```
1
      The palynology of the Middle Jurassic (Bajocian-Bathonian) Wanaea verrucosa
 2
      dinoflagellate cyst Zone of the North West Shelf of Australia
 3
     Daniel J. Mantle<sup>a*</sup>, James B. Riding<sup>b</sup>
 4
 5
     <sup>a</sup> Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia
 6
     <sup>b</sup> British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12
 7
 8
      5GG, United Kingdom
 9
10
      * Corresponding author.
      E-mail address: daniel.mantle@ga.gov.au (D.J. Mantle).
11
12
13
14
      ABSTRACT
15
16
      The marine and terrestrial palynology of the Middle Jurassic Wanaea vertucosa Zone
17
      from the Perseus-3A, Sunrise-2 and Sunset West-1 wells of the North West Shelf of
18
      Australia was studied in detail. These three wells represent brackish and shallow
19
      marine successions from the Northern Carnarvon and Bonaparte basins respectively.
20
      The palynological data derived from these three wells constitute the basis for the
21
      formal definition of this important dinoflagellate cyst biozone and its three constituent
22
      subzones. The base of the Lower Wanaea verrucosa Subzone is defined by the
23
      inception of the index species and is a relatively sparse, low diversity
24
      microphytoplankton assemblage; species richness increases up-section. The base of
25
      the succeeding Middle Wanaea verrucosa Subzone is defined by the range base of
26
      Valvaeodinium spinosum, and the Upper Wanaea verrucosa Subzone is defined by the
27
      incoming of the large and distinctive species Endoscrinium kempiae. Other
28
      stratigraphically-important datums include the inceptions of ?Bradleyella adela in the
29
      lower subzone, Leptodinium spp. and Wanaea lacuna in the middle subzone, and
30
      Endoscrinium spp. and Ternia balmei within the upper subzone. Important range tops
31
      include Mancodinium semitabulatum and Phallocysta granosa in the middle subzone,
32
      and Nannoceratopsis deflandrei in the upper subzone. These and other datums are
33
      compared with European ranges to assign a Late Bajocian to Early Bathonian age to
34
      the Wanaea verrucosa Zone.
```

35 The dinoflagellate cyst associations are dominated by cosmopolitan taxa, 36 particularly at the generic level. Endemic Australasian forms such as *Phallocysata* 37 granosa and Ternia balmei are relatively minor in significance. However, two new 38 species, Meiourogonyaulax straussii sp. nov. and Valvaeodinium cookii sp. nov. are 39 established and are unknown from other localities. The species Jansonia scarffei is 40 reattributed as *Fostericysta scarffei* (Tykoezinski et al. 2001) comb. nov. Taxa with 41 epicystal and multiplate precingular archaeopyles are prominent; this represents the 42 coeval evolutionary explosion of the gonyaulacacean dinoflagellate cysts observed in 43 the latest Early to Late Bajocian of Europe. By contrast, the succeeding Callovian to 44 Oxfordian interval in Australasia and Europe is dominated by endemic taxa. This may 45 be an indication of the development of forms with specific environmental preferences 46 during the Callovian and Oxfordian and/or the establishment of barriers to the passive 47 dispersal of dinoflagellates within Tethys. However, this phenomenon may be 48 partially an artefact of further diversification. 49 The associated spore-pollen assemblages are transitional from the upper 50 Dictyotosporites complex to the lower Contignisporites cooksoniae zones. The latter 51 zone is defined by the first appearance of the index species, but considerable care is 52 required to separate this species from the many intermediate forms of Striatella-53 *Contignisporites* that occur through this interval. The palynofloras are dominated by 54 araucariacean monosaccates (particularly Callialasporites 55 spp.), corystospermbisaccates (mostly *Alisporites* spp.) and moderately diverse 56 bryophyte-lycophyte-pteridophyte spore assemblages. 57 58 Keywords: biostratigraphy; dinoflagellate cysts; Wanaea verrucosa Zone; Middle 59 Jurassic (Bajocian-Bathonian); North West Shelf; Australia. 60 61 62 **1. Introduction** 63 64 The North West Shelf of Australia is a passive continental margin comprising 65 the Northern Carnarvon, Roebuck, Offshore Canning, Browse and Bonaparte basins 66 (Fig. 1). These five depocentres collectively make up the extensive Westralian 67 Superbasin and represent the most important hydrocarbon province in Australia. 68 Longley et al. (2002) reviewed the petroleum geology of this region that includes

multiple source, reservoir and seal units of Early Carboniferous to Late Cretaceous
age. These include the fluvio-deltaic and marginal marine sandstones of the Legendre
and Plover formations that form important Middle Jurassic reservoir units in the
Northern Carnarvon and Bonaparte basins respectively. This interval is represented by
the *Nannoceratopsis deflandrei*, *Wanaea verrucosa* and *Wanaea indotata*dinoflagellate cyst zones.

75 Microfossil-based biostratigraphy has been extensively used during both the 76 hydrocarbon exploration and production phases across the North West Shelf. The 77 standard Mesozoic palynomorph zonation for the North West Shelf is Helby et al. 78 (1987). This is an integrated dinoflagellate cyst and spore-pollen biozonation scheme 79 for the Late Permian (Changshingian) to the Palaeocene (Danian) interval. The 80 dinoflagellate cyst zonal component generally provides substage level resolution from 81 the Middle Triassic (Anisian) to Palaeocene. Further taxonomic work chiefly on the 82 Jurassic (Toarcan-Tithonian) by Helby and Partridge (2001) and Riding and Helby (2001a-h) established many key marine microphytoplankton taxa that significantly 83 84 increased the biostratigraphical resolution across this interval. These index species 85 have allowed the definition of many dinoflagellate cyst subzones, some of which were 86 illustrated, but not defined, by Helby et al. (1987, fig. 47) and Foster (2001, fig. 2). 87 Further revisions were figured by Helby et al. (2004) and Partridge (2006) on 88 chart/poster-style publications along with the bioevents that define each zone and 89 subzone. Subsequently, the ranges of many of the important dinoflagellate cyst index 90 taxa for the Mid Triassic to earliest Cretaceous (Ladinian-Berriasian) zones were 91 provided by Riding et al. (2010a), who reviewed and revised the chronostratigraphical 92 ages for the zones in this interval. However, the new zones and subzones listed by 93 Helby et al. (2004) and Partridge (2006) remained unformalized. These zones can 94 nevertheless be used in applied petroleum geology studies because their parameters in 95 terms of the defining bioevents were clearly illustrated.

This contribution is focussed on the Late Bajocian to Early Bathonian *Wanaea verrucosa* dinoflagellate cyst Zone and its three constituent subzones. In this paper we formally define the zone, and the three subzones, and provide detailed palynological documentation of this interval in three important reference sections. The successions studied are from the Perseus-3A well in the Northern Carnarvon Basin, and the Sunrise-2 and Sunset-West-1 wells in the Bonaparte Basin (Fig. 1; Appendix 1).

104 2. The Wanaea verrucosa Zone - background

105

106 The Wanaea verrucosa Zone was first illustrated by Foster (2001, fig. 2) for 107 the Bathonian (Middle Jurassic) of the North West Shelf of Australia. This 108 dinoflagellate cyst zone replaced the upper part of the *Caddasphaera halosa* Zone of 109 Helby et al. (1987). The Wanaea verrucosa Zone was subsequently illustrated, with 110 defining bioevents, by Helby et al. (2004, figs. 1, 4) and Partridge (2006). Its base and 111 top are delimited by the range bases of Wanaea verrucosa and Wanaea indotata 112 respectively. The base of the zone was also defined by the apparent extinction of 113 *Nannoceratopsis deflandrei*, but the current study considerably extends this range. 114 The zone was subdivided into three subzones defined on the range bases of Wanaea 115 verrucosa, Valvaeodinium spinosum and Endoscrinium kempiae (Helby et al., 2004; 116 Partridge, 2006). The only other biostratigraphical data depicted was the range base of 117 Ternia balmei within the youngest of these subzones (Helby et al., 2004, fig. 4). 118 Riding et al. (2010a, p. 562) revised the Bathonian age of the zone to Late Bajocian to 119 Early Bathonian based on key dinoflagellate cyst datums established in Europe (Fig. 120 2). 121 According to Riding et al. (2010a), the *Wanaea verrucosa* Zone is 122 characterised by high diversity assemblages of largely undescribed species with 123 species richness increasing up-section. The described taxa within this zone were noted 124 to include Endoscrinium kempiae, Nannoceratopsis spp., Pareodinia ceratophora, 125 Pareodinia halosa, Phallocysta granosa, Ternia balmei, Valvaeodinium spinosum, 126 Wanaea enoda, Wanaea lacuna and Wanaea verrucosa (see Riding et al., 2010a, p. 127 562). 128 129 130 3. The palynology of the Wanaea verrucosa Zone in the Perseus-3A, Sunrise-2 131 and Sunset West-1 wells 132 133 In this study, 64 conventional core samples from the Perseus-3A, Sunrise-2 134 and Sunset West-1 wells (Fig. 3) were investigated for palynology. In the Northern 135 Carnarvon Basin, 14 samples were selected from the fluvio-deltaic Legendre

136 Formation in the Perseus-3A well; this succession consists of a series of coarsening-

137 upward cycles deposited in low energy, non-marine and brackish environments 138 through to marginal and shallow marine settings. The remaining 50 samples from the 139 Sunrise-2 and Sunset West-1 wells, in the Bonaparte Basin, are from shallow marine 140 deposits in the uppermost Plover Formation. The samples largely produced abundant, 141 terrestrial palynofloras with a lower proportion of marine microphytoplankton. The 142 latter includes a moderately diverse dinoflagellate cyst assemblage that forms the 143 principal focus of this contribution due to their stratigraphical utility across the North 144 West Shelf.

145 In the majority of the samples investigated, low diversity associations of 146 gymnospermous pollen dominate, including abundant Araucariacites spp., 147 *Callialasporites* spp. and undifferentiated bisaccate pollen (mostly the corystosperm 148 genus Alisporites). Common Classopollis spp. represent cheirolepidacean conifers, 149 whilst the frequently co-occuring taxodiacean species *Exesipollenites tumulus* and 150 Perinopollenites elatoides were also sporadically recorded. Further pollen species 151 recorded in low numbers included Cycadopites spp., Vitreisporites pallidus and rare 152 trisaccate types.

153 There is also a moderate diversity and abundance of pteridophyte, bryophyte

and lycodpod spores throughout the intervals studied; these assemblages are

155 commonly dominated by Cyathidites spp., Dictyophyllidites spp., Gleicheniidites spp.,

156 Ischyosporites/Klukisporites spp., Neoraistrickia spp., Osmundacidites spp. and

157 Retitriletes spp. Common accessory species included Antulsporites saevus,

158 Annulispora spp., Coronatispora spp., Dictyotosporites complex, Foveosporites

159 canalis, Sestrosporites pseudoalveolatus and Staplinisporites caminus. There is also a

160 stratigraphically significant transition from *Striatella* to *Contignisporites* through the

161 zone, with common intermediate forms.

162 Reworked pollen and spores were noted throughout the successions in all three 163 wells. These allochthonous forms are largely of Permian age and include highly

164 distinctive types such as *Diatomozonotriletes townrowii*, *Didecitriletes ericianus*,

165 Dulhuntyispora dulhuntyi, Granulatisporites trisinus, Indotriradites spp.,

166 Microbaculispora villosa, Plicatipollenites spp., Praecolpatites sinuosus,

167 Protohaploxypinus spp., Pseudoreticulatispora pseudoreticulata, Striatoabieites

168 *multistriatus* and *Striatopodocarpidites* spp.

However, the main focus of the study was on the moderately diverse marinemicrophytoplankton assemblages that are present in the three selected wells. The

171	relative proportions of dinoflagellate cysts are highly variable across the Wanaea					
172	verrucosa Zone, but they generally represent 15-40% of the palynofloras in the two					
173	Bonaparte Basin wells and 1-20% of the palynofloras in the Perseus-3A well in the					
174	Northern Carnarvon Basin. The significantly sparser dinoflagellate cyst assemblages					
175	in the Perseus-3A well reflect the more marginal marine and brackish or even					
176	nonmarine environments across the Bajocian-Bathonian interval in the Northern					
177	Carnarvon Basin compared to the dominantly shallow marine successions across					
178	much of the northern Bonaparte Basin. These dinoflagellate cyst associations are					
179	dominated by Ctenidodinium spp., the Dissiliodinium-Durotrigia group,					
180	Escharisphaeridia spp., Meiourogonyaulax spp., Pareodinia spp. and Wanaea					
181	verrucosa. Other common or stratigraphically significant forms include ?Bradleyella					
182	adela, Kallosphaeridium hypornatum, Leptodinium spp., Mancodinium					
183	semitabulatum, Nannoceratopsis deflandrei, Phallocysta granosa, Ternia balmei,					
184	Valvaeodinium cookii sp. nov., Valvaeodinium spinosum and Wanaea enoda.					
185	Miscellaneous palynomorphs such as acritarchs (largely Micrhystridium spp.),					
186	Botryococcus, foraminiferal test linings and prasinophytes (e.g. Pterospermella					
187	australiense) are present in relatively minor poroportions, and appear to be of limited					
188	stratigraphical significance.					
189	The dinoflagellate cyst systematics, including the establishment of					
190	Meiourogonyaulax straussii sp. nov. and Valvaeodinium cookii sp. nov., are presented					
191	as Appendix 2. The non-dinoflagellate cyst palynomorphs are simply listed in					
192	Appendix 3 whilst the quantitative counts of both terrestrial and marine palynomorphs					
193	are given in Appendix 4 (Tables 1-6). Selected dinoflagellate cyst specimens are					
194	illustrated in Plates I-X, and all the figured material is housed in the Commonwealth					
195	Palaeontological Collection (CPC) of Geoscience Australia, Canberra, ACT,					
196	Australia. A register of figured specimens is included as Appendix 5.					
197						
198						
199	3.1. The Perseus-3A well					
200						
201	The Perseus-3A well was drilled in the Northern Carnarvon Basin (Fig. 1;					
202	Appendix 1) to a total depth of 3915 m to the Upper Triassic Mungaroo Formation.					
203	Fourteen conventional core samples were examined from the Middle Jurassic Wanaea					
204	verrucosa Zone; the quantitative distribution of palynomorphs in these samples is					

205	depicted in Tables 1 and 4 of Appendix 4. The samples generally produced relatively				
206	abundant, fair- to well-preserved palynomorph associations. The organic residues are				
207	consistently dominated by terrestrially-derived palynomorphs, with subordinate				
208	marine microphytoplankton (Tables 1, 4). In seven of the 14 samples, dinoflagellate				
209	cysts represent less than 10% of the palynofloras. This relative sparsity of marine				
210	microplankton is consistent with a brackish water depositional setting. This contention				
211	is supported by the consistent, albeit rare, occurrences of the freshwater/brackish alga				
212	Botryococcus (Table 4). A further 15 samples from this interval were not studied in				
213	detail; these samples contained extremely sparse dinoflagellate cyst assemblages				
214	(<1% of total palynomorphs) and are probably representative of brackish to non-				
215	marine environments.				
216					
217	3.2. The Sunrise-2 well				
218					
219	The Sunrise-2 well is located immediately northeast of the Sunset West-1 well				
220	in the Bonaparte Basin (Fig. 1; Appendix 1). It penetrated 2350 m into the fluvial-				
221	deltaic Lower-Middle Jurassic Plover Formation. Twenty-nine samples from the				
222	upper, more marine, sections of the Plover Formation were examined herein. The				
223	quantitative distribution of palynomorphs in these samples is illustrated in Tables 2				
224	and 5 of Appendix 4. The samples yielded moderately diverse terrestrial and marine				
225	palynomorphs with dinoflagellate cysts commonly making up 20-50% of the total				
226	assemblages. The preservation ranged from poor- to well-preserved. However, the				
227	thermal alteration index is moderately higher in this well than the other two wells				
228	examined; most spores and pollen are dark orange to brown and are at peak maturity				
229	for oil generation.				
230					
231	3.3. The Sunset West-1 well				
232					
233	The Sunset West-1 well was drilled to a total depth of 2505 m in the Lower				
234	Jurassic, fluvially dominated sections of the Plover Formation in the northern				
235	Bonaparte Basin (Fig. 1; Appendix 1). Twenty-one samples from the Wanaea				

- 236 *verrucosa* Zone in the shallow marine, upper Plover Formation were studied herein;
- the quantitative distribution of palynomorphs in these samples is depicted in Tables 3
- and 6 of Appendix 4. They generally produced abundant and poor- to well-preserved

239	palynomorph associations. However, the uppermost three samples yielded relatively
240	sparse, poorly-preserved palynofloras. The organic residues in the lower and middle
241	subzones are mostly dominated by terrestrially derived pollen and spores, with
242	subordinate marine microphytoplankton (9-29% dinoflagellate cysts of the total
243	palynofloras). However, the upper subzone is substantially more marine, with
244	dinoflagellate cysts accounting for 21% to 76% of the total palynomorphs.
245	
246	
247	3.4. Palaeoecological palynology
248	
249	The palynomorph assemblages are largely dominated by pollen and spores
250	with a low to moderate diversity marine microphytoplankton component.
251	Gymnosperm pollen, particularly araucariacean types, are abundant throughout all
252	three wells together with moderately diverse and abundant bryophyte-lycophyte-
253	pteridophyte spore communities. The predominance of the araucariacean pollen, and
254	to a lesser extent corystosperm bisaccates, is suggestive of warm, largely non-seasonal
255	and temperate to moderately humid environments (Reyre, 1980; Mohr, 1989; Abbink
256	1998). This increase in abundance of araucariacean pollen and the marked decrease in
257	cheirolepidacean pollen, such as Corollina and Exesipollenites, reflects the change
258	from the drier and possibly warmer conditions that prevailed in the Early Jurassic
259	(Filatoff, 1975; McKellar, 1996; Sajjadi and Playford, 2002) and marks a prolonged
260	period of relative climate stability. These moister conditions in the Middle Jurassic are
261	also reflected in the moderate diversity of filicalean fern, and bryophytic moss and
262	liverwort spores.
263	The predominance of gymnosperm pollen over spores in the Wanaea

264 verrucosa Zone in both the Sunrise-2 and Sunset West-1 wells probably reflects the 265 transport time to shallow marine environments in the Bonaparte Basin, as opposed to 266 proximity to suitable habitats; araucariacean trees are more likely to occur away from 267 deltaic and most coastal environments, but their pollen is readily transported to such 268 settings. Similarly, the comparable abundances of pollen to spores and the much 269 reduced marine microphytoplankton abundance in Perseus-3A reflects the shorter 270 transport distances into the marginal marine to brackish and intermittently non-marine 271 environments in parts of the Northern Carnarvon Basin. These coastal plain to very 272 nearshore environments, possibly in a somewhat restricted basin, are considered

analogous with the Bathonian Great Estuarine Group of northwest Scotland. This unit
represents shallow water, paralic conditions where the salinity was largely brackish
and is characterised by dinoflagellate cyst assemblages with low species richness
(Riding et al., 1991, figs. A4-A10); the composition of these assemblages is broadly
comparable to those of the North West Shelf.

278 In the two Bonaparte Basin wells studied herein, the greater diversity and 279 abundance of marine microphytoplankton allows some inferences to be made 280 regarding the fluctuating marine depositional environments. There is a moderate 281 increase in abundance and diversity of dinoflagellate cysts through the Middle and 282 Upper Wanaea verrucosa subzones, which suggests a shift from a very nearshore 283 setting in the Lower subzone to shallow marine (though still nearshore) 284 palaeoenvironments in the overlying subzones. This is reflected in the overall 285 progression from a fluvially-dominated/tide-influenced succession for the Lower 286 Wanaea verrucosa Subzone and underlying sections to a wave-dominated/tide-287 influenced interval that covers the Middle-Upper Wanaea verrucosa Subzones as 288 indicated by integrated studies of the sedimentology, ichnology and wireline log 289 profiles for these wells (Ainsworth et al., 2008; fig. 4.6).

