.4 Calculation of long term weathering losses (Tau) 505 

In this analysis we used the bedrock sample collected from 17m in the Bestwood Quarry. This 506 

was selected because it was from a site relatively close to where the soil-regolith-saprolite core 507 

was taken. We used measured bulk density values (Fig 3b) and Zr values (Table 1) in the 508 

calculation of strain (Fig 3d). A small expansion in the top 30 cm of the soil profile was found, 509 

whilst small contractions in the volume of the regolith were found from 30 to 275 cm. Analysis of 510 

the percentage of elements lost, incorporating strain are given by values of Tau (equation 6) and 511 

are reported (Figures 4a and b). For CaO, values of Tau demonstrate that almost all the Ca that 512 

was originally in the soil has been lost suggesting that practically all the carbonate and gypsum 513 

cements have been weathered out of the soil and regolith and non-durable rock to depths below 514 

3m. For MgO, K2O and Na2O, within the top 30cm, >80 % of the original bedrock concentrations 515 

of these elements have been lost. For depths below 30cm, the amount of MgO, Na2O and K2O 516 

weathered out is < 50 % but values are relatively stable with increasing depth into the non-517 

durable rock. Magnesium (Mg) would be expected to be present in dolomite and ankerite 518 

cements but it would also form structural elements in chlorite and smectite clays. For TiO2, 519 
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FeO3, SiO2, and Al2O3 the greatest losses as determined by Tau were found in the acidic top 30 520 

cm of the profile. Below 30 cm there were much smaller losses and values of Tau were < 0.2 521 

with the exception of SiO2 which was found to accumulate with depth.  522 

 523 

3.5 Mineralogy 524 

Whole rock/soil mineralogical XRD analysis was undertaken on samples from core SP3 and 525 

bedrock samples collected from the Bestwood Quarry (Table 4). No evidence of calcite, dolomite 526 

or gypsum was found in the soil samples or the Bestwood Quarry samples (6-17m). It is likely 527 

that small amounts of these mineral cements may remain, particularly in the deep quarry 528 

samples. However, these may have been below the detection limits (~0.5 %) of the XRD 529 

instrument. The quarry from which the samples were taken, was in an area previously identified 530 

as having the deepest weathering depths to competent bedrock of ~30m across the outcrop 531 

(Tye et al. 2011). This suggests that greater removal of these cements may have taken place. 532 

However, both CaO and S increase in the bedrock sample taken from 17m depth suggesting 533 

some gypsum may be present. In the present study, XRD analysis was not undertaken on the 534 

Gamston borehole samples. However BSEM-EDXA petrographic analysis of thin sections of 535 

sandstone from the Gamston borehole showed that early diagenetic dolomite cement (dolocrete) 536 

and later diagenetic ferroan dolomite and ankerite are present (Milodowski et al. 1987). Previous 537 

work by Bath et al. (1987), also identified calcite re-precipitated after dolomite dissolution and 538 

CaCO3 concentrations of 2 % were reported. This clearly accounts for the greater CaO, MgO 539 

concentrations found in the samples (Table 3).  540 

 541 

The XRD data indicate that the core and bedrock samples are predominantly composed of 542 

quartz (mean ~83%), with minor amounts of K-feldspar (mean ~13%) and undifferentiated mica 543 

species (‘mica’, possibly including muscovite, biotite and illite) with traces of chlorite, kaolinite, 544 
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illite/smectite (I/S) and hematite. Overall the major differences were (i) a general increase in K-545 

feldspar concentration with depth, and (ii) a corresponding decrease in quartz concentration with 546 

depth. The largest changes within the soil profile can be seen in the acidic top 30 cm. For 547 

example, the K-feldspar concentration was 7.9% between 0-30cm, compared to 11-12% 548 

between 60 and 300cm. Similarly the concentration of quartz was ~5% higher in the top 30 cm 549 

compared to the deeper soil samples. This decrease in K-Feldspar concentration in the top 30 550 

cm can be seen in the decrease in total Al2O3 and K2O concentrations (Table 1). There were no 551 

other consistent depth-related patterns found in the concentrations of the other minerals present.  552 

