nerc.ac.uk

Complex interactions between the wind and ballistic seed dispersal in Impatiens glandulifera (Royle)

Chapman, Daniel S.; Gray, Alan. 2012 Complex interactions between the wind and ballistic seed dispersal in Impatiens glandulifera (Royle). Journal of Ecology, 100 (4). 874-883. 10.1111/j.1365-2745.2012.01977.x

Before downloading, please read NORA policies.
[img]
Preview
Text
N018562PP.pdf - Accepted Version

Download (958kB) | Preview

Abstract/Summary

1. A mechanistic understanding of seed dispersal is important for understanding and predicting dispersal patterns and spatial population dynamics. We analysed a mechanistic model for the ballistic dispersal of the widespread invasive species Impatiens glandulifera. The model deterministically simulates individual seed trajectories, including the interaction between seeds and atmospheric winds. It is fully specified using independently measured plant traits and wind velocities. 2. To parameterise the model we conducted field surveys and analysed high speed video footage of seed release. We explicitly incorporated intraspecific variation in key biological parameters (seed size and mass, release height, velocity and direction), as well as variation in wind velocities. This parameter variation introduces process-based stochasticity to the deterministic model, allowing the derivation of population-level dispersal kernels. 3. Analysis of the parameterised model showed complex interactions between plant dispersal parameters and wind conditions. For example, the optimal seed launch angle in still wind is 32° above horizontal, but this rises in stronger tailwinds. In a headwind, it can be optimal to either launch the seed straight upwards or slightly below the horizontal. Headwinds also blow projected seeds back towards the source, initially decreasing but then increasing net dispersal distance, which can reverse the positive effect of seed release height on dispersal distance. 4. To validate the model we performed a field experiment in which seeds were trapped up to 6 m from potted I. glandulifera plants. Seed dispersal was biased in the direction of the prevailing wind, which was only reproduced by simulations of the model that included the wind-modification of ballistic trajectories. The correspondence between the model and the data was good (R2 = 0.882), but improved if seed release was biased to occur in more windy conditions (R2 = 0.945) as might occur through mechanical disturbance to the seed pods. 5. Synthesis: Our validated model provides a functional understanding of seed dispersal in I. glandulifera. The model reveals surprisingly complex interactions between the ballistic dispersal mechanism and the wind and shows how population-level dispersal patterns emerge from intraspecific variation in dispersal traits.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1111/j.1365-2745.2012.01977.x
Programmes: CEH Topics & Objectives 2009 - 2012 > Biodiversity > BD Topic 1 - Observations, Patterns, and Predictions for Biodiversity > BD - 1.4 - Quantify and model interactions to determine impacts ...
CEH Topics & Objectives 2009 - 2012 > Biodiversity > BD Topic 2 - Ecological Processes in the Environment > BD - 2.2 - Quantify the impact of invasive species, pathogens ...
CEH Sections: Watt
ISSN: 0022-0477
Additional Keywords: dispersal, invasion ecology, long-distance seed dispersal, migration, propagule pressure, seed dispersal kernel, wind dispersal
NORA Subject Terms: Botany
Ecology and Environment
Date made live: 29 Jun 2012 16:00
URI: http://nora.nerc.ac.uk/id/eprint/18562

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...