290 A nearshore depositional environment is not only suggested by the dominance 291 of pollen and spores to marine microphytoplankton, but also by the relative abundance 292 of certain dinoflagellate cyst groups. Meiourogonyaulax are thick-walled, robust, 293 dinoflagellate cysts considered typical of nearshore environments (Harris and Tocher, 294 2003) and are likely to preserve well with minimal damage in differing environments 295 and after variable laboratory preparations (Mantle 2009b); their abundance through 296 the Wanaea verucosa Zone should thus be relatively free from preservational or 297 processing artefacts. The prominence of *Meiourogonyaulax* in the Middle and Upper 298 subzones probably reflects normal salinity, shallow marine conditions, as is also 299 reflected by the increase in foraminiferal test linings and spiny acritarchs. Ternia 300 *balmei* is another species that is thought have been largely nearshore in occurrence; it 301 first occurs in the Upper Wanaea verrucosa Subzone. 302

303

304 **4.** The definition of the *Wanaea verrucosa* Zone

306	In this section, the Wanaea verrucosa Zone of Foster (2001), Helby et al.
307	(2004) and Partridge (2006) is formally defined.
308	
309	Wanaea verrucosa Zone
310	
311	Definition: The interval between the range base of Wanaea verrucosa and the range
312	base of Wanaea indotata.
313	
314	Age: Late Bajocian to Early Bathonian (Riding et al., 2010a).
315	
316	Type sections: The shallow marine successions in the Sunrise-2 (2155.74-2107.42m)
317	and Sunset West-1 (2247.05-2200.17m) wells in the northern Bonaparte Basin are
318	proposed as reference sections for the Wanaea verrucosa Zone and its constituent
319	subzones.
320	
321	Accessory forms: The Wanaea verrucosa Zone is characterised by low to moderate
322	diversity dinoflagellate cyst assemblages dominated by the genera Ctenidodinium,
323	Dissiliodonium-Durotrigia, Escharisphaeridia, Pareodinia and Wanaea.
324	Batiacasphaera and Nannoceratopsis are also consistently present in relatively low
325	proportions.
326	
327	Associated spore-pollen zones: upper Dictyotosporites complex to lower
328	Contignisporites cooksoniae zones (insert reference here)
329	
330	Remarks: The base of the Wanaea verrucosa Zone is marked by the range base of the
331	important Middle-Late Jurassic genus, Wanaea (see Riding and Helby, 2001b, figs.
332	11, 12). In Australia, Wanaea enoda and Wanaea verrucosa have their inceptions at
333	this point, as observed in the three wells studied herein (Fig. 4). The range base of this
334	distinctive and large genus is an ideal biostratigraphical marker. Although the Wanaea
335	verrucosa Zone assemblages are typically dominated by pollen and spores, the index
336	species is consistently present, often in significant proportions.
337	
338	Subzones: The Sunrise-2 and Sunset West-1 wells in the Bonaparte Basin are
339	subdivided into Lower, Middle and Upper subzones along similar lines to those

es. The
55. THE
flagellate
Basin
Bonaparte
he range
e of
undance of
otherwise
clude
subsp.
n Europe;
nisphere. It
he base of
marker
f the
<i>i</i> and the
ce of
base of its
nium
is

374 marginally commoner in both the Sunrise-2 and Sunset West-1 wells. It does not 375 appear to range above the Middle Subzone. Another key species is ?Bradleyella adela 376 which first occurs in the uppermost Lower Subzone but is present as a notable acme in 377 the Middle Subzone (Fig. 4) where it accounts for 12-37% of the total palynomorphs 378 before abruptly disappearing at or immediately above the base of the Upper Subzone. 379 There is also a restricted acme of *Phallocysta granosa* in two samples (2121.63 and 380 2117.06 m, where it represents 15% and 5% of the dinoflagellate cysts, respectively) 381 in the Sunrise-2 well (Table 2) and high abundances of Meiourogonyaulax throughout 382 most of the subzone. The latter genus first occurs in the Lower Subzone, but the 383 abundance and diversity increases substantially in the Middle Subzone. However, 384 subdividing many of the forms is impractical as there is clearly a high degree of 385 intraspecific variability.

386 Overall, the microphytoplankton diversity is considerably higher than in the 387 underlying subzone, including such short ranging species as Wanaea lacuna that 388 appears to be restricted to a narrow interval within the Middle Subzone. Other marker 389 events include the inception of several dinoflagellate cyst genera with single-plate 390 precingular archaeopyles, such Aldorfia, Endoscrinium and Leptodinium, towards the 391 top of the subzone. Important final appearance datums include Mancodinium 392 semitabulatum subsp semitabulatum at the base of the zone and Nannoceratopsis 393 deflandrei subsp. senex and Valvaeodinium cookii sp. nov. towards the top of the 394 subzone. Notable accessory species include Evansia sp. A, Kallosphaeridium 395 hypornatum, Pareodinia sp. A and Wanaea verrucosa.

396

397 Upper Wanaea verrucosa Subzone

398

399 Definition: The interval between the range base of *Endoscrinium kempiae* and the400 range base of *Wanaea indotata*.

401

402 Remarks: The base of this subzone is formally defined as the first occurrence of

403 *Endoscrinium kempiae* (Fig. 4). This large and distinctive species is a good

404 biostratigraphical marker, but it can be rare in the lower parts of its range. The

405 subzone is characterised by a marked increase in the abundance and diversity of

406 *Ctenidodinium*, particularly spinose forms, and the consistent presence, albeit in low

407 numbers, of dinoflagellate cysts with single-plate precingular archaeopyles. The

408 Upper Subzone can also be distinguished from the underlying subzones by the general

409 absence of Nannoceratopsis deflandrei and ?Bradleyella adela; both these

410 morphotypes occur as extremely rare components at the base of the subzone.

411 Valvaeodinium spinosum is also notably commoner throughout this subzone with a

412 minor acme towards the base. The range base of Ternia balmei is a further important

413 bioevent that occurs within the Upper Subzone.

414

415 5. The age of the Wanaea verrucosa Zone

416

417 The dinoflagellate cyst assemblages recovered from the Wanaea verrucosa 418 Zone largely comprise cosmopolitan genera such as *Ctenidodinium*, *Dissiliodinium*,

419 Durotrigia, Meiourogonyaulax, Pareodinia and Wanaea (Tables 1-3). This

420 association is characteristic of the Late Bajocian to Bathonian using comparisons

421 elsewhere in the world, principally Europe (see section 6).

422 The Wanaea verrucosa Zone, or its equivalents, was assigned a Middle-Late 423 Bathonian age by Helby et al. (1987, fig. 12) that was later revised to an Early-Middle 424 Bathonian age by Helby et al. (2004, fig. 4) and Partridge (2006); this assignation was 425 not based on any independent stratigraphical evidence. Riding et al. (2010a, fig. 8) 426 reassessed the age as Late Bajocian to Early Bathonian following a review of 427 previously reported dinoflagellate cyst occurrences. This revised age is based upon 428 dinoflagellate cyst evidence from Europe, for example the range base of 429 Valvaeodinium spinosum, which is placed close to the Early-Late Bajocian transition. 430 The present study, however, represents the most comprehensive published account on 431 the palynofloras of the Wanaea verrucosa Zone and these data are used here to further 432 investigate the age of this interval. This section is subdivided into discussion of the 433 maximum and minimum ages of the zone, followed by a brief overview. 434 435 5.1. The maximum age of the Wanaea verrucosa Zone 436 437

There are several forms present in the material studied which have intra-

438 Bajocian range bases in Europe. These comprise Acanthaulax crispa, Aldorfia spp.,

439 Atopodinium spp., Ctenidodinium spp., Endoscrinium spp., Meiourogonyaulax spp.,

440 Nannoceratopsis sp. cf. N. spiculata, Rhynchodiniopsis spp., Valensiella ovulum,

441 Valvaeodinium spinosum, Valvaeodinium vermicylindratum and simple (i.e. non-

442	flanged) species of Wanaea. These genera and species all have inceptions during the				
443	'mid' Bajocian in Europe. Their range bases are all within the Stephanoceras				
444	humphriesianum and Strenoceras subfurcatum zones which straddle the Early/Late				
445	Bajocian transition (Prauss, 1989; Gowland and Riding, 1991; Riding et al., 1991;				
446	Feist-Burkhardt and Wille, 1992; Feist-Burkhardt, 1994; Feist-Burkhardt and Monteil,				
447	1997). Hence this is consistent with the Late Bajocian age suggested by Riding et al.				
448	(2010a) as the maxium age for the Wanaea verrucosa Zone.				
449					
450	5.2. The minimum age of the Wanaea verrucosa Zone				
451					
452					
453	Nannoceratopsis deflandrei occurs as a common accessory species in the				
454	Lower-Middle Wanaea verrucosa subzones (Tables 2-3); these occurrences help				
455	provide a minimum age for the zone as the consistent range top of this species (as				
456	Nannoceratopsis gracilis) is close to the Early-Late Bajocian transition (i.e. the				
457	Stephanoceras humphriesianum and Strenoceras subfurcatum zones) in Europe				
458	(Gowland and Riding, 1991; Riding et al., 1991; Feist-Burkhardt and Wille, 1992;				
459	Feist-Burkhardt and Monteil, 1997). Isolated occurrences have, however, been				
460	reported from the Bathonian and Callovian (Riding et al., 1985; Prauss, 1989). These				
461	records are sporadic and extremely sparse, and hence may represent reworking.				
462	Therefore, the consistent presence of Nannoceratopsis deflandrei in the two				
463	Bonaparte Basin wells is strongly suggestive of the Bajocian of Europe. This				
464	contention is strengthened by the absence of Nannoceratopsis pellucida sensu stricto				
465	Deflandre 1938, which normally has an intra-Bathonian range base in Europe (Riding				
466	et al., 1985; 1991; Feist-Burkhardt and Wille, 1992). Importantly Mancodinium				
467	semitabulatum subsp. semitabulatum also has a similar last appearance datum (the				
468	Stephanoceras humphriesianum zone) in Europe (Riding 1984), thus providing further				
469	strong evidence of a pre-Bathonian age. The occurence of Acanthaulax crispa is also				
470	suggestive of the 'mid' to Late Bajocian interval by comparison with Europe (Prauss,				
471	1989; Feist-Burkhardt and Wille, 1992; Feist-Burkhardt and Monteil, 1997).				
472	However, individual dinoflagellate cyst ranges should be noted with caution whilst				
473	fully considering the overall composition of the assemblage. For example, the				
474	apparent extinction of Valvaeodinium spinosum is Late Bathonian in Europe (Riding				
475	et al., 1985; Prauss, 1989; Feist-Burkhardt and Wille, 1992; Riding and Thomas,				

476 1992), but it is commonly recorded up to at least the Early Oxfordian *Ctenidodinium*477 *ancorum* Zone in Australia (Mantle, 2009b).

478

479 *5.3. Overview*

480

The *Dissiliodinium caddaense* and *Nannoceratopsis deflandrei* zones are the two immediately subjacent zones to the *Wanaea verrucosa* Zone. The *Dissiliodinium caddaense* Zone is considered to be of Early Bajocian age (Witchellia laeviuscula Zone) on the basis of ammonite and strontium isotope evidence (Riding et al., 2010b). The *Nannoceratopsis deflandrei* Zone was assigned to the Early-Late Bajocian by Riding et al. (2010a) based on calcareous nannofossil evidence.

The unit succeeding the *Wanaea verrucosa* Zone is the *Wanaea indotata*Zone. Based on calcareous nannofossil and dinoflagellate cyst evidence, the *Wanaea indotata* Zone was assigned to the Early-Late Bathonian by Riding et al. (2010a).
Hence, the maximum Late Bajocian and the minimum Early Bathonian ages assigned
to the *Wanaea verrucosa* Zone by Riding et al. (2010a) are entirely credible given the
independent evidence used to assign the ages of the adjacent zones.

493 However, the biostratigraphical evidence derived from ranges established in 494 Europe implies that the *Wanaea verrucosa* Zone may be latest Early to Late Bajocian 495 in age (i.e. the Stephanoceras humphriesianum to Strenoceras Parkinsonia parkinsoni 496 zones). Riding et al (2010a, p. 562) acknowledged this situation and stated that 497 "assemblages from the Wanaea verrucosa Zone are far more characteristic of the Late 498 Bajocian than the Bathonian based on comparisons with Europe". The presence of 499 Nannoceratopis deflandrei and Mancodinium semitabulatum subsp. semitabulatum 500 present the strongest support of this older age.

501 However, contra this evidence for a predominantly pre-Bathonian age is the 502 prominence and relative diversity of *Ctenidodinium*, particularly in the Upper Wanaea 503 *verrucosa* Zone. This genus is not especially abundant or diverse in the Bajocian of 504 Europe (Riding et al., 1991; Feist-Burkhardt and Monteil, 1997), but is prominent in 505 the Bathonian (Riding et al., 1985; Feist-Burkhardt and Monteil, 1997; Riding et al., 506 1999). An example is the Bathonian Great Estuarine Group of northwest Scotland, 507 where *Ctenidodinium* spp. are relatively abundant; this contrasts with the underlying 508 Bajocian strata where this genus is relatively sparse (Riding et al., 1991). Moreover, 509 the taxonomic spectrum and the diversity levels of dinoflagellate cysts in the

510	Bathonian Great Estuarine Group of Scotland are broadly similar to the floras from				
511	the Wanaea verrucosa Zone (Riding et al., 1991, fig. A6). Significantly, both the				
512	Australian and Scottish material are from successions deposited in marginal to				
513	shallow marine settings.				
514	In summary, the Wanaea verrucosa Zone is still considered most likely to be				
515	Late Bajocian to Early Bathonian in age, following Riding et al. (2010a), but may				
516	range as old as latest Early Bajocian.				
517					
518					
519	6. The palaeobiology of the Wanaea verrucosa Zone assemblages of the North				
520	West Shelf and comparison with coeval palynofloras				
521					
522	The palynofloras from the Wanaea verrucosa Zone from the three successions				
523	studied here are markedly similar to associations from the Bajocian-Bathonian				
524	transition reported elsewhere in the world. In this section the palynofloras from the				
525	North West Shelf, with emphasis on dinoflagellate cysts, are discussed in terms of				
526	various aspects of palaeobiology and compared to key reports from other continents.				
527	This section is subdivided into marine and terrestrial palynofloras.				
528					
529	6.1. Marine palynomorphs				
530					
531	The dinoflagellate cyst associations recovered from the three wells studied are				
532	largely composed of the following genera: Batiacasphaera, Ctenidodinium,				
533	Dissiliodinim, Durotrigia, Endoscrinium, Escharisphaeridia, Leptodinium,				
534	Meiourogonyaulax, Nannoceratopsis, Phallocysta, Pareodinia, Valvaeodinium and				
535	Wanaea (Tables 1-3). These genera are all typical of the Late Bajocian to Bathonian				
536	interval globally, specifically in Africa, the Americas, the Arctic, Asia and Europe.				
537	Key publications for comparison include: Aboul Ela and Aly (1988a), Aboul Ela and				
538	Mahrous (1990), Aboul Ela and El-Shamma (1997), Geleta (1998), El-Shamma et al.				
539	(2001) and El Beialy et al. (2002) for Africa; Johnson and Hills (1973) and Bujak and				
540	Williams (1977) for the Americas; Smelror (1987) for the Arctic; Thusu and Vigran				
541	(1985), Kumar (1987), Thusu et al. (1988), Ilyina (1991), Riding and Ilyina (1996;				
542	1998), Riding et al. (1999), Mau Shaozhi and Bian Lizeng (2000) for Asia; and (for				
543	example) Gocht (1970), Fenton and Fisher (1978), Davey (1980), Fenton et al. (1980),				

544 Fenton (1981), Riding et al. (1985; 1991), Prauss (1989), Dodekova (1990), Feist-

545 Burkardt and Monteil (1997; 2001) and Gedl (2008) from Europe.

546 The Aalenian and earliest Bajocian interval is characterised by relatively low 547 diversity dinoflagellate cyst floras. Forms such as Mancodinium semitabulatum 548 Morgenroth 1970, Moesiodinium raileanui Antonescu 1974, Nannoceratopsis 549 deflandrei, Nannoceratopsis dictyambonis Riding 1984, Nannoceratopsis gracilis 550 Alberti 1961, Phallocysta elongata (Beju 1971) Riding 1994, Scriniocassis priscus 551 (Gocht 1979) Below 1990 and Scriniocassis weberi Gocht 1964 are typical (Feist-552 Burkhardt, 1990; Feist-Burkardt and Monteil, 1997; Feist-Burkhardt and Pross, 2010). 553 However in the latest Early Bajocian (Stephanoceras humphriesianum Zone) and the 554 early-mid Late Bajocian (Strenoceras subfurcatum and Strenoceras garantiana zones), 555 gonyaulacacean dinoflagellate cysts underwent a major phase of explosive evolution 556 (Fensome et al., 1996, fig. 1). During this interval, gonyaulacacean taxa with epicystal 557 and multiplate precingular archaeopyles such as Ctenidodinium, Dissiliodinium, 558 Durotrigia and Wanaea were extremely prominent (Feist-Burkardt and Monteil, 559 1997; 2001). Multiplate precingular archaeopyles (as in *Dissiliodinium*) appeared in 560 the Aalenian, prior to the inception of epicystal archaeopyles (as in Wanaea) in the 561 Bajocian (Gowland and Riding, 1991). This transition probably involved the fusing of 562 plate sutures throughout the epicyst (Stover and Helby, 1987, figs. 4A-4D). 563 Furthermore, the single-plate (3") precingular archaeopyle, for example in 564 Acanthaulax crispa in the latest Early Bajocian (Stephanoceras humphriesianum 565 Zone), was probably derived from the early mutiplate excystment apertures in 566 Dissiliodinium and/or Durotrigia (see Feist-Burkardt and Monteil, 1997, fig. 4). It 567 appears that these early gonyaulacacean genera were experimenting with archaeopyle 568 styles in order to discover the most effective modes of excystment. This 569 experimentation phase persisted into the Bathonian. However, by the Callovian, most 570 gonyaulacaceans have either apical or single-plate (3") precingular archaeopyles. 571 These two excystment types then became stabilised, and they remain the predominant 572 gonyaulacacean archaeopyle styles throughout the remainder of the Mesozoic and 573 throughout the Cenozoic up to the present day. 574 As mentioned earlier, the Late Bajocian to Early Bathonian interval worldwide 575 is characterised by relatively low diversity dinoflagellate cyst associations dominated 576 by species of Ctenidodinium, Escharisphaeridia, Meiourogonvaulax, Pareodinia,

577 Valvaeodinium and Wanaea. The species Ctenidodinium sellwoodii (Sarjeant 1975)

578 Stover and Evitt 1978 (and its synonyms *Ctenidodinium? stauromatos* (Sarjeant 1976) 579 Stover and Evitt 1978 and *Ctenidodinium tenellum* Deflandre 1938) is especially 580 abundant and geographically widespread. This taxon was interpreted as being 581 euryhaline and/or eurythermal (Riding et al., 1985; 1991). There is significant 582 evidence of dinoflagellate cyst provincialism in the Bathonian (e.g. Riding and Ilyina 583 (1996; 1998; Riding et al., 1999), however widespread forms such as Ctenidodinium 584 sellwoodii and Meiourogonyaulax spp. are recorded throughout the northern 585 hemisphere and beyond.

586 The principal region in the northern hemisphere which exhibits significant 587 provincialism of Bathonian dinoflagellate cysts is the Arctic region. Here, presumed 588 cold-tolerant forms such as Ambonosphaera calloviana Fensome 1979, Evansia 589 janeae Piasecki 2001, Evansia wigginsii (Smelror 1988) Below 1990, Lacrymodinium 590 warreni Albert et al. 1986, Paraevansia brachythelis (Fensome 1979) Below 1990, 591 Paragonyaulacysta calloviensis Johnson and Hills 1973 and Paragonyaulacysta 592 retiphragmata Dörhöfer and Davies 1980 are present (Smelror, 1988a,b; Piasecki et 593 al., 2004).