 553 

Further XRD analysis of the clay fraction (Table 5) was undertaken to assess whether there was 554 

any major alteration of the clay minerals that could aid the disruption of the clay cement of the 555 

matrix, thus creating the soil-regolith. The < 2 µm fraction XRD analyses indicate that these are 556 

predominantly composed of clay minerals (I/S, illite, kaolinite and chlorite), together with minor-557 

trace amounts of quartz, K-feldspar, albite and possibly cristobalite (Table 5). The composition of 558 

the <2 µm fractions indicates that within the 0-300 cm profile, major changes occur only in the 559 

most acidic top 30cm. The changes include (i) decreases in chlorite and illite concentrations, 560 

probably as a result of alteration to kaolinite with the release of Mg, Fe and K, and (ii) increased 561 

kaolinite concentration, partly due to the alteration of chlorite and illite but also through the 562 

weathering and alteration of K-feldspar (Table 2). Throughout the rest of the SR core and into 563 

the saprolite and bedrock samples there appeared to be no consistent changes in clay 564 

mineralogy, and compositional changes may be due to the amount of clay deposited in the 565 

sedimentary rock forming process.  566 

 567 

3.6 SEM Analysis 568 
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The degree of cementing by clay particles in various parts of the weathering profile are shown in 569 

SEM images (Figure 5). Images of the top part of the profile between 29-33cm (Fig. 5 i & ii) 570 

show a relatively open structure; the pore space has developed where the gypsum and 571 

carbonate cements have been removed. At depths greater than ~1.7m, the degree of clay 572 

cementing appears to be greater, with more clay covering particles (Figures 5iii & iv). These 573 

images of a less open structure and the sand particles being held together more tightly, is 574 

reflected by the increase in Bd with depth and the decrease in calculated porosity (Figure 3). 575 

Figure 5(v) shows again the increase in clay cement holding sand particles together at 220-576 

226cm whilst Figure 5(vi) shows a crescent shape of clay cement after a particle has been 577 

removed. These results suggest that the soil-regolith is not only created by the dissolution of the 578 

carbonate and gypsum cements but also through the easing apart of the clay cement.     579 

 580 

3.7 Active layer development (ALD) modelling 581 

The Monte-Carlo simulation based on the Stefan equation was run to obtain a representation of 582 

the distribution of likely SR depths across the Sherwood Sandstone outcrop assuming the 583 

statistical distribution of the model parameters and input variables. The model output is shown in 584 

Figures 6 and 7. Figure 6 shows the relationship between variables and demonstrates the 585 

strength of the positive linear (Pearson) correlation (r=0.79) between the simulated values of Nt 586 

and DDTa. Figure 7 shows the empirical cumulative distribution function (CDF) of soil depths 587 

generated by the Monte Carlo simulation plotted on the same axes as (i) CDF of raw soil depths 588 

obtained from the borehole logs and (ii) the CDF corresponding to the linear mixed model, 589 

obtained by generating percentiles of the fitted log-normal distribution. Results show that 590 

compared to the raw data and the linear mixed model, the Monte Carlo simulation based on the 591 

Stefan equation produced a very similar cumulative distribution of depths with very similar 592 

median values. Median values for the raw data and linear mixed model data were 1.5 m and 593 
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1.64 m (respectively) and the mean values were 1.8 and 1.76 m, respectively. However, the 594 

modelled soil thickness is slightly under-predicted between the 75th and 95th percentiles. The 595 

observed borehole SR data included a few values >6m. Originally, these were considered 596 

possible Quaternary deposits rather than in-situ weathered material. However, modelled SR 597 

thickness also produced some thick soil depths (>6m), suggesting under certain conditions, very 598 

deep ALD could occur. 599 

 600 

 4. Discussion 601 

Tye et al. (2011) found a poor relationship between total weathering depth to bedrock and SR 602 

depth, suggesting strongly that chemical weathering processes were not the only control on soil-603 

regolith depth. In respect to the chemical weathering process and as a consequence of the 604 

Sherwood Sandstone Group being (i) one of the UK’s major aquifers and (ii) in the vicinity of 605 

proposed high level radioactive waste depositories in the north west of England, the weathering 606 

process within the deep rock has been studied in some detail. Burley & Kantorowicz (1986) 607 

demonstrated that the porosity of the sandstone is created through the dissolution of the calcite, 608 

dolomite and gypsum cements by groundwater. As the Sherwood Sandstone Group is a 609 

sedimentary rock unit, there can be variation in the bedrock geochemistry as demonstrated by 610 

the bedrock samples collected from Bestwood Quarry or the Gamston Borehole (Table 1). 611 

However, if either the Gamston or Bestwood Quarry bedrock samples are used in the calculation 612 

of Tau, it is evident that there has been near total removal of the gypsum and carbonate 613 

cements. The results show no major differences in the degree of chemical weathering of Ca or 614 

Mg within the top 3m of soil-regolith-saprolite weathering continuum. These results support our 615 

proposal that regardless of when and how long it took for the chemical removal of the gypsum 616 

and carbonate cements, a physical weathering process such as freeze thaw was required to 617 

develop the variation in SR thickness across the outcrop.   618 
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 619 

Our proposed mechanism is that for the SR to develop, the clay cementing and other 620 

interlocking grain bonds, needed to be disrupted to produce the loose sand overlying the 621 

saprolite. The results from the use of the Stefan equation within the Monte-Carlo simulation 622 

suggest strongly that ALD and seasonal freeze thaw is a likely mechanism. In previous research 623 

ALD and freeze-thaw processes have been shown to increase the volume of soil, reduce 624 

aggregate stability and generally disrupt soil mechanical properties through ice bonding between 625 

particles (Wang et al., 2007; Kværnø et al., 2006). It is also likely that ice will form between 626 

cleavage planes of clay minerals, thereby damaging the structure of clays (Konishchev & Rogov, 627 

1993). However, analysis of the physical characteristics of the core suggested that the process 628 

of freeze thaw was not overly physically disruptive. The limit of ALD was quite marked in the soil-629 

regolith-saprolite core, notably by the change in penetrometer resistance at ~1.7m. In addition, 630 

there was a concomitant increase in bulk density and decrease in porosity through the SR and 631 

into the saprolite found with depth, suggesting that the material was becoming more dense and 632 

stronger. The rapid change in peneterometer resistance as it goes into the saprolite is because it 633 

is entering a material where the sand particles are now being more firmly held together by the 634 

clay cement (see Fig 5).   635 

 636 

We examined the variables that the Monte Carlo simulation used for each prediction of the 637 

thickness of ALD. It was found that the extent of ALD was most sensitive to moisture content 638 

with a negative correlation (R2 = -0.61) (Figure 8). Initially, this appeared to be counter-intuitive 639 

when considering the role that water plays in transferring heat through the active layer. However, 640 

a soil with greater moisture content will create a greater volume of ice, therefore requiring 641 

greater latent energy to change the phase from ice to water in the soil. Thus the thermal 642 

conductivity of drier soils, with less ice, may conduct heat downwards more efficiently. Woo and 643 
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Xia (1996) examined ground temperature and moisture at two arctic sites; a wetland site and an 644 

adjacent pebbly loam site. At both sites, about half of the ground heat flux was consumed by 645 

latent heat for ground thawing and that the wetland site had a shallower maximum depth of thaw 646 

than the drier site because of the larger ice content in the active layer. Whilst, this modelling 647 

exercise represents a simplification of the ALD within the soil system, where a large 648 