594 The dinoflagellate cyst floras documented here from the Wanaea verrucosa 595 Zone are hence entirely typical of the Late Bajocian-Early Bathonian interval. 596 Relatively few taxa are present which are confined to Australasia. These include 597 Endoscrinium kempiae, Meiourogonyaulax straussii sp. nov., Phallocysta granosa, 598 Ternia balmei, Valvaeodinium cookii sp. nov., Wanaea enoda and Wanaea verrucosa. 599 Notably, the only exclusively Austral genus is Ternia. This situation is highly unusual for eastern Gondwanan Jurassic dinoflagellate cyst floras. The overlying Callovian to 600 601 Tithonian interval in Australasia is dominated by indigenous southern hemisphere 602 taxa (Helby et al., 1987; Riding and Helby, 2001b-g; Mantle, 2009a, b; Riding et al., 603 2010).

604 One explanation for this phenomenon may be that the East African Seaway 605 (Mozambique Corridor) had not opened, and the Central American Seaway (Hispanic 606 Corridor) and the Viking (or North Sea) Corridor, were either narrow or highly 607 restricted respectively, during the Bajocian and Bathonian (Ager, 1975; Smith et al., 608 1994; Moyne et al., 2004, fig. 1). This was due to both relatively low sea levels and 609 tectonic factors. The consequent enclosed aspect and smaller extent of Tethys at this 610 time may have significantly enhanced the strength of the principal oceanic gyres and 611 possibly the westerly-flowing Tethys circumglobal current (TCC), thereby enabling

612 the effective passive dispersal of dinoflagellate cysts across Tethys due to higher 613 oceanic energy levels. Dinoflagellate cysts can potentially traverse otherwise 614 inhospitable palaeoclimatic/palaeolatitudinal belts because they are resting cysts and 615 hence dormant. This means that they are potentially more mobile than, for example, 616 molluses which were palaeoelimatically partitioned during the Middle Jurassic 617 (Callomon, 2003). When the three aforementioned major seaways opened during the 618 Callovian or Oxfordian (Irurralde-Vinent, 2006; Riding et al., 2011), it is possible that 619 this new oceanic configuration meant that the northern and southern Tethyan gyres 620 became weaker and more partitioned, hence diminishing the potential for the passive 621 dispersal of dinoflagellate cysts. This contention is supported by the findings of 622 Riding et al. (2011), who reported that the dinoflagellate cyst assemblages from the 623 Callovian of south central Argentina are of European aspect and lack any 624 characteristically Austral taxa. This succession from the Neuquén Basin almost 625 exclusively comprises northern hemisphere (Euro-Atlantic) and cosmopolitan taxa. 626 Another factor may be that the low-diversity Bajocian-Bathonian forms may be more 627 euryhaline and/or eurythermal than their significantly more diverse Callovian-628 Tithonian conterparts. However, Enay (1980) and Hallam (1983) have contended that 629 Jurassic biotic endemism was principally controlled by eustasy and tectonic factors, 630 and that palaeotemperature played a relatively minor role. Despite this, fluctuating 631 palaeotemperatures caused several ammonite migrations between the Boreal and 632 Tethyan realms during the Jurassic. For example, in the Bathonian, Tethyan 633 ammonites migrated northwards towards the Boreal Ocean, helped by the opening of 634 marine connections in the North Sea area (Poulsen and Riding, 2003, fig. 6). This 635 factor may indicate that at least some of the typical Bajocian-Bathonian dinoflagellate 636 cysts had a Tethyan origin, and migrated into northern Europe from the south. 637

- 638 6.2. Terrestrial palynomorphs
- 639

The pollen and spores recovered from the Perseus-3A, Sunrise-2 and Sunset
West-1 wells are mostly dominated by low-diversity assemblages of gymnospermous
pollen that often constitute over 50% of the entire palynofloras. *Araucariacites* spp.,
bisaccate pollen and *Callialasporites* spp. are consistently prominent, with lower
proportions of *Classopollis* spp., *Cycadopites* spp., *Perinopollenites elatoides*,
trisaccate pollen and *Vitreisporites pallidus* (Tables 4-6). Bryophyte-lycophyte-

646 pteridophyte spores were generally recovered in smaller proportions than pollen, and

647 they normally comprise 20-30% of the entire palynoflora. The spore floras are

648 dominated by Baculatisporites/Osmundacidites spp., Cyathidites spp.,

649 Dictyophyllidites spp., Gleicheniidites senonicus, Ischyosporites/Klukisporites spp.,

650 Neoraistrickia spp. and Retitriletes spp. Lesser numbers of Antulsporites saevus,

651 Cibotiumspora spp., Concavissimisporites spp., Contignisporites spp., Coronatispora

652 spp., Leptolepidites spp., Sestrosporites pseudoalveolatus, Staplinisporites caminus

and *Stereisporites* spp. were also observed (Tables 4-6). This pollen-spore palynoflora

654 indicates a hinterland vegetated by conifer forests (dominated by Araucariaceae and

655 Coniferales) with an understorey of relatively diverse stands of club mosses and

656 various types of ferns (largely Filicopsida, Lycopodiaceae, Osmundaceae and

657 Schizaeaceae).

658 The abundant levels of *Araucariacites* and *Callialasporites*, together with 659 relatively diverse spores such as *Baculatisporites/Osmundacidites* spp., *Cyathidites*

660 spp., *Dictyophyllidites* spp., *Ischyosporites/Klukisporites* spp. and *Neoraistrickia* spp.

661 are typical of the Late Bajocian to Bathonian interval worldwide. The major elements

of the floras compare extremely well with coeval reports from Africa (Helal, 1965;

Thusu and Vigran, 1985; Aboul Ela and Aly, 1988b; Thusu et al., 1988), Arabia

664 (Sajjadi et al., 2007), Australasia (Balme, 1964; Filatoff, 1975; Helby et al., 1987;

Thorn, 2001), Canada (Pocock, 1970a,b; Bujak and Williams, 1977), Europe

666 (Traulau, 1968; Guy-Ohlson, 1986; 1989; Srivastava, 1987; Boulter and Windle,

667 1993; Koppelhus and Nielsen, 1994; Nielsen et al., 2010), India (Vijaya, 2000; 2009),

Russia (Ilyina, 1985; 1986) and South America (Menendez, 1968; Volkheimer et al.,2008).

670 The worldwide distribution of the Middle Jurassic araucariaceae-fern 671 dominated palynofloras confirm the extensive connections within Laurasia and 672 Gondwana, which were clustered around the Tethys Ocean (Smith et al., 1994, map 673 10). This would have allowed floras to potentially disperse/migrate long distances. It 674 is also evident that the principal floral elements, such as the parent plants of 675 *Callialasporites*, were relatively tolerant of variations in, for example, palaeolatitude. 676 Furthermore, the cosmopolitan nature of these floras indicates that the global 677 palaeoclimate was relatively uniform. Despite the overall similarities of the Middle Jurassic terrestrial palynoflora, some forms largely endemic to the southern 678

679 hemisphere were recorded from the wells studied. These include Anapiculatisporites

dawsonensis, Antulsporites saevus, Contignisporites cooksoniae, Dictyotosporites
 complex, Foveosporites canalis, Sculptisporis moretonensis and Trachysporites
 infirmus.

683

684 7. Conclusions

685 The dinoflagellate cyst associations recorded from the Wanaea verrucosa 686 Zone in the three wells examined herein are dominated by cosmopolitan forms, 687 especially at the generic level. The assemblages are most reminiscent of the Late 688 Bajocian by comparisons with apparently coeval floras from Europe. The Bajocian 689 was an interval in which the cyst-forming dinoflagellates diversified rapidly, with an 690 explosion in gonyaulacacean forms. Bajocian and Bathonian dinoflagellate cyst 691 associations worldwide are dominated by taxa with epicystal and multiplate 692 precingular archaeopyles such as Ctenidodinium, Dissiliodinium, Durotrigia, and 693 Wanaea. Gonyaulacacean dinoflagellate cysts underwent further significant 694 diversification in the succeeding Callovian and Oxfordian stages. The Callovian to 695 Oxfordian interval in Europe and Australasia is characterised by endemic taxa. It is 696 possible that these further evolved Callovian/Oxfordian floras had more specific 697 environmental preferences than the Bajocian/Bathonian assemblages, however it may 698 be that there were new barriers to the dispersal of dinoflagellate cysts across the 699 Tethys in the Callovian/Oxfordian.

700 Quantitative palynological assessments of the shallow marine successions of 701 the upper Plover Formation in the northern Bonaparte Basin confirm a tripartite 702 subdivision of the Wanaea verrucosa Zone into Lower, Middle and Upper subzones. 703 However this subdivision cannot be confidently replicated for the lower diversity 704 assemblages and more marginal marine environments of the Northern Carnarvon 705 Basin; the marker species are rare or absent in this depocentre. The abundance of 706 Dissiliodinium/Durotrigia-type cysts in the Lower Subzone, followed by an 707 increasing diversity of Meiourogonyaulax and Ctenidodinium in the Middle and 708 Upper subzones respectively, is largely representative of the Bajocian to Bathonian 709 transition through this interval. The common occurrence of *Nannoceratopsis* 710 deflandrei and rare examples of Mancodinium semitabulatum subsp. semitabulatum in 711 the Lower and Middle subzones suggest the Wanaea verrucosa Zone may extend 712 down to the latest Early Bajocian.

715 Acknowledgements

717	This contribution is part of a joint Geoscience Australia (GA) and British
718	Geological Survey (BGS) research programme under the auspices of the Virtual
719	Centre of Economic Micropalaeontology and Palynology (VCEMP). It was produced
720	as part of the BGS Individual Merit project of James B. Riding entitled 'Global
721	Jurassic dinoflagellate cyst palaeobiology and its applications.' The authors are
722	grateful to Dr Clinton B. Foster (GA) for enthusiastically promoting this research.
723	This paper greatly benefited from helpful discussions on all aspects of Middle Jurassic
724	dinoflagellate cyst biostratigraphy with Robin Helby (Sydney), who is warmly
725	acknowledged. The authors thank the reviewers for their perceptive comments on the
726	manuscript. Daniel J. Mantle and James B. Riding publish with the permission of the
727	Chief Executive Officer, Geoscience Australia and the Executive Director, British
728	Geological Survey (NERC) respectively.
729	
730	
731	References
732	
733	Abbink, O. A., 1998. Palynological investigations in the Jurassic of the North Sea
734	region. Laboratory of Palaeobotany and Palynology Contributions Series 8, 192 pp.
735	
736	Aboul Ela, N.M., Aly, M.F., 1988a. Preliminary investigation of marine
737	phytoplankton from the Middle Jurassic coal deposits of El-Maghara, central Sinai,
738	Egypt. Acta Palaeontologica Polonica 33, 345-352.
739	
740	Aboul Ela, N.M., Aly, M.F., 1988b. Jurassic microflora from the coal deposits of El
741	Maghara, north-central Sinai, Egypt. Neues Jahrbuch für Geologie und Paläontologie
742	Monatschefte, 1988(5), 263-277.
743	
744	Aboul Ela, N.M., Mahrous, H.A., 1990. Bathonian dinoflagellate cysts from the
745	subsurface of the north Western Desert, Egypt. Middle East Research Center Ain
746 747	Shams University, Earth Science Series 4, 95-111.

748	Aboul Ela, N.M., El-Shamma, A.A., 1997. Palynostratigraphy of the Middle-Upper					
749	Jurassic rocks in El-Giddi borehole, north Sinai, Egypt. Acta Universitatis Carolinae -					
750	Geologica 41, 47-55.					
751						
752	Ager, D.V., 1975. The Jurassic world ocean (with special reference to the North					
753	Atlantic). In: Finstad, K.G., Selley, R.C. (Eds.), Proceedings of the Jurassic Northern					
754	North Sea Symposium, Stavanger, September 1975. Norsk Petroleumforening					
755	JNNSS/5, pp. 1-29.					
756						
757	Ainsworth, B.R., Burns, F.J., Seggie, R.J., 1998. Marginal Marine Plover Formation.					
758	In: Seggie, R.J., Lang S. (Eds), Giant Gas Fields of the North West Shelf, Australia.					
759	Perth 2008 Petroleum Exploration Society of Australia Core Workshop. pp. 23-36.					
760						
761	Balme, B.E., 1964. The palynological record of Australian pre-Tertiary floras. In:					
762	Ancient Pacific Floras. University of Hawaii Press, 49-80.					
763						
764	Below, R. 1987. Evolution und Systematik von Dinoflagellaten-Zysten aus der					
765	Ordnung Peridiniales. II. Cladopyxiaceae und Valveodiniaceae. Palaeontographica					
766	Abteilung B 206, 1-115.					
767						
768	Boulter, M.C., Windle, T., 1993. A reconstruction of some Middle Jurassic vegetation					
769	in northern Europe. Special Papers in Palaeontology 49, 125-154.					
770						
771	Bujak, J.P., Williams, G.L., 1977. Jurassic palynostratigraphy of offshore eastern					
772	Canada. In: Swain, F.M. (Ed.), Stratigraphic micropaleontology of Atlantic basin and					
773	borderlands. Developments in Paleontology and Stratigraphy, Elsevier, Amsterdam 6,					
774	321-339.					
775						
776	Callomon, J.H., 2003. The Middle Jurassic of western and northern Europe: its					
777	subdivisions, geochronology and correlations. In: Ineson, J.R., Surlyk, F. (Eds.), The					
778	Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland					
779	Bulletin 1, 61-73.					

781	Cookson, I.C., Eisenack, A., 1960. Upper Mesozoic microplankton from Australia				
782	and New Guinea. Palaeontology 2, 243-261.				
783					
784	Davey, R.J., 1980. Palynology. In: Penn, I.E., Dingwall, R.G., Knox, R.W. O'B. The				
785	Inferior Oolite (Bajocian) sequence from a borehole in Lyme Bay, Dorset. Institute of				
786	Geological Sciences Report 79/3, pp. 6-11.				
787					
788	Deflandre, G., 1938. Microplancton des mers Jurassiques conservé dans les marnes de				
789	Villers-sur-Mer (Calvados). Étude liminaire et considérations générales. Travaux de la				
790	Station Zoologique de Wimereux 13, 147-200.				
791					
792	Dodekova, L., 1990. Dinoflagellate cysts from the Bathonian-Tithonian (Jurassic) of				
793	North Bulgaria. I. Taxonomy of Bathonian and Callovian dinoflagellate cysts.				
794	Geologica Balcanica 20, 3-45.				
795					
796	El Beialy, S.Y., Zalat, A.F.A., Ali, A.S., 2002. Palynology and palaeoenvironment of				
797	the Bahrein Formation, Zeitun-1 Well, Western Desert, Egypt. Egyptian Journal of				
798	Paleontology 2, 371-384.				
799					
800	El-Shamma, A.A., Obeid, F.L., Abu Saima, M.M., 2001. Palynostratigraphy of some				
801	subsurface Jurassic-Lower Cretaceous rocks in northern Western Desert, Egypt.				
802	Egyptian Journal of Geology 45, 567-605.				
803					
804	Enay, R., 1980. Paléobiogéographie et ammonites Jurassiques: 'rythmes fauniques' et				
805	variations du niveau marin: voirs d'échanges, migrations et domaines				
806	biogéographiques. Extrait du Livre Jubilaire de la Société Géologique de France				
807	Memoir 10, 261-281.				
808					
809	Erkmen, U., Sarjeant, W.A.S., 1980. Dinoflagellate cysts, acritarchs and tasmanitids				
810	from the uppermost Callovian of England and Scotland: with a reconsideration of the				
811	'Xanthidium pilosum' problem. Geobios 13, 45-99.				
812					

813	Feist-Burkhardt, S.,	, 1990. D	inoflagellate	cyst assembla	ages of the	Hausen coreholes
-----	----------------------	-----------	---------------	---------------	-------------	------------------

- 814 (Aalenian to early Bajocian), southwest Germany. Bulletin des Centres de Recherches
- 815 Exploration-Production Elf-Aquitaine 14, 611-633.
- 816
- 817 Feist-Burkhardt, S., 1994. Stratigraphic compilation of Below's data (1987a, 1987b
- and 1990) on Early and Middle Jurassic dinoflagellate cysts. Revue de Paléobiologie
- 819 13, 313-318.
- 820
- 821 Feist-Burkhardt, S., Wille, W., 1992. Jurassic palynology in southwest Germany -
- state of the art. Cahiers de Micropaléontologie Nouvelle Série 7, 141-156.
- 823
- Feist-Burkhardt, S., Monteil, E., 1997. Dinoflagellate cysts from the Bajocian
- 825 stratotype (Calvados, Normandy, western France). Bulletin des Centres de Recherches
- 826 Exploration-Production Elf-Aquitaine 21, 31-105.
- 827
- 828 Feist-Burkhardt, S., Monteil, E., 2001. Gonyaulacacean dinoflagellate cysts with
- 829 multi-plate precingular archaeopyle. Neues Jahrbuch für Geologie und Paläontologie830 Abhandlungen 219, 33-81.
- 831
- Feist-Burkhardt, S., Pross, J., 2010. Dinoflagellate cyst biostratigraphy of the
- 833 Opalinuston Formation (Middle Jurassic) in the Aalenian type area in southwest
- 634 Germany and north Switzerland. Lethaia 43, 10-31.
- 835
- 836 Fensome, R.A., MacRae, R.A., Moldowan, J.M., Taylor, F.J.R., Williams, G.L., 1996.
- The early Mesozoic radiation of dinoflagellates. Paleobiology 22, 329-338.
- 838
- 839 Fenton, J.P.G., 1981. Taxonomic revision of selected dinoflagellate cysts from the late
- 840 Bajocian (Middle Jurassic) of northwest Germany. Review of Palaeobotany and
- 841 Palynology 31, 249-260.
- 842
- 843 Fenton, J.P.G., Fisher, M.J., 1978. Regional distribution of marine microplankton in
- the Bajocian and Bathonian of northwest Europe. Palinologia número extraordinario
- 845 1, 233-243.
- 846

847	Fenton, J.P.G., Neves, R., Piel, K.M., 1980. Dinoflagellate cysts and acritarchs from				
848	Upper Bajocian to Middle Bathonian strata of central and southern England.				
849	Palaeontology 23, 151-170.				
850					
851	Filatoff, J., 1975. Jurassic palynology of the Perth Basin, Western Australia.				
852	Palaeontographica Abteilung B 154(1-4), 1-120.				
853					
854	Foster, C.B., 2001. Introduction to studies in Australian Mesozoic Palynology II.				
855	Memoir of the Association of Australasian Palaeontologists 24, i-iii.				
856					
857	Gedl, P., 2008. Organic-walled dinoflagellate cyst stratigraphy of dark Middle				
858	Jurassic marine deposits of the Pieniny Klippen Belt, West Carpathians. Studia				
859	Geologica Polonica 131, 7-227.				
860					
861	Geleta, S., 1998. Biostratigraphy, depositional environment, basin evolution and				
862	hydrocarbon potential of the Late Triassic to Late Jurassic succession, Ogaden Basin,				
863	Ethiopia. Tübinger Mikropaläontologische Mitteilungen 16, 68 pp.				
864					
865	Gocht, H., 1970. Dinoflagellaten-Zysten aus dem Bathonium des Erdölfeldes Aldorf				
866	(NW-Deutschland). Palaeontographica Abteilung B 129, 125-165.				
867					
868	Gowland, S., Riding, J.B., 1991. Stratigraphy, sedimentology and palaeontology of				
869	the Scarborough Formation (Middle Jurassic) at Hundale Point, North Yorkshire.				
870	Proceedings of the Yorkshire Geological Society 48, 375-392.				
871					
872	Guy-Ohlson, D., 1986. Jurassic palynology of the Vilhelmsfält Bore No. 1, Scania,				
873	Sweden Toarcian-Aalenian. Section of Palaeobotany Swedish Museum of Natural				
874	History, Stockholm, Sweden, 127 pp.				
875					
876	Guy-Ohlson, D., 1989. Spore and pollen assemblage zonation of Swedish Bajocian				
877	and Bathonian sediments. In: Batten, D.J., Keen, M.C. (Eds.), Northwest European				
878	micropalaeontology and palynology. British Micropalaeontological Society Series.				
879	Ellis Horwood Limited, Chichester, 70-91.				
880					

881	Hallam, A., 1983. Early and mid-Jurassic molluscan biostratigraphyand the		
882	establishment of the Central Atlantic Seaway. Palaeogeography, Palaeoclimatology,		
883	Palaeoecology 43, 181-193.		
884			
885	Harris, A.J., Tocher, B.A., 2003. Palaeoenvironmental analysis of Late Cretaceous		
886	dinoflagellate cyst assemblages using high-resolution sample correlation from the		
887	Western Interior Basin, USA. Marine Microplaaeontology 48, 127-148.		
888			
889	Helal, A.H., 1965. Jurassic spores and pollen grains from the Kharga Oasis, Western		
890	Desert, Egypt. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 123,		
891	160-166.		
892			
893	Helby, R., Partridge, A.D., 2001. Bonbonadinium granulatum gen. et sp. nov., a Late		
894	Jurassic (Tithonian) dinoflagellate cyst from the North-West Shelf, Australia. Memoir		
895	of the Association of Australasian Palaeontologists 24, 221-224.		
896			
897	Helby, R., Morgan, R., Partridge, A.D., 1987. A palynological zonation of the		
898	Australian Mesozoic. Memoir of the Association of Australasian Palaeontologists 4,		
899	1-94.		
900			
901	Helby, R., Morgan, R., Partridge, A.D., 2004. Updated Jurassic-Early Cretaceous		
902	dinocyst zonation NWS Australia. Geoscience Australia Publication 1 920871 01 2. 2		
903	pp.		
904			
905	Ilyina, V.I., 1985. Jurassic palynology of Siberia. Transactions of the Institute of		
906	Geology and Geophysics, Siberian Branch of the USSR Academy of Sciences. issue		
907	638, 237 pp. Nauka Publishers, Moscow.		
908			
909	Ilyina, V.I., 1986. Subdivision and correlation of the marine and non-marine Jurassic		
910	sediments in Siberia based on palynological evidence. Review of Palaeobotany and		
911	Palynology 46, 357-364.		
912			
913	Ilyina, V.I., 1991. Dinocyst zonation of the Bathonian-Oxfordian sediments of the		

914 Russian Platform. Vses Nauch-Issled Geologiy-Razved Instituti, Leningrad, 42-64.

915	
916	Irurralde-Vinent, M.A., 2006. Meso-Cenozoic Caribbean paleogeography:
917	implications for the historical biogeography of the region. International Geology
918	Review 48, 791-827.
919	
920	Johnson, C.D., Hills, L.V., 1973. Microplankton zones of the Savik Formation
921	(Jurassic), Axel Heiberg and Ellesmere Islands, District of Franklin. Bulletin of
922	Canadian Petroleum Geology 21, 178-218.
923	
924	Klement, K., 1960. Dinoflagellaten und Hystrichosphaerideen aus dem unteren und
925	mittleren Malm Südwestdeutschlands. Palaeontographica Abteilung A 114, 1-104.
926	
927	Koppelhus, E.B., Nielsen, L.H., 1994. Palynostratigraphy and palaeoenvironments of
928	the Lower to Middle Jurassic Bagå Formation of Bornholm, Denmark. Palynology 18,
929	139-194.
930	
931	Kumar, A., 1987. Distribution of dinocysts in the Jurassic rocks of Kachchh, India.
932	Journal of the Geological Society of India 29, 594-602.
933	
934	Longley, I.M., Buessenschuett, C., Clydsdale, L., Cubitt, C.J., Davis, R.C., Johnson,
935	M.K., Marshall, N.M., Murray, A.P., Somerville, R., Spry, T.B., Thompson, N.B.,
936	2002. The North West Shelf of Australia - a Woodside perspective. In: Keep, M.,
937	Moss, S.J. (Eds.), The Sedimentary Basins of Western Australia 3: Proceedings of the
938	Petroleum Exploration Society of Australia Symposium, Perth, Western Australia, pp.
939	27-88.
940	
941	Mao Shaozhi, Bian Lizeng, 2000. Middle Jurassic dinoflagellate cysts from
942	Qiangtong, northern Tibet. Geoscience, Journal of the Graduate School, University of
943	Geosciences, China 14, 115-122.
944	
945	Mantle, D.J., 2005. New dinoflagellate cyst species from the upper Callovian-lower
946	Oxfordian Rigaudella aemula Zone, Timor Sea, northwestern Australia. Review of
947	Palaeobotany and Palynology 135, 245-264.
948	

949	Mantle, D.J., 2009a. Palynology, sequence stratigraphy, and palaeoenvironments of			
950	Middle to Upper Jurassic strata, Bayu-Undan Field, Timor Sea region. Part One.			
951	Palaeontographica Abteilung B 280(1-3), 1-86.			
952				
953	Mantle, D.J., 2009b. Palynology, sequence stratigraphy, and palaeoenvironments of			
954	Middle to Upper Jurassic strata, Bayu-Undan Field, Timor Sea region. Part Two.			
955	Palaeontographica Abteilung B 280(4-6), 87-212.			
956				
957	McKellar, J.L., 1996. Palynofloral and megafloral indications of palaeoclimate in the			
958	Late Triassic, Jurassic, and Early Cretaceous of southeastern Queensland. Mesozoic			
959	Geology of the Eastern Australia Plate Conference, Geological Society of Australia,			
960	Extended Abstracts 43, 366-373			
961				
962	Menendez, C.A., 1968. Estudio palinologico del Jurasico Medio de Picun Leufu,			
963	Neuquen. Ameghiniana 5, 379-405.			
964				
965	Mohr, B.A.R., 1989. New palynological information on the age and environment of			
966	Late Jurassic and Early Cretaceous vertebrate localities of the Iberian Peninsula			
967	(eastern Spain and Portugal). Berliner Geowissenschaftlicher Abhandlungen A 106,			
968	291-301.			
969				
970				
971	Morgenroth, P. 1970. Dinoflagellate cysts from the Lias Delata of Lühnde/Germany.			
972	Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 136, 345-359.			
973				
974	Moyne, S., Neige, P., Marchand, D., Thierry, J., 2004. Répartition mondiale des			
975	faunes d'ammonites au Jurassique moyen (Aalénien supérieur à Bathonien moyen):			
976	relations entre biodiversité et paléogéographie. Bulletin de la Société Géologique de			
977	France 175, 513-525.			
978				
979	Nielsen, L.H., Petersen, H.I., Dybkjær, K., Surlyk, F., 2010. Lake-mire deposition,			
980	earthquakes and wildfires along a basin margin fault; Rønne Graben, Middle Jurassic,			
981	Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 103-126.			
982				

983	Partridge, A.D., 2006. Jurassic-Early Cretaceous dinocyst zonation NWS Australia:		
984	1 st update of HMP 2004. In: Monteil, E. (coordinator), Australian Mesozoic and		
985	Cenozoic Palynology Zonations - updated to the 2004 Geologic Time Scale.		
986	Geoscience Australia Record, 2006/23 (chart 2 of 4).		
987			
988	Piasecki, S., Larsen, M., Therkelsen, J., Vosgerau, H., 2004. Jurassic dinoflagellate		
989	cyst stratigraphy of Hold with Hope, North-East Greenland. Geological Survey of		
990	Denmark and Greenland Bulletin 5, 73-88.		
991			
992	Pocock, S.A.J., 1970a. Palynology of the Jurassic sediments of western Canada. Part		
993	1*). Terrestrial Species. Palaeontographica Abteilung B 130, 12-72.		
994			
995	Pocock, S.A.J., 1970b. Palynology of the Jurassic sediments of western Canada. Part		
996	1*) (continued). Terrestrial Species. Palaeontographica Abteilung B 130, 73-136.		
997			
998	Poulsen, N.E., Riding, J.B., 2003. The Jurassic dinoflagellate cyst zonation of		
999	Subboreal Northwest Europe. In: Ineson, J.R., Surlyk, F. (Eds.), The Jurassic of		
1000	Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin 1,		
1001	pp. 115-144.		
1002			
1003	Prauss, M., 1989. Dinozysten-stratigraphie und palynofazies im Oberen Lias und		
1004	Dogger von NW-Deutschland. Palaeontographica Abteilung B 214(1-4), 1-124.		
1005			
1006	Reyre, Y., 1980. Peut-on estimer l'evolution des climates Jurassiques et Crétacés		
1007	d'après la palynologie. Mémoires du Museum d'Histoire Naturelle 27, 247-280.		
1008			
1009	Riding, J.B., 1983. Two dinoflagellate cyst marker horizons in the Bathonian of the		
1010	Nettleton Bottom Borehole, Lincolnshire, England. Journal of Micropalaeontology 2,		
1011	47-52.		
1012			
1013	Riding, J.B., 1984. Dinoflagellate range top biostratigraphy of the uppermost Triassic		
1014	to lowermost Cretaceous of northwest Europe. Palynology 8, 195-210.		
1015			

1016	Riding, J.B., Thomas, J.E., 1992. Dinoflagellate cysts of the Jurassic System. In:		
1017	Powell, A.J. (Ed.), A Stratigraphic Index of Dinoflagellate Cysts. British		
1018	Micropalaeontological Society Publications Series. Chapman and Hall, London, pp. 7-		
1019	97.		
1020			
1021	Riding, J.B., Ilyina, V.I., 1996. Protobatioladinium elatmaensis sp. nov., a		
1022	dinoflagellate cyst from the Bathonian of Russia. Journal of Micropalaeontology 15,		
1023	150.		
1024			
1025	Riding, J.B., Ilyina, V.I., 1998. A new dinoflagellate cyst from the Upper Bathonian		
1026	(Middle Jurassic) strata of the Russian Platform. Journal of Micropalaeontology 17,		
1027	86.		
1028			
1029	Riding, J.B., Helby, R., 2001a. Early Jurassic (Toarcian) dinoflagellate cysts from the		
1030	Timor Sea, Australia. Memoir of the Association of Australasian Palaeontologists 24,		
1031	1-32.		
1032			
1033	Riding, J.B., Helby, R., 2001b. A selective reappraisal of Wanaea Cookson and		
1034	Eisenack 1958 (Dinophyceae). Memoir of the Association of Australasian		
1035	Palaeontologists 24, 33-58.		
1036			
1037	Riding, J.B., Helby, R., 2001c. Phallocysta granosa sp. nov., a Mid Jurassic		
1038	(Bathonian) dinoflagellate cyst from the Timor Sea, Australia. Memoir of the		
1039	Association of Australasian Palaeontologists 24, 59-63.		
1040			
1041	Riding, J.B., Helby, R., 2001d. Microplankton from the Mid Jurassic (late Callovian)		
1042	Rigaudella aemula Zone in the Timor Sea, north-western Australia. Memoir of the		
1043	Association of Australasian Palaeontologists 24, 65-110.		
1044			
1045	Riding, J.B., Helby, R., 2001e. Dinoflagellate cysts from the Late Jurassic		
1046	(Oxfordian) Wanaea spectabilis Zone in the Timor Sea region. Memoir of the		
1047	Association of Australasian Palaeontologists 24, 111-140.		
1048			

1049	Riding, J.B., Helby, R., 2001f. Dinoflagellate cysts from the Late Jurassic		
1050	(Kimmeridgian) Dingodinium swanense Zone in the North-West Shelf and Timor Sea,		
1051	Australia. Memoir of the Association of Australasian Palaeontologists 24, 141-176.		
1052			
1053	Riding, J.B., Helby, R., 2001g. Marine microplankton from the Late Jurassic		
1054	(Tithonian) of the north-west Australian region. Memoir of the Association of		
1055	Australasian Palaeontologists 24, 177-220.		
1056			
1057	Riding, J.B., Helby, R., 2001h. Some stratigraphically significant dinoflagellate cysts		
1058	from the Early Cretaceous (Aptian and Albian) of Australia. Memoir of the		
1059	Association of Australasian Palaeontologists 24, 225-235.		
1060			
1061	Riding, J.B., Fensome, R.A., 2002. A review of Scriniodinium Klement 1957,		
1062	Endoscrinium (Klement 1960) Vozzhennikova 1967 and related dinoflagellate cyst		
1063	taxa. Palynology 26, 5-33.		
1064			
1065	Riding, J.B., Penn, I.E., Woollam, R., 1985. Dinoflagellate cysts from the type area of		
1066	the Bathonian stage (Middle Jurassic; southwest England). Review of Palaeobotany		
1067	and Palynology 45, 149-169.		
1068			
1069	Riding, J.B., Walton, W., Shaw, D., 1991. Toarcian to Bathonian (Jurassic)		
1070	palynology of the Inner Hebrides, northwest Scotland. Palynology 15, 115-179.		
1071			
1072	Riding, J.B., Fedorova, V.A., Ilyina, V.I., 1999. Jurassic and lowermost Cretaceous		
1073	dinoflagellate cyst biostratigraphy of the Russian Platform and northern Siberia,		
1074	Russia. American Association of Stratigraphic Palynologists Contributions Series 36,		
1075	179 pp.		
1076			
1077	Riding, J.B., Mantle, D.J., Backhouse, J., 2010a. A review of the		
1078	chronostratigraphical ages of Middle Triassic to Late Jurassic dinoflagellate cyst		
1079	biozones of the North West Shelf of Australia. Review of Palaeobotany and		
1080	Palynology 162, 543-575.		
1081			

1082	Riding, J.B., Westermann, G.E.G., Darbyshire, D.P.F., 2010b. New evidence for the		
1083	age of the Athol Formation (Middle Jurassic; Bajocian) in the Tusk-1 and Tusk-2		
1084	wells, offshore Carnarvon Basin, Western Australia. Alcheringa 34, 21–35.		
1085			
1086	Riding, J.B., Quattrocchio, M.E., Martínez, M.A., 2011. Mid Jurassic (Late Callovian)		
1087	dinoflagellate cysts from the Lotena Formation of the Neuquén Basin, Argentina and		
1088	their palaeogeographical significance. Review of Palaeobotany and Palynology 163,		
1089	227-236.		
1090			
1091	Sajjadi, F., Playford, P., 2002. Systematic and stratigraphic palynology of Late		
1092	Jurassic-earliest Cretaceous strata of the Eromanga Basin, Queensland, Australia: Part		
1093	Two. Palaeontographica Abteilung B 261, 99-65.		
1094			
1095	Sajjadi, F., Hashemi, H., Dehbozorgi, A., 2007. Middle Jurassic palynomorphs of the		
1096	Kashafrud Formation, Eastern Mashhad, Koppeh Dagh Northeastern Iran.		
1097	Micropaleontology 53, 391-408.		
1098			
1099	Sarjeant, W.A.S., 1961. Microplankton from the Kellaways Rock and Oxford Clay of		
1100	Yorkshire. Palaeontology 4, 90-118.		
1101			
1102	Sarjeant, W.A.S., 1968. Microplankton from the Upper Callovian and Lower		
1103	Oxfordian of Normandy. Revue de Micropaléontologie 10, 221-242.		
1104			
1105	Smelror, M., 1987. Bathonian and Callovian (Middle Jurassic) dinoflagellate cysts		
1106	and acritarchs from Franz Josef Land, Arctic Soviet. Polar Research, New Series 5,		
1107	221-238.		
1108			
1109	Smelror, M., 1988a. Late Bathonian to Early Oxfordian dinoflagellate cyst		
1110	stratigraphy of Jameson Land and Milne Land, East Greenland. Grønlands Geologiske		
1111	Undersøgelse Rapport 137, 135-159.		
1112			
1113	Smelror, M., 1988b. Bathonian to early Oxfordian dinoflagellate cysts and acritarchs		
1114	from Kong Karls Land, Svalbard. Review of Palaeobotany and Palynology 56, 275-		
1115	304.		

1116	
1117	Smith, A., Smith, D., Funnell, B., 1994. Atlas of Mesozoic and Cenozoic coastlines.
1118	Cambridge University Press, 99 pp.
1119	
1120	Srivastava, S.K., 1987. Jurassic spore-pollen assemblages from Normandy (France)
1121	and Germany. Geobios 20, 5-79.
1122	
1123	Stover, L.E., 1966. Nannoceratopsis spiculata, a dinoflagellate species from the
1124	Middle Jurassic of France. Journal of Paleontology 40, 41-45.
1125	
1126	Stover, L.E., Evitt, W.R., 1978. Analyses of pre-Pleistocene organic-walled
1127	dinoflagellates. Stanford University Publications, Geological Sciences 15, 300 pp.
1128	
1129	Stover, L.E., Helby, R., 1987. Some Australian Mesozoic microplankton index
1130	species. Association of Australasian Palaeontologists Memoir 4, 101-134.
1131	
1132	Thorn, V., 2001. Vegetation communities of a high palaeolatitude Middle Jurassic
1133	forest in New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 168,
1134	273-289.
1135	
1136	Thusu, B., Vigran, J.O., 1985. Middle - Late Jurassic (Late Bathonian - Tithonian)
1137	palynomorphs. In: Thusu, B., Owens, B. (Eds.), Palynostratigraphy of north-east
1138	Libya. Journal of Micropalaeontology 4.1, pp. 113-130.
1139	
1140	Thusu, B., Van der Eem, J.G.L.A., El-Mehdawi, A., Bu-Argoub, F., 1988. Jurassic -
1141	Early Cretaceous palynostratigraphy in northeast Libya. In: El-Arnauti, A., Owens,
1142	B., and Thusu, B. (Eds.), Subsurface Palynostratigraphy of northeast Libya.
1143	Garyounis University Publications, Benghazi, Libya, pp. 171-213.
1144	
1145	Tralau, H., 1968. Botanical investigations into the fossil flora of Eriksdal in
1146	Fyledalen, Scania. II. The Middle Jurassic microflora. Sveriges Geologiska
1147	Undersökning, Ser. C, Nr. 633, 185 pp.
1148	

1149	Tykoezinski, H.R.G., Smith, S.W., Hogg, N.M., Bailey, D.A., 2000. Three new			
1150	dinoflagellate cyst species from the Bathonian and Callovian of England. Palynology			
1151	24, 79-93.			
1152				
1153	Vijaya, 2000. Recognition	of potential palynoever	nts in the Jurassic seque	ence of India
1154	and their correlation in Aus	tralia. GeoResearch Fo	orum 6, 237-248.	
1155				
1156	Vijaya, 2009. The gymnosp	oerm pollen genus Cali	lialasporites Dev emen	d.
1157	Maheshwari 1974 in the M	esozoic succession of l	India. Journal of the	
1158	Palaeontological Society of India 54, 81-96.			
1159				
1160	Volkheimer, W., Quattrocc	hio, M., Cabaleri, N., O	García, V., 2008. Palyn	ology and
1161	paleoenvironment of the Ju	rassic lacustrine Cañac	dón Asfalto Formation a	at Cañadón
1162	Lahuincó locality, Chubut	Province, Central Patag	gonia, Argentina. Revis	ta Espãnola
1163	de Micropaleontología 40,	77-96.		
1164				
1165	Woollam, R., 1982. A review of the Jurassic dinocyst genera Ctenidodinium			
1166	Deflandre 1938 and Dichad	logonyaulax Sarjeant 1	1996. Palynology 7, 183	3-196.
1167				
1168				
1169	APPENDIX 1: LOCATIO	ON AND OPERATOR	RS OF THE WELLS S	STUDIED
1170				
1171	Well name and number	Latitude	Longitude	Operator
1172	Perseus-3A	19° 31' 27.580"S	116° 06' 20.635"E	Woodside
1173	Sunrise-2	09° 29' 57.931''S	128° 06' 12.397"E	Woodside
1174	Sunset West-1	09° 38' 06.806"S	127° 53' 57.840"E	Woodside
1175				
1176				
1177	APPENDIX 2.SYSTEMA	TIC PALAEONTOL	OGY OF DINOFLAC	GELLATE
1178	CYSTS			
1179				
1180	In this section, taxo	nomic notes pertaining	to the key dinoflagella	ate cyst taxa
1181	are presented. The genera are listed alphabetically. Where measurements are quoted,			
1182	these are given in microme	tres (µm) as minimum,	, (mean) and maximum	respectively.