heterogeneity in the amount of ice present would be expected, the results demonstrate that ALD 649 

could be a major control on developing soil thickness across the Sherwood Sandstone Group 650 

outcrop. However, there are questions that this study has not been able to address. These 651 

include the length of time it has taken to derive the chemical weathering profile and the possible 652 

number of cycles of seasonal freeze-thaw and ALD during the Devensian required too produce 653 

the distribution of SR thickness observed.   654 

 655 

In relation to the previous work published by Tye et al. (2011), these results suggest that the 656 

non-durable rock or saprolite occurs where the carbonate and gypsum cement has been 657 

removed but a physical weathering process to break the clay and grain interlocking bonds has 658 

yet to occur. In addition to the dominant role of ALD in developing SR depth, it would be 659 

expected that other mechanisms associated with peri-glacial climates have played a role. One 660 

mechanism is the frost-cracking of rock before soil development. Anderson (1998) suggested 661 

that the rate of the many processes involved with frost cracking depended largely on the length 662 

of time spent within a range of sub-zero temperatures designated the ‘frost cracking window’. 663 

The creation of new micro-cracks will allow the penetration of water into the rock and initiate the 664 

soil development and will be important for subsequent freeze-thaw processes such as ALD. A 665 

further mechanism would be the role of plant roots. Tree roots in particular may have played a 666 

secondary role in breaking the clay cement and grain interlocking bonds before the vast majority 667 

of the Sherwood Sandstone outcrop was deforested in the past 500 years.  668 
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 669 

5. Conclusions 670 

Results from this study have shown that (i) chemical weathering within the soil-regolith-saprolite 671 

has effectively removed the gypsum and carbonate cements, (ii) the soil–regolith depth only 672 

differs from the underlying saprolite (or undurable rock) because of the breaking of the clay 673 

cement and other grain interlocking bonds and (iii) that periglacial ALD is the major factor in 674 

determining the spatial range of soil thicknesses across the outcrop. The role of Quaternary 675 

processes on the location and development of soils across the UK has largely focused on the 676 

deposition of glacial tills and deposits, the development of sand and gravel river terraces and the 677 

formation of soils derived from loess deposits (Catt, 1979). Our hypothesis that the soil-regolith 678 

thickness across the Sherwood Sandstone Group outcrop is determined by freeze thaw 679 

increases our knowledge of the role of periglacial activity on soil and regolith development in the 680 

UK. For example, periglacial activities have been identified as major factors in the development 681 

of soils on the chalk downland of southern England. Catt and Hodgson (1976) reported that 682 

cryoturbation and freeze thaw processes was responsible for the production of Coombe 683 

deposits, the mixing of plateau drift and in the formation of clay-with-flints sensu-stricto soils. 684 

They reported that the extent of peri-glacial processes and mixing on the clay-with-flints sensu-685 

stricto can be as deep as 3m. In this study we have shown that ALD may have helped form SR 686 

in excess of 6m on occasion. However, the understanding gained in this study would not have 687 

been possible without such extensive legacy borehole datasets and demonstrates their 688 

importance in assessing regional scale processes on soil-regolith formation.   689 
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Table 1: Summary statistics of soil-regolith thickness data prior and after log 

transformation.   

 

 Original data  

(m) 

Log Transformed data 

(Log_e m) 

Average 1.88 0.63 

Median 1.5 0.41 

SD 1.41 0.68 

Skew 2.26 -0.14 

Octile skew 0.26 -0.13 

Min 0.15 -1.9 

Max 9.1 2.21 

Q1 1 0 

Q2 2.44 0.89 

N 256 256 
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Table 2: REML estimates of the variance parameters and the model mean 

transformed soil depth for the linear mixed model (eqn. 2) for log-transformed soil 

thickness  

 

Variance Parameter Value 

σ2
0 0.256 

σ2
1 0.236 

a 1714m   

Mean (ln m) 0.5225 
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Table 3: Total concentrations of major elements in Sherwood Sandstone Soil-

regolith-saprolite profile and bedrock samples from Bestwood Quarry and the 

Gamston Borehole.   