1183	
1184	
1185	Acanthaulax Sarjeant 1968 emend. Sarjeant 1982
1186	
1187	Acanthaulax crispa (Wetzel 1967) Woollam & Riding 1983 (Plate VII, fig. 12)
1188	
1189	Remarks: Acanthaulax crispa was recorded in one sample at xxx m (put this in) in the
1190	Upper Wanaea verrucosa Subzone in Sunrise-2 (Table 2). In Europe this species
1191	ranges from the Early-Late Bajocian (Prauss, 1989; Feist-Burkhardt and Wille, 1992;
1192	Riding and Thomas, 1992; Feist-Burkhardt and Monteil, 1997) with questionable
1193	Bathonian occurrences from Scotland (Riding et al., 1991).
1194	
1195	
1196	Aldorfia Stover & Evitt 1978
1197	
1198	Aldorfia sp. A (Plate VII, fig. 11)
1199	
1200	Remarks: A distinctive morphotype of Aldorfia was encountered sporadically and
1201	rarely in all three wells studied (Tables 1-3). This form lacks an apical horn or
1202	protuberance, hence has an ovoidal dorsoventral outline. It has a thin ectophragm,
1203	and the tabulation is normally exhibited only by the cingulum and the archaeopyle.
1204	The sparsity of Aldorfia sp. A means that it is not formally described herein.
1205	
1206	
1207	Aldorfia spp.
1208	
1209	Remarks: Aldorfia spp., often small morphotypes, were recorded in low numbers
1210	from samples SW4-SW8 (2217.98-2211.11 m) in the Sunset West-1 well (Table 3).
1211	
1212	
1213	Atopodinium Drugg 1978 emend. Masure 1991
1214	
1215	Atopodinium sp.
1216	

1217	Remarks: A single specimen of Atopodinium was recorded from 3244.18 m in the
1218	Perseus-3A well (Table 1). It is an elongate, subpentagonal form with a flat,
1219	thickened, antapical plate. This form most closely resembles Atopodinium haromense
1220	Thomas & Cox 1988. It is too rare to erect as a new species.
1221	
1222	
1223	Batiacasphaera Drugg 1970 emend. Morgan 1975
1224	
1225	Batiacasphaera spp.
1226	
1227	Remarks: Batiacasphaera spp. were encountered throughout in the Sunrise-2 and
1228	Sunset West-1 wells (Tables 2, 3). Batiacasphaera spp. are herein distinguished from
1229	representatives of Escharisphaeridia in being subcircular to ovoidal in outline,
1230	slightly longitudinally elongate, and lacking prominent accessory archaeopyle sutures
1231	and a discernible cingulum (Erkmen and Sarjeant, 1980, p. 62). By contrast, forms of
1232	Escharisphaeridia spp. are typically wider than they are long. This genus is
1233	morphologically simple and extremely long-ranging. Hence, representatives of
1234	Batiacasphaera were not speciated herein.
1235	
1236	
1237	Bradleyella Woollam 1983
1238	
1239	?Bradleyella adela (Fenton et al. 1980) Woollam 1983 (Plate IV, figs. 1-12)
1240	
1241	Dimensions (30 specimens measured):
1242	Length of cyst including operculum: 29 (40) 50 µm
1243	Equatorial width of cyst: 28 (34) 40 µm
1244	Thickness of autophragm: ca. 1 μm
1245	
1246	Remarks: The cysts recorded herein as ?Bradleyella adela are small, subspherical to
1247	ovoidal, dorsoventrally flattened species that are easily overlooked because most
1248	specimens exhibit only the faintest degree of tabulation, an irregularly scabrate,
1249	coarsely granulate or irregularly microreticulate autophragm and no readily
1250	discernible archaeopyle. Better preserved specimens do exhibit some tabulation in the

1251 form of low, rounded ridges, particularly along the cingular and postcingular sutures. 1252 The tabulation on the epicyst is consistently more obscure; this is in contrast to the 1253 generic description in Woollam (1983, p. 194) that stated the 'parasutures are 1254 preferentially developed on the epicyst'. Furthermore, none of the specimens studied 1255 show the degree of tabulation as expressed on the holotype (Fenton et al., 1980, pl. 1256 14, fig. 3), although this specimen is also larger and more clearly marked than the 1257 figured paratypes (Fenton et al., 1980, pl. 14, figs. 1-2, 4). Rare specimens show 1258 apparent long thin spines (2-17 µm long), largely concentrated around the apex and/or 1259 antapex (Plate IV, figs. 7, 11).

1260 The archaeopyle of these specimens is also rather enigmatic. Many specimens 1261 show a split/splits along the anterior margin of the cingulum (Plate IV, figs. 3, 9, 12), 1262 and could be considered to be epicystal. However a similar proportion of specimens 1263 exhibit splits around a single precingular plate (Plate IV, figs. 1, 10), whilst others 1264 show an almost complete disintegration of the epicyst. This was also noted by Fenton 1265 et al. (1980) who considered the epicyst to be 'prone to break up along the 1266 parasutures'. It is this uncertainty of the epicystal nature of the archaeopyle, together 1267 with the better defined hypocystal sutures and more comprehensively granulate or 1268 locally microreticulate ornament, that preclude a definitive specific assignment. A 1269 thorough restudy of the type material is needed to fully resolve this issue.

Pradleyella adela is an excellent and abundant marker species for the Middle *Wanaea verrucosa* Subzone, although it does occur, in much reduced numbers,
immediately above and below this subzone (Fig. 4).

1273

1274

1275 *Chlamydophorella* Cookson & Eisenack 1958 emend. Duxbury 1983

1276

1277 Chlamydophorella spp.

1278

1279 Remarks: *Chlamydophorella* spp. was recorded in one sample at xxx m (put this in) in
1280 the Upper *Wanaea vertucosa* Subzone in the Sunrise-2 well (Table 2). Similar forms

1281 occur in the overlying *Wanaea indotata* Zone, and are common from the *Ternia*

1282 *balmei* Zone up to the Early Cretaceous.

- 1283
- 1284

1285	Ctenidodinium Deflandre 1938 emend. Benson 1985
1286	
1287	Ctenidodinium sp. A (Plate IV, figs. 13-15)
1288	
1289	Remarks: Ctenidodinium sp. A was recorded in all three successions studied but is
1290	moderately prominent in only the Upper Wanaea verrucosa Subzone in the Sunrise-2
1291	well (Table 2). It is a morphotype of Ctenidodinium which exhibits extremely sparse,
1292	frequently suppressed tabulation. The sutures are partially indicated by low,
1293	discontinuous sutural ridges or sporadic lineations of low-relief ornamentation
1294	(PlateIV, , fig. 14). Some specimens may have occasional short, slender, distally sharp
1295	sutural spines. The autophragm is moderately thick and robust, scabrate to locally
1296	microreticulate and highly prone to folding. Ctenidodinium sp. A can be elongate
1297	ovoidal to squat in shape and it normally lacks an apical horn or protuberance. The
1298	simple morphology and low sutural ridges make Ctenidodinium sp. A similar to the
1299	Callovian species Ctenidodinium planocristatum Riding & Helby 2001. However,
1300	Ctenidodinium planocristatum has a thinner, smooth autophragm, is fully tabulate and
1301	has a more uniform, subspherical outline (Riding and Helby 2001d, fig. 5). Although
1302	Ctenidodinium sp. A exhibits an epicystal archaeopyle, it may be difficult to
1303	distinguish badly-preserved specimens from representatives of Dissiliodinium or
1304	Durotrigia, especially if the epicyst is damaged.
1305	
1306	
1307	Ctenidodinium sp. B (Plate V, figs. 1-3, 5-6)
1308	
1309	Remarks: Ctenidodinium sp. B is extremely prominent in the Upper Wanaea
1310	verrucosa Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). It is a
1311	relatively squat morphotype, often being significantly wider than it is long. This form
1312	is characterised by low sutural crests or ridges surmounted by short processes, most of
1313	which are expanded distally but may be blunt, capitate, or bifurcate and are commonly
1314	longest at the antapex. The bifid distal terminations are composed of short, often
1315	simple furcae but others form a distinct anchor-shaped tip. Some of the distal furcae
1316	are extremely short and are only identifiable at relatively high magnifications. The
1317	insertion density of the processes also varies significantly on a single specimen and
1318	across the population. Ctenidodinium sp. B is similar to other squat species of

1319	Ctenidodinium which have relatively short sutural spines. These include
1320	Ctenidodinium sellwoodii (Sarjeant 1975) Stover & Evitt 1978, Ctenidodinium?
1321	stauromatos (Sarjeant 1976) Stover & Evitt 1978 and Ctenidodinium tenellum
1322	Deflandre 1938. However, this form is clearly most similar to Ctenidodinium
1323	ancorum Riding & Helby 2001 from the Callovian of Australia due to the
1324	preponderance of distally-expanded spines. However, the majority of Ctenidodinium
1325	ancorum have bifurcate sutural processes which exhibit distinctly recurved furcae
1326	with narrow neck-like constrictions immediately below the bifurcation (Riding and
1327	Helby, 2001d, figs. 3G, J). These anchor or grapnel-shaped distal terminations so
1328	typical of <i>Ctenidodinium ancorum</i> are only occasionally present in <i>Ctenidodinium</i> sp.
1329	B which is used herein as a broader form-based concept. The scabrate to locally
1330	microreticulate autophragm of Ctenidodinium sp. B is also thicker and more robust
1331	than that of Ctenidodinium ancorum sensu stricto.
1332	
1333	
1334	Ctenidodinium sp. C (Plate V, figs. 7-9)
1335	
1336	Remarks: Ctenidodinium sp. C is relatively prominent in the lower half of the Wanaea
1336 1337	Remarks: <i>Ctenidodinium</i> sp. C is relatively prominent in the lower half of the <i>Wanaea verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea</i>
1337	verrucosa Zone in the Perseus-3A well and irregularly common in the Upper Wanaea
1337 1338	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This
1337 1338 1339	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed
1337 1338 1339 1340	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which
1337 1338 1339 1340 1341	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively
1337 1338 1339 1340 1341 1342	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are
1337 1338 1339 1340 1341 1342 1343	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are surmounted by short, solid, distally-sharp spines which are longer at gonal points.
 1337 1338 1339 1340 1341 1342 1343 1344 	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea</i> <i>verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are surmounted by short, solid, distally-sharp spines which are longer at gonal points. These relatively inconspicuous crests are often finely fenestrate and along with the
 1337 1338 1339 1340 1341 1342 1343 1344 1345 	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea</i> <i>verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are surmounted by short, solid, distally-sharp spines which are longer at gonal points. These relatively inconspicuous crests are often finely fenestrate and along with the
 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea</i> <i>verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are surmounted by short, solid, distally-sharp spines which are longer at gonal points. These relatively inconspicuous crests are often finely fenestrate and along with the
 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are surmounted by short, solid, distally-sharp spines which are longer at gonal points. These relatively inconspicuous crests are often finely fenestrate and along with the fine spines surmounting them, form the characteristic feature of this morphotype.
 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 	<i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are surmounted by short, solid, distally-sharp spines which are longer at gonal points. These relatively inconspicuous crests are often finely fenestrate and along with the fine spines surmounting them, form the characteristic feature of this morphotype.
 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 	 <i>verrucosa</i> Zone in the Perseus-3A well and irregularly common in the Upper <i>Wanaea verrucosa</i> Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3). This morphotype is variable in shape, with both elongate and squat specimens observed (Plate V, figs 7, 9). It is characterised by a relatively thick, robust autophragm which is variably scabrate to spinose, locally microreticulate or comprehensively microreticulate. The tabulation is exhibited by low sutural ridges or crests which are surmounted by short, solid, distally-sharp spines which are longer at gonal points. These relatively inconspicuous crests are often finely fenestrate and along with the fine spines surmounting them, form the characteristic feature of this morphotype. <i>Ctenidodinium</i> spp. (Plate V, fig. 4)

1353	
1354	Dissiliodinium Drugg 1978 emend. Feist-Burkhardt & Monteil 2001
1355	
1356	Dissiliodinium sp. A (Plate VI, figs. 1, 2, 4-6)
1357	
1358	Remarks: Dissiliodinium sp. A was recorded throughout the three wells studied here;
1359	it is especially prominent in the Lower Wanaea verrucosa Subzone in the Sunrise-2
1360	well (Table 2). This morphotype is relatively large, with a scabrate to granulate
1361	autophragm. The only indications of tabulation are the archaeopyle, and the sparse,
1362	discontinuous sutural ridges present on some specimens. These partially tabulate
1363	specimens are invariably characterised by a cingulum (Plate VI, figs. 1, 5). Feist-
1364	Burkhardt and Monteil (2001; p.58) emended Dissiliodinium to include only weakly
1365	to non-tabulate specimens where any tabulation is 'expressed by negative structures'
1366	whilst retaining those specimens with obvious tabulation delimited by 'elevated
1367	parasutural features such as septa, crests or ridges' within Durotrigia. As the current
1368	specimens vary from non-tabulate to very faintly tabulate, the end-member
1369	morphotypes could be placed in different genera; in this study they are grouped
1370	together as Dissiliodinium sp. A. Some specimens of Dissiliodinium sp. A are
1371	comparable to Dissiliodinium sp. (no antapical node) of Helby et al. (1987, fig. 16E).
1372	
1373	
1374	Dissiliodinium spp. (Plate VI, fig. 3)
1375	
1376	Remarks: This material includes all the other forms of Dissiliodinium which are not
1377	attributable to Dissiliodinium sp. A. These specimens are typically smaller than
1378	Dissiliodinium sp. A, and may be thick-walled and granulate or have a thin, psilate
1379	autophragm.
1380	
1381	
1382	Durotrigia Bailey 1987
1383	
1384	Durotrigia spp. (Plate VI, figs. 7-10)
1385	

1386	Remarks: Only morphotypes with a type 1P-5P archaeopyle, and with paratabulation
1387	consistently expressed by elevated sutural crests or ridges are included within
1388	Durotrigia. Morphotypes attributable to this genus occur throughout all three wells,
1389	and are intermittently common.
1390	
1391	
1392	Egmontodinium Gitmez & Sarjeant 1972
1393	
1394	?Egmontodinium sp. A (Plate IX, figs. 1-3)
1395	
1396	Remarks: ?Egmontodinium sp. A was recorded rarely throughout the Wanaea
1397	verrucosa Zone of the Sunrise-2 and Sunset West-1 wells; it was consistently present
1398	in only the lower subzone of Sunset West-1 (Table 3). ?Egmontodinium sp. A is a
1399	distinctive morphotype that is tentatively assigned to Egmontodinium as it is covered
1400	by numerous short (3-10 μ m), nontabular, relatively broad processes and appears to
1401	have an apical archaeopyle. These processes are parallel-sided, expanded distally with
1402	oblate, bi- or trifurcate distal extremities and are apparently hollow. The latter feature
1403	is not typical of Egmontodinium. No indications of tabulation are present.
1404	Furthermore most specimens do not show an archaeopyle, and the few specimens that
1405	may have apical archaeopyles are inconclusive. Hence, the generic assignment is
1406	tentative.
1407	?Egmontodinium sp. A is superficially similar to Egmontodinium toryna
1408	(Cookson & Eisenack 1960) Davey 1979 which has far fewer solid processes with
1409	simpler distal terminations and a definite apical archaeopyle. The present form was
1410	not recorded in sufficient numbers to be formally described.
1411	
1412	
1413	Endoscrinium (Klement 1960) Vozzhennikova 1967 emend. Riding & Fensome 2002
1414	
1415	Remarks: Representatives of Endoscrinium first appear at the base of the Upper
1416	Wanaea verrucosa Zone. This range base appears to have regional stratigraphical
1417	significance.
1418	
1419	

Endoscrinium kempiae (Stover & Helby 1987) Lentin & Williams 1989 (Plate VII,1421 fig. 10)

1422	
1423	Remarks. The large and distinctive species Endoscrinium kempiae first appears at the
1424	base of the Upper Wanaea verrucosa Subzone in the Sunrise-2 and Sunset West-1
1425	wells (Tables 2, 3), and in all but the lowest three samples of the unsubdivided
1426	Wanaea verrucosa Zone in Perseus 3A (Table 1). The range base of this taxon defines
1427	the base of the 7ciai Subzone as depicted by Helby et al. (2004, fig. 4) and the Upper
1428	Wanaea verrucosa Subzone herein (Fig. 2). Endoscrinium kempiae is normally
1429	present in low proportions in this upper subzone, however a minor acme is present in
1430	sample sample SR3, at the top of the subzone in the Sunrise-2 well (2107.52/.47 m).
1431	Endoscrinium kempiae ranges into and throughout the overlying Wanaea indotata and
1432	Ternia balmei zones and irregularly up to the Ctenidodinium ancorum Zone (Helby et
1433	al., 1987, fig. 15; Mantle, 2009b, fig. 6).
1434	
1435	
1436	Endoscrinium luridum (Deflandre 1938) Gocht 1970 (Plate VII, figs. 7, 9)
1437	
1438	Remarks: This species was recorded sparsely in the uppermost Upper Wanaea
1439	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are
1439	verrucosa Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are
1439 1440	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may
1439 1440 1441	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these
1439 1440 1441 1442	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability.
1439 1440 1441 1442 1443	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian
1439 1440 1441 1442 1443 1444	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian interval of the northern hemisphere (Riding and Fensome, 2002, fig. 2), hence its
1439 1440 1441 1442 1443 1444 1445	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian interval of the northern hemisphere (Riding and Fensome, 2002, fig. 2), hence its range base in Australia appears to be significantly older. However, the genus
1439 1440 1441 1442 1443 1444 1445 1446	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian interval of the northern hemisphere (Riding and Fensome, 2002, fig. 2), hence its range base in Australia appears to be significantly older. However, the genus <i>Endoscrinium</i> is well represented in the Bajocian-Bathonian interval in Europe
1439 1440 1441 1442 1443 1444 1445 1446 1447	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian interval of the northern hemisphere (Riding and Fensome, 2002, fig. 2), hence its range base in Australia appears to be significantly older. However, the genus <i>Endoscrinium</i> is well represented in the Bajocian-Bathonian interval in Europe (Riding et al., 1985; Feist-Burkhardt and Monteil, 1997; Riding et al., 2010a, pl. I, fig.
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian interval of the northern hemisphere (Riding and Fensome, 2002, fig. 2), hence its range base in Australia appears to be significantly older. However, the genus <i>Endoscrinium</i> is well represented in the Bajocian-Bathonian interval in Europe (Riding et al., 1985; Feist-Burkhardt and Monteil, 1997; Riding et al., 2010a, pl. I, fig.
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian interval of the northern hemisphere (Riding and Fensome, 2002, fig. 2), hence its range base in Australia appears to be significantly older. However, the genus <i>Endoscrinium</i> is well represented in the Bajocian-Bathonian interval in Europe (Riding et al., 1985; Feist-Burkhardt and Monteil, 1997; Riding et al., 2010a, pl. I, fig.
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450	<i>verrucosa</i> Subzone in the Sunrise-2 well (Table 2). The specimens recorded herein are slightly more angular than the holotype (Deflandre, 1938, pl. 5, figs. 4, 5) and may exhibit a significantly narrower pericoel and/or short apical horn. However, these minor differences are deemed to be within the scope of intraspecific variability. <i>Endoscrinium luridum</i> is a reliable marker for the Mid Oxfordian to Kimmeridgian interval of the northern hemisphere (Riding and Fensome, 2002, fig. 2), hence its range base in Australia appears to be significantly older. However, the genus <i>Endoscrinium</i> is well represented in the Bajocian-Bathonian interval in Europe (Riding et al., 1985; Feist-Burkhardt and Monteil, 1997; Riding et al., 2010a, pl. I, fig. 6).

1453	Remarks: Endoscrinium sp. cf. E. luridum is present in low proportions in the Upper
1454	Wanaea verrucosa Subzone of the Sunrise-2 and Sunset West-1 wells (Tables 2, 3).
1455	Although it is closely comparable with the type of Endoscrinium luridum illustrated
1456	by Deflandre (1938, pl. 5, figs. 4, 5) from the Early Oxfordian of northern France, it
1457	differs in having a rounded subpentagonal outline without the distinctly angular
1458	hypocyst and protruding antapex of the type material. The hypocyst is broadly
1459	longitudinally symmetrical, hence it differs profoundly from Endoscrinium
1460	asymmetricum Riding 1987. This morphotype was not sufficiently abundant to be
1461	formally described.
1462	
1463	
1464	Escharispharidia Erkmen & Sarjeant 1980
1465	
1466	Remarks: Representatives of Escharispharidia were recorded throughout all three
1467	wells studied (Tables 1-3). This genus is distinguished from Batiacasphaera in
1468	normally being wider than long, and having prominent accessory archaeopyle sutures
1469	which are typically widely separated; furthermore a cingulum is frequently present
1470	(Erkmen and Sarjeant, 1980, p. 62). The deep accessory archaeopyle sutures which
1471	'gape' emphasise the squat shape of isolated loisthocysts of this genus.
1472	Representatives of the similar genus Batiacasphaera are subcircular to ovoidal in
1473	outline and typically lack deep accessory archaeopyle sutures. In this study, forms of
1474	Escharispharidia spp. are not identified to species level because individual taxa are
1475	profoundly problematical to consistently recognise. Moreover, forms of this genus are
1476	not stratigraphically significant throughout the Wanaea verrucosa Zone.
1477	
1478	
1479	Escharispharidia sp. A (Plate II, fig. 3)
1480	
1481	Remarks: Escharispharidia sp. A is characterised by a granulate autophragm, long
1482	'gaping' accessory archaeopyle sutures and frequent indications of a cingulum. This
1483	morphotype was illustrated as Chytroeisphaeridia (now Escharispharidia) pocockii
1484	Sarjeant 1968 by Filatoff (1975, pl. 29, figs. 5, 6) from the Middle Jurassic of the
1485	onshore Perth Basin. However the type material of Escharispharidia pocockii
1486	(Sarjeant 1968) Erkmen & Sarjeant 1980 (i.e. Sarjeant, 1968, pl. 3, fig. 9) lacks

1487	accessory archaeopyle sutures and has a much thicker autophragm than the specimens
1488	figured by Filatoff (1975), thus this name is not applied herein.
1489	
1490	
1491	Escharispharidia sp. B. (Plate II, fig. 3)
1492	
1493	Remarks: This form, like Escharispharidia sp. A, has well-developed accessory
1494	archaeopyle sutures and it also sometimes exhibits vague indications of a cingulum.
1495	However, the autophragm is smooth to scabrate rather than comprehensively
1496	granulate. The specimen figured as Chytroeisphaeridia chytroeides (Sarjeant 1962)
1497	Downie & Sarjeant 1965 by Filatoff (1975, pl. 29, fig. 2) from the Middle Jurassic of
1498	Western Australia is apparently referable to Escharispharidia sp. B. This specimen
1499	cannot, however, be Chytroeisphaeridia chytroeides because the latter has a
1500	precingular and not an apical archaeopyle. It can be difficult to consistently
1501	distinguish Escharispharidia sp. B from specimens of Escharispharidia sp. A with
1502	extremely low-relief ornamentation.
1503	
1504	
1505	Evansia Pocock 1972 emend. Below 1990
1506	
1507	Evansia sp. A (Plate IX, figs. 10-12)
1508	
1509	Dimensions (10 specimens measured):
1510	Length of cyst including operculum: 52 (56) 62 µm
1511	Equatorial width of cyst: 36 (38) 43 µm
1512	Thickness of autophragm: 1-2 μm
1513	
1514	Remarks: Evansia sp. A is a typically small member of this genus, with a thick, robust
1515	autophragm, a prominent cingulum marked by thick folds and a small to moderate
1516	apical horn surmounted by a short, solid apicular structure 1-2 μ m long. The surface
1517	ornament is predominantly granulate to verrucate with some elements fusing to form
1518	short rugulae; the ornament becomes notably coarser towards the antapex. This
1519	morphotype is not formally described here or attributed to any existing species
1520	because insufficient material is available. However, it is broadly comparable with

1521	Evansia zabros (Davies 1983) Jansonius 1986 from the Bathonian to Oxfordian of
1522	North America. The latter species is characterised by uneven antapical bulges and
1523	adcingularly-aligned coarse grana. It is also larger, often more elongate and lacks the
1524	prominent folds delimiting the cingulum of Evansia sp. A. The latter feature, and the
1525	rugulate ornament are particularly reminiscent of Pareodinia sp. 1 of Feist-Burkhardt
1526	and Monteil (1997, pl. 5, figs. 6, 7) that was recorded from the Late Bajocian to Early
1527	Bathonian of northern France. Evansia sp. A is sparsely present in all three wells, and
1528	ranges from the upper Lower Wanaea verrucosa Subzone to the lower part of the
1529	Upper Wanaea verrucosa Subzone (Fig. 4; Tables 1-3).
1530	
1531	
1532	Fostericysta Riding 2005
1533	
1534	Fostericysta scarffei (Tykoezinski et al. 2001) comb. nov. (Plate VIII, fig. 1)
1535	
1536	Jansonia scarffei Tykoezinski et al. 2000, p. 84-86, pl. 1, figs. 1-5, pl. 4, figs. 10-13.
1537	
1538	Dimensions (5 specimens measured):
1539	Length of cyst including operculum: 21 (23) 25 µm
1540	Equatorial width of cyst: 22 (23) 26 µm
1541	Thickness of autophragm: ca. 1-2 μm
1542	
1543	Remarks: Fostericysta Riding 2005 was established for small, gonyaulacalean,
1544	proximate to proximochorate, acavate cysts with a 'prominent, incised paracingular
1545	region' and an apical archaeopyle (Riding and Helby, 2001e, p. 114). The type
1546	species, Fostericysta eclipsiana (Riding & Helby 2001) Riding 2005, has 'low
1547	parasutural ridges or low crests, which are surmounted by denticles and/or spines'.
1548	Fostericysta scarffei clearly shares the diagnostic, deeply incised, broad cingulum, as
1549	well as having a noticeably thick, dark-walled appearance and a similar tabulation
1550	pattern. Thus, the species is transferred to Fostericysta.
1551	Fostericysta scarffei is a rare component of the Upper Wanaea verrucosa
1552	Subzone in the Sunrise-2 and Sunset West-1 wells (Tables 2, 3), and was recorded at
1553	3195.10 m in the Perseus-3A well. The Australian specimens possess a slightly
1554	narrower cingulum and shorter denticles surmounting the sutural ridges, but are

1555	otherwise closely comparable to the type material. Fostericysta scarffei is slightly
1556	smaller than the Callovian-Oxfordian species, Fostericysta eclipsiana, lacks the very
1557	distinctive dark accumulation body and has a larger, more equant 1" plate.
1558	Fostericysta scarffei was originally recorded from the Middle-Late Bathonian of
1559	central England (Tykoezinski et al., 2000).
1560	
1561	
1562	Jansonia Pocock 1972 emend. Riding & Walton in Riding et al. 1991
1563	
1564	Jansonia spp. (Plate VIII, figs. 2-5)
1565	
1566	Remarks: Jansonia spp. were recorded sporadically in all three wells with a first
1567	appearance datum within the Lower Wanaea verrucosa Zone in Sunset West-1 (Table
1568	3). Most specimens are broadly similar to Jansonia psilata Martínez et al. 1999, but
1569	some exhibit a granulate autophragm and an adnate operculum; they are thus also
1570	comparable with Jansonia manifesta Riding & Walton in Riding et al. 1991. Although
1571	there is a minor acme at 2111.1 m in Sunrise-2 (5% of total palynomorphs; Table 2),
1572	this genus is otherwise rare, and individual specimens are not given specific status
1573	due to their variable surface ornament, wall thickness and outline.
1574	
1575	
1576	Kallosphaeridium de Coninck 1969 emend. Jan du Chêne et al. 1985
1577	
1578	Kallosphaeridium hypornatum Prauss 1989 (Plate II, figs. 13-16)
1579	
1580	Remarks: Kallosphaeridium hypornatum is present in low numbers throughout the
1581	Wanaea verrucosa Zone in all three wells studied, but is most prominent and
1582	consistent in the Middle Subzone (Tables 1-3). This is the first report of this species
1583	from the southern hemisphere. This taxon was first described from the Bajocian of
1584	northwest Germany by Prauss (1989).
1585	
1586	
1587	Kalyptea Cookson & Eisenack 1960 emend. Wiggins 1975
1588	

1589	Kalyptea stegasta (Sarjeant 1961) Wiggins 1975
1590	
1591	Remarks: Kalyptea stegasta was encountered extremely rarely at 3244.18 m (sample
1592	P29) in the Perseus-3A well (Table 1). This kalyptrate species has subequal apical and
1593	antapical horns (Sarjeant, 1961, pl. 15, fig. 15). In this study, weakly bicornate forms
1594	are referred to Pareodinia spp.
1595	
1596	
1597	Leptodinium Klement 1960 emend. Stover & Evitt 1978
1598	
1599	Leptodinium? ancoralium Mantle 2005 (Plate VII, fig. 3)
1600	
1601	Remarks: Leptodinium? ancoralium is a distinctive form with bifurcate, anchor-tipped
1602	spines surmounting prominent sutural crests. It is recorded from only one sample
1603	(SR3; 2107.52/.47 m) in Sunrise-2. This extends the range base below the first
1604	appearance datum in the Ternia balmei Zone (Mantle, 2009a, p. 57).
1605	
1606	
1607	Leptodinium spp. (Plate VII, fig. 6)
1608	
1609	Remarks: Although first appearing in the uppermost part of the Middle Wanaea
1610	verrucosa Zone, representatives of Leptodinium first consistently occur in the Upper
1611	Subzone, and are potentially useful markers for this interval. Leptodinium is most
1612	typical of the Late Jurassic in Europe (Klement, 1960), but representatives have been
1613	reported from the Middle Jurassic (Bajocian-Bathonian) of the northern hemisphere
1614	(e.g. Riding et al., 1985; 1991).
1615	Most specimens referable to Leptodinium in this study were not speciated.
1616	This is because of the sparsity of material and the significant morphological
1617	variability observed. Many of the specimens encountered are large, and have a
1618	rounded subquadrangular to ovoidal dorsoventral outline (Plate 7, fig. 6). These
1619	forms are most similar to the Late Jurassic species Leptodinium arcuatum Klement
1620	1960, Leptodinium eumorphum (Cookson & Eisenack 1960) Sarjeant in Davey et al.
1621	1060 and Lente division winchile Klamant 1060. However, the maximum recorded
	1969 and Leptodinium mirabile Klement 1960. However, the specimens recorded

1623	Leptodinium arcuatum and Leptodinium eumorphum; furthermore, they all lack the
1624	characteristically subdivided sulcal region of Leptodinium mirabile (see Cookson and
1625	Eisenack, 1960, pl. 37, figs. 1-3; Klement, 1960, pl. 6, figs. 5-7). The sulcal area in
1626	the material studied herein is relatively narrow. Moreover, the sutural crests on the
1627	Wanaea verrucosa Zone material are significantly variable in height.
1628	
1629	
1630	Mancodinium Morgenroth 1970 emend. Below 1987b
1631	
1632	Mancodinium semitabulatum subsp. semitabulatum (Morgenroth 1970) Fensome et al.
1633	1993 (Plate X, figs. 11-15)
1634	
1635	Remarks: Mancodinium semitabulatum subsp. semitabulatum was recorded rarely in
1636	the Lower and lowermost Middle Wanaea verrucosa subzones in the Sunrise-2 and
1637	Sunset West-1 wells (Tables 2, 3). These forms possess short, relatively thick, capitate
1638	spines or gemmae that are noticeably reduced in and around the sulcal area. These
1639	specimens are similar to those figured by Below (1987b; pl. 4, figs. 1-15). The
1640	precingular, anterior intercalary and apical plates may all be lost in archaeopyle
1641	formation, or any number of these plates may remain attached. In the latter case, the
1642	plates are normally partially separated. This is the first published record of this genus
1643	in the southern hemisphere; in Europe it ranges from the Late Pliensbachian to Early
1644	Bajocian (Morgenroth, 1970; Below, 1987b; Riding and Thomas, 1992).
1645	
1646	
1647	Meiourogonyaulax Sarjeant 1966
1648	
1649	Remarks: Representatives of Meiourogonyaulax were recorded throughout the
1650	Wanaea verrucosa Zone (Tables 1-3). These forms are not referable to any existing
1651	species. Most of the observed morphotypes are thick-walled with strong
1652	ornamentation, have poorly-defined tabulation, and frequently have accumulation
1653	bodies and attached opercula.
1654	
1655	
1656	Meiourogonyaulax straussii sp. nov. (Plate I, figs. 1-16)

1658 Description: A species of *Meiourogonyaulax* which is ellipsoidal in dorsoventral 1659 outline; an apical horn or protuberance is entirely lacking. The autophragm is robust, 1660 thick, comprehensively rugulate to irregularly reticulate and locally may bear 1661 elements of low-relief ornamentation such as baculae, denticles/echinae, tubercles, 1662 and vertucae. The density and type of this ornament is highly variable, ranging from 1663 largely spinose forms to comprehensively rugulate morphotypes. Locally, the 1664 coalescence of verrucae and rugulae gives rise to a pseudoreticulate texture. The 1665 spinose-baculate elements are typically irregularly distributed and are highly variable 1666 in form, for example they may be either distally blunt, sharp or oblate. These elements 1667 are consistently most well-developed on the hypocyst, and especially around the antapical (1^{'''}) plate, although some specimens are comprehensively spinose. The 1668 1669 sexiform gonyaulacacean tabulation is indicated by the apical archaeopyle, the 1670 prominent crests which consistently mark the apparently undivided laevorotatory 1671 cingulum, and by low, frequently discontinuous sutural ridges or crests which 1672 delineate the remaining plate series. The tabulation is largely suppressed in the apical 1673 and antapical areas. Frequently, the crests/ridges in the precingular and postcingular 1674 plate series become lower and more discontinuous in a polar direction either side of 1675 the cingulum, becoming entirely suppressed towards the middle point of these series. 1676 The sutural crests/ridges, where developed, dominantly have irregular distal margins 1677 formed by denticles, but they can occasionally be distally smooth or fenestrate. 1678 Relatively large, dark accumulation bodies which are subspherical to ovoidal in 1679 outline are centrally attached to the cyst body on most specimens. The sulcus is 1680 apparently undivided, relatively narrow and longitudinal. The archaeopyle is apical; 1681 the simple operculum is nearly always attached. Minor accessory archaeopyle sutures 1682 may be developed in the precingular plate series. 1683 1684 Dimensions (30 specimens measured):

1685 Length of cyst including operculum: 45 (60) 75 μm

1686 Equatorial width of cyst: 58 (69) 82 μm

1687 Height of ornamentation: 0.5-4.0 μm

1688 Thickness of autophragm: 1-1.5 μm

1690 Comments: Meiourogonyaulax straussii sp. nov. is easily recognised by its thick and 1691 robust, rugulate to irregularly reticulate autophragm, the prominent cingulum, its 1692 partially-developed sutural crests/ridges, the variable low-relief ornamentation which 1693 is best developed around the antapex, the frequently attached simple apical operculum 1694 and the prominent accumulation bodies. The morphology of the sutural crests/ridges 1695 is highly variable, they typically have irregularly denticulate distal margins, but these 1696 can also be distally smooth or fenestrate. This species is prominent, even when 1697 working at relatively low magnifications due to its thick autophragm, which imparts a 1698 strong body colour.

1699

1700 Comparison: Meiourogonyaulax straussii sp. nov. differs from all other species of

1701 *Meiourogonyaulax* in bearing significantly incomplete tabulation. Stover and Evitt

1702 (1978, p. 62) stated that the tabulation is 'generally complete'. The species which is

1703 most similar is *Meiourogonyaulax reticulata* Dodekova 1975, which has a thick,

1704 reticulate autophragm and a frequently attached operculum. However, the tabulation

of *Meiourogonyaulax reticulata* is fully indicated by low, distally-smooth sutural
ridges (Riding, 1983, pl. 1).

1707

1708 Holotype and type locality: Plate I, Figs. 5-6. Sunset West-1 well (2216.84 m),

1709 Bonaparte Basin, Timor Sea. Slide no. 2, EF T39/2, CPC no. 41142.

1710

1711 Stratigraphical distribution: *Meiourogonyaulax straussii* sp. nov. was observed

1712 commonly in the Wanaea verrucosa Zone in both the Sunrise-2 and Sunset West-1

1713 wells. Itt first appears in the middle part of the Lower Subzone, is common to

abundant in the upper half of the Middle Subzone to the lower part of the Upper

1715 Subzone and ranges sporadically into the overlying *Wanaea indotata* Zone (Tables 2,

1716 3). Meiourogonyaulax straussii was also recorded in low to moderate numbers in the

1717 *Wanaea verrucosa* Zone of the Perseus-3A well (Table 1).

- 1718
- 1719

1720 *Meiourogonyaulax* sp. A (Plate II, figs. 1-2)

1721

1722 Dimensions (10 specimens measured):

1723 Length of cyst excluding operculum: 48 (53) 60 μm

1724	Equatorial width of cyst: 44 (55) 61 µm
1725	Thickness of autophragm: $> 1 \ \mu m$
1726	
1727	Remarks: Meiourogonyaulax sp. A is a simple form with a granulate to
1728	microreticulate autophragm, long accessory archaeopyle sutures and tabulation which
1729	is faintly delimited by aligned grana or low crests/ridges that may be finely fenestrate.
1730	It differs from most forms of Meiourogonyaulax in the Wanaea verrucosa Zone in
1731	lacking an adnate operculum and only rarely displaying an obvious accumulation
1732	body. Meiourogonyaulax sp. A is notably smaller than Meiourogonyaulax viriosa
1733	Riding & Helby 2001, and lacks the fully developed tabulation marked by continuous,
1734	slender crests. However, similar forms are present through the Callovian and early
1735	Oxfordian of Australia. In the present study, Meiourogonyaulax sp. A is uncommon
1736	in all three wells from the uppermost part of the Lower Wanaea verrucosa Subzone
1737	to the lowermost part of the Upper Subzone. This interval coincides with the peak
1738	density and diversity of Meiourogonyaulax in the Wanaea verrucosa Zone.
1739	
1740	
1741	Meiourogonyaulax sp. B (Plate II, figs. 5-8)
1742	
1743	Dimensions (12 specimens measured):
1744	Length of cyst excluding operculum: 48 (53) 57 µm
1745	Equatorial width of cyst: 50 (54) 59 µm
1746	Thickness of autophragm: ca. 1 µm
1747	Length of processes: 1-4 µm
1748	
1749	Remarks: This small to medium sized form of Meiourogonyaulax is relatively thick-
1750	walled, with a comprehensive cover of grana and short baculae or spines. The spines
1751	may be capitate, bifurcate or blunt-tipped; rarely the furcae coalesce to form finely
1752	fenestrate sutural crests or a localised reticulum. The tabulation is only weakly
1753	expressed by low, discontinuous ridges of coalescent grana; typically only the
1754	cingulum is discernible, but the pre- and postcingular plates may also be faintly
1755	evident. The archaeopyle margin is formed of deep accessory sutures and the
1756	operculum is free. Meiourogonyaulax sp. B is a rare but important marker with a
1757	restricted range in the upper part of the Lower Wanaea verrucosa Subzone in the

1758	Sunrise-2 and Sunset West-1 wells (Fig. 4; Tables 2, 3); one specimen was also
1759	recorded in the lowermost Middle Wanaea verrucosa Subzone in the Sunset West-1
1760	well. This form is not present in sufficient numbers to be formally described.
1761	
1762	
1763	Meiourogonyaulax sp. C (Plate II, figs. 9-12)
1764	
1765	Dimensions (14 specimens measured):
1766	Length of cyst including operculum: 52 (57) 63 µm
1767	Equatorial width of cyst: 43 (52) 56 µm
1768	Thickness of autophragm: ca. 1 μm
1769	
1770	Remarks: Meiourogonyaulax sp. C is a distinctive form with a thick, granulate to
1771	microreticulate autophragm, low sutural ridges, an adnate operculum and a thick, dark
1772	accumulation body. The low ridges often have denticulate margins and the cingulum
1773	is typically well-developed. Meiourogonyaulax sp. C is marginally darker and thicker-
1774	walled than Meiourogonyaulax sp. A but is readily differentiated by the usually
1775	attached operculum, obvious accumulation body and more prominent sutural ridges. It
1776	shares these first two features with Meiourogonyaulax straussii sp. nov., but should
1777	not be confused with this larger, more coarsely ornamented species. It is a notable
1778	feature of the Wanaea verrucosa Zone assemblages that the majority of forms with
1779	apical archaeopyles have an adnate operculum and a dark accumulation body. These
1780	accumulation bodies are mostly subcircular and are attached close to the cingulum.
1781	
1782	
1783	Meiourogonyaulax spp.
1784	
1785	Remarks: This material includes all the other forms of Meiourogonyaulax which are
1786	not attributable to Meiourogonyaulax straussii sp. nov. or Meiourogonyaulax sp. A, B
1787	or C. There is large diversity of forms through the Middle and Upper Wanaea
1788	verrucosa subzones that cannot easily be grouped into consistent taxa.
1789	
1790	
1791	Mendicodinium Morgenroth 1970 emend. Bucefalo Palliani et al. 1997