 

Sample Depth CaO MgO SiO2 Al2O3 K2O Na2O FeO3 TiO2 Zr S Cl

 (m) % % % % % % % % mg kg-

1 

mg kg-

1 

mg kg-

1 

SP 3(1) 0.15 0.08 0.07 86.3 2.99 1.31 0.12 0.99 0.21 214.9 476 106 

SP 3(2) 0.45 0.04 0.24 87.2 5.83 2.43 0.14 1.35 0.17 107.5 296 42 

SP 3(3) 0.75 0.04 0.20 89.8 5.01 2.50 0.14 0.85 0.13 83.1 238 26 

SP 3(4) 1.05 0.04 0.20 90.1 4.68 2.32 0.13 0.99 0.12 90.1 293 35 

SP 3(5) 1.35 0.03 0.19 89.7 4.84 2.48 0.13 0.91 0.12 83.1 264 34 

SP 3(6) 1.65 0.04 0.20 89.3 4.84 2.46 0.13 0.96 0.13 80.1 250 47 

SP 3(7) 1.95 0.05 0.19 90.8 4.51 2.29 0.12 0.83 0.12 77.0 204 32 

SP 3(8) 2.25 0.04 0.18 90.4 4.46 2.26 0.13 0.98 0.12 78.8 232 46 

SP 3(9) 2.55 0.04 0.17 91.3 4.15 2.14 0.12 0.78 0.10 66.9 236 59 

             

BW 4a 3 0.01 0.17 89.2 5.25 2.70 0.14 0.89 0.11 74.8 173 44 

BW 1f 6 0.02 0.18 89.6 5.09 2.75 0.15 0.61 0.11 71.3 267 52 

BW 1e 7 0.06 0.28 86.4 6.29 2.86 0.14 2.12 0.35 387.4 101 58 

BW 2a 17 0.42 0.30 86.5 6.16 3.03 0.21 1.30 0.16 86.5 484 1312 

             

Gam 1 50 1.38 1.6 89.3 6.3 2.44 0.10 1.5 0.18 106 324 53 

Gam 2 50 3.88 4.1 80.7 4.6 1.84 0.10 1.17 0.13 85 416 129 

Gam 3 50 1.65 1.8 87.9 4.8 1.86 0.10 1.47 0.16 102 374 80 

  

SP = Sherwood Pines Soil-regolith-saprolite core 

BW = Bestwood Quarry Rock samples 

Gam = Gamston Borehole, Lincolnshire.   
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Table 4: Whole rock (< 2 mm) XRD analysis (%) of Sherwood sandstone soil-

regolith profile (SP3) and quarry samples collected from Bestwood Quarry.   

 

 Depth (m) Quartz K-feldspar ‘mica’ Kaolinite Chlorite Illite/smectite hematite 

SP 3(1) 0.15 88.6 7.9 2.2 0.8 BD <0.5 <0.5 

SP 3(2) 0.45 82.3 12.1 2.6 1.2 0.7 0.7 <0.5 

SP 3(4) 1.05 84.0 11.7 1.8 1.2 0.5 0.5 <0.5 

SP 3(7) 1.95 83.0 12.4 2.2 1.1 0.5 0.5 <0.5 

SP 3(8) 2.25 84.2 11.5 1.8 1.2 0.5 0.5 <0.5 

BW 4a 3 84.0 15.6 <0.5 <0.5 <0.5 <0.5 <0.5 

BW 1f 6 82.2 14.9 2 0.7 <0.5 <0.5 <0.5 

BW 1e 7 76.8 15.8 3.7 2.6 <0.5 <0.5 0.8 

 BW 2a 17 78.9 16.8 2.5 1.3 <0.5 <0.5 <0.5 
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Table 5: < 2 μm clay and non-clay mineralogy from the borehole SP3 taken in 

Sherwood Forest and bedrock samples taken from Bestwood Quarry.   