1792	
1793	Mendicodinium spp.
1794	
1795	Remarks: Squat ovoidal forms of Mendicodinium with a relatively thick, smooth
1796	autophragm and an attached epicystal archaeopyle were recorded throughout the
1797	Wanaea verrucosa Zone in low numbers (Tables 1-3). The preservation of these rare
1798	forms precludes a confident assignement to any existing species, so they are simply
1799	termed Mendicodinium spp.
1800	
1801	
1802	Nannoceratopsis Deflandre 1938 emend. Piel & Evitt 1980
1803	
1804	Nannoceratopsis deflandrei Evitt 1961 subsp. deflandrei (autonym) (Plate X, figs. 16-
1805	18)
1806	
1807	Remarks: Nannoceratopsis deflandrei subsp. deflandrei was recorded in low numbers
1808	throughout the Wanaea verrucosa Zone in the Sunrise-2 and Sunset West-1 wells
1809	(Tables 2, 3). The range top of the species is within the Upper Wanaea verrucosa
1810	Subzone. This subspecies has a relatively smooth to scabrate autophragm, a strongly
1811	developed dorsal antapical horn and a relatively weakly developed ventral antapical
1812	horn. The ventral horn is commonly reduced to little more than a prominent 'shoulder'
1813	(Plate X, fig. 18).
1814	
1815	
1816	Nannoceratopsis deflandrei Evitt 1961 subsp. senex (van Helden 1977) Ilyina in
1817	Ilyina et al. 1994 (Plate X, figs. 21-23)
1818	
1819	Remarks: This distinctive subspecies was recorded consistently in the Middle Wanaea
1820	verrucosa Subzone in the Sunrise-2 and Sunset West-1 wells, but only rarely in the
1821	Lower Subzone (Tables 2, 3). The autophragm of Nannoceratopsis deflandrei subsp.
1822	senex is smooth to scabrate, and only the dorsal antapical horn is developed. The
1823	entire lack of a ventral antapical horn imparts a rounded subquadrangular shape to this
1824	subspecies.
1825	

1826	
1827	Nannoceratopsis spiculata Stover 1966 (Plate X, fig. 20)
1828	
1829	Remarks: Nannoceratopsis spiculata was observed in one sample (SW8, 2217.98 m)
1830	in the Sunset West-1 well. This distinctive species has two subequal antapical horns.
1831	The right and left lateral surfaces are slightly different in size, giving the impression
1832	of cavation at the distal extremities of the antapical horns (Stover, 1966, fig. 1, pl. 8,
1833	figs. 1-5). Nannoceratopsis spiculata is typical of the latest Early Bajocian to Mid
1834	Callovian interval in Europe (Stover, 1966; Fenton et al., 1980; Riding et al. 1985;
1835	1991; Prauss, 1989; Feist-Burkhardt and Monteil, 1997).
1836	
1837	
1838	Nannoceratopsis spp. (Plate X, fig. 19)
1839	
1840	Remarks: This material includes all other forms of Nannoceratopsis that are not
1841	attributable to Nannoceratopsis deflandrei or Nannoceratopsis spiculata.
1842	
1843	
1844	Pareodinia Deflandre 1947 emend. Below 1990
1845	
1846	Remarks: Representatives of Pareodinia occur throughout the Wanaea verrucosa
1847	Zone in varying proportions in all three wells (Tables 1-3). A wide variety of forms
1848	were observed, many of which are difficult to consistently place into existing species
1849	and the vast majority of the specimens exhibit accumulation bodies (Plate IX, figs. 5,
1850	9). All the forms below include kalyptrate and non-kalyptrate forms.
1851	
1852	
1853	Pareodinia halosa (Filatoff 1975) Prauss 1989 emend. Prauss 1989 (Plate IX, fig. 8)
1854	
1855	Remarks: This distinctive kalyptrate species was recorded in significant proportions
1856	throughout in the Sunrise-2 and Sunset West-1 wells (Tables 2, 3) and as a rare
1857	component of the Perseus-3A assemblages (Table 1). Consistently common
1858	occurrences of Pareodinia halosa are mostly confined to the Nannoceratopsis
1859	deflandrei and Wanaea verrucosa zones (Mid Bajocian to Early Bathonian) in

1860	Australia, although this taxon is present in low to moderate proportions from the Early
1861	Bajocian to Early Cretaceous of Australia (Riding et al., 2010, fig. 12). Normally the
1862	kalyptra of <i>Pareodinia halosa</i> is broadly subcircular in outline, reflecting the outline
1863	of the cyst body. However, relatively small numbers of this species are characterised
1864	by extremely irregular kalyptras. In these forms, the periphery of the kalyptra has
1865	numerous irregular extensions which impart a spinose appearance (e.g. Plate IX, fig.
1866	8). These 'spinose' morphotypes are present throughout the <i>Wanaea verrucosa</i> Zone.
1867	
1868	
1869	Pareodinia sp. A (Plate IX, figs. 14-16)
1870	
1871	Dimensions (10 specimens measured):
1872	Length of cyst including apical horn: 48 (58) 72 µm
1873	Equatorial width of cyst: 44 (51) 60 µm
1874	Thickness of autophragm: ca. 1 μm
1875	
1876	Remarks: Pareodinia sp. A is a distinctive form with a thick, finely granulate
1877	autophragm; the cyst body is subspherical in shape and has a very short (4-9 μ m)
1878	apical horn (Plate IX, fig. 16). There is insufficient material in the wells studied to
1879	erect a new species. This form is present in low numbers in all three wells from the
1880	upper part of the Lower Wanaea verrucosa Subzone to the lower part of the Upper
1881	Wanaea verrucosa Subzone (Fig. 4; Tables 1-3).
1882	
1883	
1884	Pareodinia spp. (Plate IX, figs. 5-7, 9, 13)
1885	
1886	Remarks: The majority of representatives of Pareodinia were not subdivided, and are
1887	simply placed in Pareodinia spp. Included in this grouping are forms similar to
1888	Pareodinia ceratophora Deflandre 1947 emend. Gocht 1970, elongate forms, squat
1889	morphotypes with short apical horns, antapically granulate types, and kalyptrate and
1890	non-kalyptrate forms. This plexus is extremely difficult to subdivide consistently; the
1891	individual forms appear to represent members of a morphological continuum.
1892	Pareodinia spp. were recorded in moderate numbers throughout the Wanaea
1893	verrucosa Zone in all three wells (Tables 1-3).

1894	
1895	
1896	Phallocysta Dörhöfer & Davies 1980 emend. Riding 1980
1897	
1898	Phallocysta granosa Riding and Helby 2001 (Plate X, figs. 1-4, 6-10)
1899	
1900	Remarks: Phallocysta granosa was recorded in relatively low proportions throughout
1901	the Lower and Middle Wanaea verrucosa subzones in the Sunrise-2 and Sunset West-
1902	1 wells (Figure 4; Tables 2, 3). A significant acme is recorded in the Middle Subzone
1903	in Sunrise-2, where Phallocysta granosa consistutes 7.3%, 0.7%, and 2.4% of the
1904	total palynomorphs in three consecutive samples from 2121.63 m to 2117.06m.
1905	The present work confirms that Phallocysta granosa has a densely granulate to
1906	spinulate periphragm as stated by Riding and Helby (2001c, p. 61). This phenomenon
1907	is clearly exhibited by the holotype (Riding and Helby, 2001c, figs. 1G-H). However,
1908	the latter authors figured six specimens of Phallocysta granosa from the Sunset-1
1909	well (not included in the present study) which clearly have a microgranulate to
1910	granulate periphragm (Riding and Helby, 2001c, figs. 1A-F). These microgranulate
1911	forms are considerably rarer end members of a morphological continuum in the
1912	Sunrise-2 and Sunset West-1 wells; most specimens recorded herein are
1913	comprehensively spinulate or coarsely granulate with at least some short, simple
1914	spines.
1915	
1916	
1917	Phallocysta spp. (Plate X, fig. 5)
1918	
1919	Remarks: Rare, non-spinose forms of <i>Phallocysta</i> were recorded in all three wells.
1920	Included within this grouping are small, subspherical, scabrate to microgranulate
1921	forms (Plate X, fig. 5), and types that are broadly similar to Phallocysta erregulensis
1922	(Filatoff 1975) Stover & Helby 1987. The latter forms are marginally smaller, less
1923	prone to folding of the endo- and periphragm and with shorter apical horns than those
1924	figured by Stover and Helby 1987 (fig. 11).
1925	
1926	
1927	Prolixosphaeridium Davey et al. 1966 emend. Davey 1969

1928 1929 Prolixosphaeridium spp. 1930 1931 Remarks: Prolixosphaeridium spp. were only recorded in the uppermost part of the 1932 Upper Wanaea verrucosa Subzone in the Sunset West-1 well (Table 3). Forms similar 1933 to Prolixosphaeridium capitatum (Cookson & Eisenack 1960) Singh 1971 are 1934 included in this group; this species occurs as a common accessory species from the 1935 Wanaea indotata to Dingodinium swanense zones (Helby et al., 1987; Mantle, 1936 2009b). 1937 1938 1939 Rhynchodiniopsis Deflandre 1935 emend. Jan du Chêne et al. 1985 1940 1941 Rhynchodiniopsis sp. cf. R? regalis (Gocht 1970) Jan du Chêne et al. 1985 1942 1943 Remarks: Low numbers of a distinctive acavate gonvalacacean form were recorded 1944 from the Perseus-3A and Sunrise-2 wells (Tables 1, 2). It has an apical horn, thick 1945 autophragm, an ovoidal amb and proximally fenestrate/distally denticulate sutural 1946 crests. The cyst organisation and the distinctive morphology of the sutural crests are 1947 reminiscent of *Rhynchodiniopsis? regalis*. However, the type material has a distinctly 1948 angular (subpentagonal) outline, and higher, more ornate sutural crests (Gocht, 1970, 1949 fig. 10, pl. 33, figs. 5-7). The range of *Rhynchodiniopsis? regalis* in Europe is latest 1950 Early Bajocian to Late Bathonian (Gocht, 1970; Fenton et al., 1980; Riding, 1984; 1951 Riding et al. 1985; 1991; Riding and Thomas, 1992; Feist-Burkhardt and Monteil, 1952 1997). 1953 1954 1955 Rhynchodiniopsis spp. (Plate VII, figs. 1-2, 4-5) 1956 1957 Remarks: Forms attributable to *Rhynchodiniopsis* were observed in low proportions 1958 from all three wells (Tables 1-3). These morphotypes are acavate, ovoidal to 1959 subpentagonal in outline and with a variety of spinose ornamentation on the sutural 1960 crests. The spines may possess complex splayed or furcate tips (Plate VII, figs. 1, 4-5) 1961 and project directly from gonal points or surmount low simple or fenestrate crests.

1962	The fenestrae may be reduced (Plate VII, fig. 2) or well-developed (Plate VII, fig. 1).
1963	Some specimens are densely folded.
1964	
1965	
1966	Sentusidinium Sarjeant & Stover 1978
1967	
1968	Sentusidinium spp.
1969	
1970	Remarks: Sentusidinium spp. were encountered sporadically throughout the Wanaea
1971	verrucosa Zone in the Sunrise-2 and Sunset West-1 wells (Tables 2, 3).
1972	
1973	
1974	Ternia Helby & Stover 1987
1975	
1976	Ternia balmei Helby & Stover 1987 (Plate IX, fig. 4)
1977	
1978	Remarks: Ternia balmei is an extremely distinctive species that first appears in the
1979	Upper Wanaea verrucosa Subzone in the Sunrise-2 and Sunset West-1 wells (Fig. 4;
1980	Tables 2, 3). This agrees with the range base of <i>Ternia balmei</i> as depicted by Helby et
1981	al. (2004, fig. 4) and Partridge (2006) in their 7ciai subzone. However, it is only
1982	consistently present in the Upper Wanaea verrucosa Subzone in Sunrise-2 and is thus
1983	too rare to be a reliable marker species in all wells. Ternia balmei ranges into and
1984	throughout the overlying Wanaea indotata and Ternia balmei zones (Helby et al.,
1985	1987; 2004; Partridge, 2006)
1986	
1987	
1988	Valensiella Eisenack 1963 emend. Courtinat 1989
1989	
1990	Valensiella ovulum (Deflandre 1947) Eisenack 1963
1991	
1992	Remarks: Valensiella ovulum is present in low numbers in the Upper Wanaea
1993	verrucosa Subzone in the Sunrise-2 and Sunset West-1 wells (Fig. 4, Tables 2, 3), and
1994	throughout much of the undivided Wanaea verrucosa Zone in Perseus-3A (Table 1).

1995 This small species is prominent in the Late Bajocian and Bathonian of Europe (Gocht,

- 1996 1970; Riding et al., 1985; Feist-Burkhardt and Monteil, 1997).
- 1997
- 1998

1999 Valvaeodinium Morgenroth 1970 emend. Below 1987

2000

2001 Valvaeodinium cookii sp. nov. (Plate VIII, figs. 16-25)

2002

2003 Description: A small species of Valvaeodinium with a squat, subspherical outline and 2004 normally a flattened antapical margin. The autophragm is moderately thick (ca. 1-1.5 2005 µm) and dark brown; the surface is scabrate to granulate with a variable density and 2006 distribution of short processes. These elements may be baculate, short capitate spines 2007 or rarely spines with blunt, bifurcate tips. The latter features are only resolvable using 2008 high power objectives. Some specimens have a relatively dense covering of these fine 2009 processes (Plate VIII, fig. 16), but they are largely confined to gonal or intergonal 2010 positions on most individuals with only a few scattered intratabular elements (Plate 2011 VIII, figs. 17). Tabulation is indicated by the archaeopyle and low crests and ridges of 2012 variable thickness $(0.5-2 \mu m)$ and distribution. These sutural features may be 2013 surmounted by short processes particularly at the gonal points and are most 2014 prominent on the hypocyst, particularly around the precingular plates. The 2015 archaeopyle is interpreted to be type AI, formed through the loss of a single apical and 2016 intercalary plate (assumed to be the 3' and 1a plates as is typical for the genus). This 2017 combination archaeopyle that leaves three apical plates in place leads to a rather 2018 pointed apex when the cyst is viewed laterally (Plate VIII, fig. 19); again, a common 2019 feature of the genus. The operculum may be free or one or both of the opercular plates 2020 may remain attached, albeit loosely. The full tabulation formula is frequently not fully 2021 resolvable, but is clearly consistent for Valvaeodinium i.e.: 4', 1a, 5", ?6c, 5"', 1"". 2022 2023 Dimensions (20 specimens measured): 2024 Length of cyst including operculum: 28 (33) 38 µm 2025 Equatorial width of cyst excluding spines: 29 (35) 40 µm

- 2026 Length of spines: 1-3 μm
- 2027 Thickness of autophragm: ca. 1-1.5 μm
- 2028

- 2029 Comments: *Valvaeodinium cookii* sp. nov. is characterised by short sutural spines,
- 2030 variable crests and ridges delimiting an incomplete tabuation, and a typically squat,
- 2031 subspherical outline. The sutural ridges vary from thin, short crests with an irregular
- 2032 notched to finely spinose margin (Plate VIII, figs. 17-18), to low, thick, granular
- ridges (Plate VIII, figs. 20, 23, 25). The tabulation is commonly best developed on the
- 2034 hypocyst where the precingular plates are typically prominent; the sutural ridges may
- appear as thick folds of the cyst wall.
- 2036

2037 Comparison: *Valvaeodinium cookii* sp. nov. is markedly less cyclindrical and rather 2038 squatter and flatter-based than most other species of *Valvaeodinium*. The prominent 2039 tabulation is also a rare feature of the genus. *Valvaeodinium euareatum* Prauss 1989 is

- a closely comparable species from the Early to Middle Bajocian of northwest
- 2041 Germany. It is similarly squat with well-developed tabulation and a covering of fine,
- acuminate to capitate spines. However, Valvaeodinium euareatum has a much denser
- 2043 covering of these spines with a more even, intratabular distribution. The spines may
- also coalesce to form a fine reticulum; this is not a feature of *Valvaeodinium cookii*
- sp. nov. Furthermore, the well-defined sutural ridges of *Valvaeodinium euareatum*
- 2046 display a more complete tabulation.
- 2047

Holotype and type locality: Plate VIII, fig. 25. Sunrise-2 well (2122.33 m), Bonaparte
Basin, Timor Sea. Slide no. 2, EF P29/2, CPC no. 41198.

2050

2051 Stratigraphical distribution: *Valvaeodinium cookii* sp. nov. is an important marker

- 2052 species for the Middle Wanaea verrucosa Subzone. It first appears at the base of this
- 2053 subzone, together with *Valvaeodinium spinosum*, in both the Sunrise-2 and Sunset
- 2054 West-1 wells (Fig. 4; Tables 2, 3); it is a commoner, more consistent marker than the
- 2055 latter species in both wells, but its broader regional distribution is unknown.
- 2056 Valvaeodinium cookii sp. nov. is particularly prominent in the Sunrise-2 well, where it
- 2057 peaks at 3% of the total palynomorphs in sample SR10 (2117.06 m). The range top of
- 2058 *Valvaeodinium cookii* sp. nov. is close to the top of the Middle *Wanaea verrucosa*
- 2059 Subzone. It was not recorded in the Perseus-3A well.
- 2060
- 2061
- 2062 *Valvaeodinium spinosum* (Fenton et al. 1980) Below 1987 (Plate VIII, figs. 6-12)

2063	
2064	Remarks: The range base of this distinctive, relatively small, species marks the base
2065	of the Middle Wanaea verrucosa Subzone (following the 7ciaii subzone of Helby et
2066	al., 2004). However, it is relatively rare through this subzone in the Sunrise-2 and
2067	Sunset West-1 wells before a minor acme at the base of the Upper Subzone. This
2068	acme ranges from 2% of total palynomorphs in the Sunset West-1 well, up to 5% of
2069	total palynomorphs in the Sunrise-2 well (Fig. 4, Tables 2-3). The majority of
2070	individuals in the Middle Subzone are squat or subspherical (PlateVIII, figs. 7-10),
2071	and become more cylindrical up-section ; most specimens in the Upper Subzone are
2072	notably more elongate (Plate VIII, figs. 6, 11-12). This morphological succession was
2073	noted for Valvaeodinium spinosum and other species s of Valvaeodinium by Feist-
2074	Burkhardt and Monteil (1997, p. 48).
2075	
2076	
2077	Valvaeodinium vermicylindratum Below 1987 (Plate VIII, figs. 13-15)
2078	
2079	Remarks: This species was encountered in the Perseus-3A and Sunset West-1 wells,
2080	and questionably in the Sunrise-2 well (Tables 1-3). This is the first southern
2081	hemisphere report of this Late Bajocian-Early Bathonian marker (Feist-Burkhardt and
2082	Monteil, 1997).
2083	
2084	
2085	Valvaeodinium sp. cf. V. vermipellitum Below 1987
2086	
2087	Remarks: A form similar to Valvaeodinium vermipellitum was recorded in one sample
2088	(SW8, 2217.98m) in the Upper Wanaea verrucosa Subzone in the Sunset West-1 well
2089	(Table 3). The ornament is less dense, and fewer spines coalesce to form a finer, less
2090	complete reticulum than in the type material.
2091	
2092	
2093	Wanaea Cookson & Eisenack 1958 emend. Riding and Helby 2001
2094	
2095	Wanaea enoda Riding & Helby 2001 (Plate III, fig. 3)
• • • • •	

2097	Remarks: Most specimens of Wanaea enoda observed in this study were irregularly
2098	scabrate, rather than possessing a completely psilate autophragm, and were often
2099	squatter than the distinctly subconical hypocysts of the type material from the
2100	Magobu-1 well in Papua New Guinea (Riding and Helby 2001b). Wanaea enoda was
2101	observed in extremely low proportions throughout the Wanaea verrucosa Zone in all
2102	three wells studied (Tables 1-3).
2103	
2104	
2105	Wanaea indotata Drugg 1978
2106	
2107	Remarks: The inception of Wanaea indotata marks the base of the late Early to Late
2108	Bathonian Wanaea indotata Interval Zone.
2109	
2110	
2111	Wanaea lacuna Riding & Helby 2001 (Plate III, figs. 6, 9)
2112	
2113	Remarks: This cavate species of Wanaea was recorded in small numbers from a
2114	restricted interval within the Middle Wanaea verrucosa Subzone in the Sunrise-2 and
2115	Sunset West-1 wells (Fig. 4; Tables 2, 3). This confirms the findings of Riding and
2116	Helby (2001b), who described this taxon from the equivalent 7ciaii subzone in the
2117	Sunrise-2 well between 2122.33 m and 2122.05 m.
2118	
2119	
2120	Wanaea verrucosa Riding & Helby 2001 (Plate III, figs. 1-2, 4-5, 7-8)
2121	
2122	Remarks: Wanaea verrucosa, the index species of this zone, occurs throughout the
2123	three wells studied and is normally present in significant proportions (Tables 1-3).
2124	The thickness of the autophragm, ornamentation and size of the antapical horn are
2125	somewhat variable. Forms with a thin, granulate autophragm and a relatively small
2126	antapical horn (Plate III, figs. 2, 5, 7-8) are present throughout, but are most
2127	prominent in Lower and Middle Wanaea verrucosa subzones. By contrast,
2128	morphotypes with a significantly thicker and more robust autophragm and with
2129	relatively high relief ornamentation, comprising dense baculae, grana and/or pilae
2130	(Plate III, figs. 1, 4) are confined to the uppermost Middle and Upper Wanaea

2131	verrucosa subzones. The latter forms normally exhibit prominent antapical horns. The
2132	type material of Riding and Helby (2001b, fig. 9) appears to entirely comprise these
2133	younger morphotypes.
2134	The low-relief ornamentation of the older, purely granulate, forms can make
2135	the distinction between Wanaea enoda and Wanaea verrucosa difficult to make using
2136	low or medium power objectives. Wanaea enoda should be confined to forms which
2137	have a smooth to irregularly scabrate autophragm and no coarser ornament. The range
2138	bases of these two species are coeval (Riding and Helby, 2001b, figs. 11, 12).
2139	
2140	
2141	APPENDIX 3. LIST OF THE NON-DINOFLAGELLATE CYST
2142	PALYNOMORPHS
2143	
2144	Appendix 3 lists all pollen, spores and miscellaneous palynomorphs recorded
2145	in this study with author citations for the species.
2146	
2147	Pollen:
2148	Araucariacites australis Cookson 1947
2149	Araucariacites spp.
2150	Callialasporites spp.
2151	Classopollis spp.
2152	Cycadopites spp.
2153	Exesipollenites tumulus Balme 1957
2154	Perinopollenites elatoides Couper 1958
2155	Plicatipollenites spp. (reworked)
2156	Praecolpatites sinuosus (Balme & Hennelly 1956) Bharadwaj & Srivastava 1969
2157	(reworked)
2158	Protohaploxypinus spp. (reworked)
2159	Striatoabieites multistriatus (Balme & Hennelly 1955) Hart 1964 (reworked)
2160	Striatopodocarpidites spp. (reworked)
2161	Vitreisporites pallidus (Reissinger 1939) Nilsson, 1958
2162	
2163	Spores:
2164	Anapiculatisporites dawsonensis Reiser & Williams 1969

- 2165 Annulispora spp.
- 2166 Antulsporites saevus (Balme 1957) Archangelsky & Gamerro 1966
- 2167 Baculatisporites-Osmundacidites spp.
- 2168 Cibotiumspora juncta (Kara-Murza 1956) Zhang 1978
- 2169 *Cibotiumspora* spp.
- 2170 Concavissimisporites verrucosus Delcourt & Sprumont 1955
- 2171 *Concavissimisporites* spp.
- 2172 Contignisporites cooksoniae (Balme 1957) Dettmann 1963
- 2173 *Contignisporites* spp.
- 2174 Coronatispora telata (Balme 1957) Dettmann 1963
- 2175 *Coronatispora* spp.
- 2176 *Cyathidites* spp.
- 2177 Diatomozonotriletes townrowii Segroves 1970 (reworked)
- 2178 *Dictyophyllidites* spp.
- 2179 Dictyotosporites complex Cookson & Dettmann 1958
- 2180 Didecitriletes ericianus (Balme & Hennelly 1956) Venkatachala &Kar 1965
- 2181 (reworked)
- 2182 Dulhuntyispora dulhuntyi Potonié 1956 emend. Price 1983 (reworked)
- 2183 Foveosporites canalis Balme 1957
- 2184 Gleicheniidites senonicus Ross 1949
- 2185 *Gleicheniidites* spp.
- 2186 Granulatisporites trisinus Balme & Hennelly 1956
- 2187 *Granulatisporites* spp. (reworked)
- 2188 Indotriradites spp. (reworked)
- 2189 Ischyosporites-Klukisporites spp.
- 2190 *Leptolepidites* spp.
- 2191 *Matonisporites* spp.
- 2192 *Microbaculispora villosa* (Balme &Hennelly 1955) Bharadwaj 1962 (reworked)
- 2193 Neoraistrickia spp.
- 2194 Pseudoreticulatispora pseudoreticulata (Balme & Hennelly 1956) Bharadwaj
- 2195 &Srivastava1969 (reworked)
- 2196 *Retitriletes* spp.
- 2197 Sculptisporis moretonensis (de Jersey 1964) McKellar in press
- 2198 Sestrosporites pseudoalveolatus (Couper 1958) Dettmann 1963

2199	Staplinisporites caminus (Balme 1957) Pocock 1962
2200	Stereisporites spp.
2201	Striatella spp.
2202	Trachysporites infirmus (Balme 1957) McKellar in press
2203	
2204	Miscellaneous palynomorphs:
2205	Botryococcus spp.
2206	Circulisporites spp.
2207	foraminiferal test linings
2208	Leiofusa sp.
2209	Leiosphaeridia spp.
2210	Micrhystridium spp.
2211	Nummus apiculatus Riding & Helby 2001
2212	Pterospermella australiense (Deflandre & Cookson 1955) Eisenack 1972
2213	Veryhachium spp.
2214	
2215	
2216	APPENDIX 4: QUANTITATIVE RANGE CHARTS
2217	
2218	The quantitative palynomorph distribution data for this project is given in
2219	Appendix 4. Tables 1-3 are the dinoflagellate cyst range charts and Tables 4-6 include
2220	the data for the other palynomorph groups.
2221	
2222	Table 1. Quantitative dinoflagellate cyst data for the 14 samples studied from the
2223	Perseus-3A well. The numbers refer to counted specimens. Material observed outside
2224	the counts is indicated by an 'X'. Three dots (\dots) indicate that the form is absent.
2225	
2226	Table 2. Quantitative dinoflagellate cyst data for the 29 samples studied from the
2227	Sunrise-2 well. The numbers refer to counted specimens. Material observed outside
2228	the counts is indicated by an 'X'. Three dots (\dots) indicate that the form is absent.
2229	
2230	Table 3. Quantitative dinoflagellate cyst data for the 21 samples studied from the
2231	Sunset West-1 well. The numbers refer to counted specimens. Material observed

2232	outside the counts is indicated by an 'X'. Three dots $()$ indicate that the form is
2233	absent.
2234	
2235	Table 4. Quantitative data on pollen, spores and miscellaneous palynomorphs for the

2236 14 samples studied from the Perseus-3A well. The numbers refer to counted

2237 specimens. Material observed outside the counts is indicated by an 'X'. Three dots

2238 (...) indicate that the form is absent. The seven right hand columns depict the total

2239 numbers of dinoflagellate cysts, pollen and spores and percentages.

2240

Table 5. Quantitative data on pollen, spores and miscellaneous palynomorphs for the

2242 29 samples studied from the Sunrise-2 well. The numbers refer to counted specimens.

2243 Material observed outside the counts is indicated by an 'X'. Three dots (...) indicate

that the form is absent. The seven right hand columns depict the total numbers of

2245 dinoflagellate cysts, pollen and spores and percentages.

2246

Table 6. Quantitative data on pollen, spores and miscellaneous palynomorphs for the2248 21 samples studied from the Sunset West-1 well. The numbers refer to counted

specimens. Material observed outside the counts is indicated by an 'X'. Three dots

2250 (...) indicate that the form is absent. The seven right hand columns depict the total

numbers of dinoflagellate cysts, pollen and spores and percentages.

- 2252
- 2253

2254 APPENDIX 5: REGISTER OF FIGURED SPECIMENS

2255

All dinoflagellate cyst specimens figured herein are listed with essential details. These specimens are curated in the Commonwealth Palaeontological

2258 Collection (CPC) of Geoscience Australia, Canberra, ACT, Australia. The

dinoflagellate cyst genera and species are listed alphabetically. The locations of the

2260 specimens on the slides are provided as 'England-Finder' (EF) co-ordinates.

2261

2262 [Appendix 5 is attached as an excel spreadsheet]

2263

2264 FIGURE CAPTIONS

Fig. 1. The North West Shelf of Australia illustrating the locations and extents of the
Northern Carnarvon, Roebuck, Offshore Canning, Browse and Bonaparte basins
(collectively the Westralian Superbasin), and the locations of the Perseus-3A, Sunrise2 and Sunset West-1 wells.

2270

Fig. 2. A comparison of the chronostratigraphical position of the *Wanaea verrucosa* dinoflagellate cyst zone and equivalent zones in successive zonation schemes. The shaded areas represent the *Wanaea verrucosa* Zone and subzones, or the equivalent portion of the *Caddasphaera halosa* Zone. The diagonal hatched area indicates a gap in the dinoflagellate cyst zonation.

2276

Fig. 3. Lithological and gamma ray logs of the successions studied herein from the Perseus-3A, Sunset West-1 and Sunrise-2 wells (from west to east). The dinoflagellate cyst zones follow Helby et al. (2004) and Partridge (2006), and the subzones are as described herein.

2281

2282 Fig. 4. The stratigraphical distribution of selected dinoflagellate cysts throughout the

2283 *Wanaea verrucosa* Zone from the two Bonaparte Basin wells (Sunrise-2 and Sunset

West-1) studied herein, depicted from the data compiled from Tables 2-3 of

Appendix 4. The dashed, thin and thick lines indicate that the taxa are rare (i.e. only

2286 present outside the count), consistently present or abundant respectively.

2287 Valvaeodinium spinosum, Endoscrinium kempiae and Wanaea verrucosa are in bold

- font because they are the principal index taxa for the *Wanaea verrucosa* Zone and its constituent subzones.
- 2290

2291

2292 Plate I. Selected dinoflagellate cyst taxa from the *Wanaea verrucosa* Zone of the

2293 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 μm.

2294

2295 1-16. Meiourogonyaulax straussii sp. nov. 1-2, paratype, dorsoventral view, high and

2296 median foci, respectively. 3-4, oblique view, median and high foci, respectively. 5-6,

holotype, dorsoventral view, low and high foci, respectively. 7-8, dorsoventral view,

low and high foci, respectively. 9-10, paratype, dorsoventral view, high and low foci,

respectively. 11-12, ventral view, high and median foci, respectively. 13-14, paratype,

ventral view, high and low foci, respectively. 15-16, dorsoventral view, high and lowfoci, respectively.

2302

2303

2304 Plate II. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the

- 2305 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 μm.
- 2306

2307 1-2. *Meiourogonyaulax* sp. A. 1, dorsoventral view, high focus. 2, dorsoventral view,
2308 high focus.

2309 3. *Escharisphaeridia* sp. A, dorsoventral view, high focus.

2310 4. *Escharisphaeridia* sp. B, dorsoventral view, high focus.

2311 5-8. *Meiourogonyaulax* sp. B. 5, dorsoventral view, high focus. 6. dorsoventral view,

2312 median focus. 7. dorsoventral view, high focus. 8. dorsoventral view, high and median

2313 foci combined.

2314 9-12. *Meiourogonyaulax* sp. C. 9, dorsoventral view, high focus. 10, dorsoventral

view, high focus. 11, dorsoventral view, high focus. 12, dorsoventral view, highfocus.

2317 13-16. Kallosphaeridium hypornatum Prauss 1989. 13, ventral view, high focus. 14.

dorsoventral view, low and median foci combined. 15, dorsoventral view, high focus.

2319 16, dorsoventral view, high and median foci combined.

2320

2321

2322 Plate III. Selected dinoflagellate cyst taxa from the *Wanaea verrucosa* Zone of the

2323 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 μm.

2324

2325 1-2, 4-5, 7-8. Wanaea verrucosa Riding & Helby 2001. 1, high/median focus. 2, high

focus. 4, high and median foci combined. 5, median focus. 7, high focus. 8, high focus.

2328 3. *Wanaea enoda* Riding & Helby 2001, high focus.

2329 6, 9. *Wanaea lacuna* Riding & Helby 2001. 6, median focus. 9, median focus.

2330

2331

2332 Plate IV. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the

2333 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 µm.

2334 2335 1-12. ?Bradleyella adela (Fenton et al. 1980) Woollam 1983. 1, dorsoventral view, 2336 median focus. 2, dorsal view, high focus. 3, dorsal view, high focus. 4, ventral view, 2337 high focus. 5, lateral view, high focus. 6, dorsal view, high focus. 7, dorsoventral 2338 view, median focus. 8, dorsoventral view, median focus. 9, dorsal view, high focus. 2339 10, dorsal view, median focus. 11, lateral view, median focus. 12, dorsoventral view, 2340 median focus. 2341 13-15. Ctenidodinium sp. A. 1, dorsoventral view, low focus. 2, dorsoventral view, 2342 high focus. 3, oblique view, high focus. 2343 2344 2345 Plate V. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the 2346 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 µm. 2347 1-3, 5-6. Ctenidodinium sp. B. 1-2, hypocyst, lateral view, median and low foci, 2348 2349 respectively. 3, lateral view, high and median foci combined. 5, dorsal view, high 2350 focus. 6 lateral view, median focus. 2351 4. Ctenidodinium sp., hypocyst, dorsal view, high focus. 2352 7-9. Ctenidodinium sp. C. 7, ventral view, median focus. 8, lateral view, median 2353 focus. 9, lateral view, median focus. 2354 2355 2356 Plate VI. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the 2357 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 µm. 2358 2359 1-2, 4-6. Dissiliodinium sp. A. 1, dorsal view, median focus. 2, ventral view, high 2360 focus. 4, lateral view, high focus. 5, dorsal view, high focus. 6, ventral view, high and 2361 median foci combined. 2362 3. Dissiliodinium sp., dorsal view, median focus. 2363 7-10. Durotrigia spp. 7, dorsal view, median focus. 8-9, ventral view, high and low 2364 foci respectively. 10, dorsal view, high focus. 2365 11-12. ?Durotrigia sp., ventral view, low and high foci, respectively. 2366

- 2368 Plate VII. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the
- 2369 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 µm. 2370
- 2371 1-2. ?Rhynchodiniopsis spp. 1, polar view, median focus. 2. polar view, high and 2372 median foci combined.
- 2373 3. Leptodinium? ancoralium Mantle 2005, lateral view, high and median foci 2374
- combined.
- 2375 4-5. Rhynchodiniopsis spp. 4, lateral view, median focus. 5, dorsoventral view, high 2376 and median foci combined.
- 2377 6. Leptodinium sp., ventral view, high focus.
- 2378 7, 9. Endoscrinium luridum (Deflandre 1938) Gocht 1970. 7, ventral view, high focus.
- 2379 9, dorsal view, high focus.
- 2380 8. Endoscrinium sp. cf. E. luridum (Deflandre 1938) Gocht 1970, lateral view, high 2381 focus.
- 2382 10. Endoscrinium kempiae (Stover & Helby 1987) Lentin & Williams 1989, ventral 2383 view, high, median, and low foci combined.
- 2384 11. Aldorfia sp., ventral view, high focus.
- 2385 12. Acanthaulax crispa (Wetzel 1967) Woollam & Riding 1983, ventral view, high
- 2386 and median foci combined.
- 2387
- 2388
- 2389 Plate VIII. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the
- 2390 Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 µm.
- 2391
- 2392 1. Fostericysta scarffei (Tykoezinski et al. 2001) comb. nov., ventral view, high focus.
- 2393 2-5. Jansonia spp. 2, dorsal view, high focus. 3, ventral view, high focus. 4, dorsal
- 2394 view, high focus. 5, ventral view, high focus.
- 2395 6-12. Valvaeodinium spinosum (Fenton et al. 1980) Below 1987. 6, dorsal view, high
- 2396 focus. 7, dorsal view, median focus. 8, lateral view, high and median foci combined.
- 2397 9, dorsal/lateral, median focus. 10, lateral view, median focus. 11-12, lateral view,
- 2398 median and high foci respectively.
- 2399 13-15. Valvaeodinium vermicylindratum Below 1987. 13-14, ventral view, high and
- 2400 median foci, respectively. 15, dorsal view, high and median foci combined.

2401	16-25. Valvaeodinium cookii sp. nov. 16, lateral view, high and median foci
2402	combined. 17. dorsal-lateral view, high focus. 18, paratype, dorsal view, high focus.
2403	19, lateral view, high and median foci combined. 20, dorsal view, high focus. 21,
2404	ventral view, low focus. 22, dorsal view, high and median foci combined. 23,
2405	paratype, dorsal view, median focus. 24, dorsal view, high and median foci combined.
2406	25. holotype, ventral view, median focus.
2407	
2408	
2409	Plate IX. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the
2410	Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 μ m.
2411	
2412	1-3. ?Egmontodinium sp. A. 1, median focus. 2, median focus. 3, median focus.
2413	4. Ternia balmei Helby & Stover 1987, anteroventral view, median focus.
2414	5-7, 9, 13. Pareodinia spp. 5, dorsal view, high focus. 6, dorsal view, median focus. 7,
2415	dorsolateral view, median focus. 9, lateral view, median focus. 13, ventral view, high
2416	focus.
2417	8. Pareodinia halosa (Filatoff 1975) Prauss 1989 emend. Prauss 1989, median focus.
2418	10-12. Evansia sp. A. 10, dorsoventral view, high and low foci combined. 11, dorsal
2419	view, high focus. 12, lateral view, median focus.
2420	14-16. Pareodinia sp. A. 14, dorsoventral view, median focus. 15, lateral view,
2421	median focus. 16, dorsoventral view, high and low foci combined.
2422	
2423	
2424	Plate X. Selected dinoflagellate cyst taxa from the Wanaea verrucosa Zone of the
2425	Perseus-3A, Sunrise-2 and Sunset West-1 wells. The scale bars represent 10 μ m.
2426	
2427	1-4, 6-10. Phallocysta granosa Riding & Helby 2001. 1-2, low and high foci,
2428	respectively. 3, median focus. 4, median focus. 6, high focus. 7, dorsal view, median
2429	focus. 8, median focus. 9, median focus. 10, ventral view, low focus.
2430	5. Phallocysta sp., high focus.
2431	11-15. Mancodinium semitabulatum subsp. semitabulatum (Morgenroth 1970)
2432	Fensome et al. 1993. 11-12, ventral view, high and low foci, respectively. 13, ventral
2433	view, high focus. 14-15, ventral view, low and high foci, respectively.

- 2434 16-18. Nannoceratopsis deflandrei Evitt 1961 subsp. deflandrei (autonym). 16, right
- 2435 lateral view, high focus. 17, right lateral view, median focus. 18, right lateral view,
- 2436 median view.
- 2437 19. *Nannoceratopsis* spp., right lateral view, median focus.
- 2438 20. Nannoceratopsis spiculata Stover 1966, right lateral view, median focus.
- 2439 21-23. Nannoceratopsis deflandrei Evitt 1961 subsp. senex (van Helden 1977) Ilyina
- in Ilyina et al. 1994. 21, left lateral view, high focus. 22, right lateral view, high focus.
- 2441 23, right lateral view, high focus.