 

Sample Depth (m) 
% clay mineral Non-clay minerals 

I/S Illite Kaolinite 
 

SP 3(1) 0.15 34 19 45 quartz, K-feldspar, albite 

SP 3(2) 0.45 18 37 31 quartz, K-feldspar, albite 

SP 3(4) 1.05 37 30 23 quartz, K-feldspar, albite 

SP 3(7) 1.95 38 35 20 quartz, K-feldspar, albite 

SP 3(8) 2.25 36 28 26 quartz, K-feldspar 

BW 4a 3 34 42 15 quartz, albite, K-feldspar, ?cristobalite 

BW 1f 6 53 19 26 quartz 

BW 1e 7 81 7 10 quartz 

 BW 2a 17 54 20 25 quartz, hematite 
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Table 6: Review of parameters obtained from datasets obtained from the CALM 

website for use in the Stefan solution (Eqn. 4) to predict the potential distribution 

of ‘active layer development’ depths across the Sherwood Sandstone outcrop in 

Nottinghamshire.  

 

Site Year Latitude /  

Longitude 

Soil Thawing  

degrees days * 

Air Thawing  

degree days * 

n-factor  

(Nt)** 

Marre Sale,  

West Siberia 

2007 69°N 66°E 846 803 1.05 

Parsons Lake,  

Canada 

1990 65°N 133°W 831 1068 0.77 

Cape Rogozhny,  

NE Siberia 

1996 65°N 176°E 818 947 0.86 

 
* Sum of temperatures above freezing when soil temp > 0 

 ** Dimensionless 
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Figure Headings: 

 

Figure 1: Distribution of borehole logs across the study area. Data for borehole 
depths is separated into quartiles. The graph shows clustering of the archive 
borehole data in some areas where many boreholes have been taken for specific 
engineering projects.  Coordinates are metres on the British National Grid.  
 
Figure 2: The empirical cumulative distribution function of soil-regolith thickness 
across the Sherwood Sandstone obtained from the archive borehole logs (n=282) 
(+) and the corresponding distribution function from the linear mixed model  (Eqn. 
2).  
 
Figure 3: Graphs showing changes in physical characteristics through the 
Sherwood sandstone profile with depth; (a) penetrometer resistance, (b) bulk 
density (g cm-3), (c) porosity (%) and (d) strain.    
 
Figure 4: Values of Tau (τ) for elements showing the proportion of elements 
depleted or enriched by the weathering process. A Tau value of zero indicates no 
gain or loss.  
 
Figure 5: SEM photos showing the extent of clay cementing through the profile of 
the Sherwood Sandstone soil-regolith. Figures (i) & (ii) are taken from 29-33cm 
depth. They show a relatively open sand grain structure although some clay 
forming a grain coating meniscus is observed to weakly bind or cement sand 
grains. Figure (iii) shows the more clay-rich sandstone matrix at 108-112cm. There 
appears a less open structure than at the top of the profile. Figure (iv) shows how 
the binding of particles by clay occurs at 222-226cm. Figure (v) shows the 
structure at 260-264cm where the clay binding is more evident. Figure (vi) shows a 
residual meniscus of clay particles left after a sand grain has been removed.  
 

Figure 6: Relationship between values of four variables used in the Monte-Carlo 
simulation (n=1000) of the Stefan equation  
 

Figure 7: The empirical cumulative distribution function of soil-regolith thickness 
across the Sherwood Sandstone obtained from the archive borehole logs (n=282) 
(+), the corresponding distribution function for the linear mixed model (solid line) 
and the values of thickness generated by the Monte Carlo simulation (•).   
 

Figure 8: Scatterplot showing the relationship between ‘Active Layer Thickness’ 
estimated by the Stefan equation and the moisture content (proportion by weight) 
values used within the Monte Carlo simulation.   
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