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Quantitative projections of future climate are in increasing demand from the scientific 13	
  
community, policy makers and other stakeholders. Climate models of varying complexity are 14	
  
used to make projections but approximations and inadequacies or “errors” in models mean that 15	
  
those projections are uncertain, sometimes exploring a very wide range of possible futures. 16	
  
Techniques to quantify the uncertainties are described here in terms of a common framework 17	
  
whereby models are used to explore relationships between past climate and climate change 18	
  
and future projections. Model parameters may be varied to produce a range of different 19	
  
simulations of past climate that are then compared with observations using “metrics”.  If the 20	
  
model parameters can be constrained to a tighter range as a result of observational 21	
  
comparisons, projections can also be constrained to a tighter range. The strengths and 22	
  
weakness of different implementations are discussed. 23	
  
 24	
  
Projections of climate change are made using climate models forced by scenarios of increasing 25	
  
greenhouse gases and other factors which impact on the energy balance of the climate system. 26	
  
The term ‘projection’ is used to imply a conditional dependence of a climate prediction on 27	
  
emission scenario, as such scenarios are derived from studies which consider multiple socio-28	
  
economic factors but do not consider the relative likelihood of different pathways.  Climate 29	
  
science in general is starting to become more quantitative, for example in attributing changes in 30	
  
the risk of certain weather or climate events1 and there is a desire to be more quantitative about 31	
  
projections, particularly when those projections feed into assessments of the impacts of climate 32	
  
change2. Recent national assessments of climate change have moved from being qualitative to 33	
  
being much more quantitative, with dedicated web sites serving data to stakeholders3 to inform 34	
  
decision making. Projections should be made on the basis of robust science but should also 35	
  
account for the uncertainties that arise because of incomplete understanding of climate change 36	
  
and because of limitations in models and observations. 37	
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Climate models are approximations – albeit often highly informed and sophisticated – of the real 38	
  
climate system and different models produce different projections of future climate change. By 39	
  
quantifying the uncertainty in projections, we should gain a more in-depth understanding of 40	
  
climate models and of the climate system and a better appreciation of the limitations of current 41	
  
understanding. Such an appreciation is required to also show where quantitative information 42	
  
cannot be provided and where science and policy should proceed more qualitatively.  43	
  
Uncertainty quantification also provides a benchmark so that we can measure progress and 44	
  
hopefully reduce uncertainties.  45	
  
 46	
  
Much effort has been expended by climate modeling groups worldwide to coordinate 47	
  
simulations with the most complex climate models, to collect the outputs and make them easily 48	
  
available to the scientific community4. The third incarnation of the Coupled Model 49	
  
Intercomparison Projection (CMIP3) ‘multi-model ensemble’ or MME has been widely 50	
  
interrogated, resulting in an unprecedented level of scrutiny of complex climate models and their 51	
  
projections. The CMIP5 database of new simulations is now being populated. The quantitative 52	
  
interpretation of projections from a MME is extremely challenging. Reviews5,6 highlight several 53	
  
techniques that have been proposed which must deal with the generic problem of trying to 54	
  
understand what a MME represents in terms of a statistical sample. Some studies have 55	
  
characterized the MME using techniques borrowed from weather forecasting in terms of the 56	
  
‘reliability’ of present-day simulations with respect to observations7,8 – the hypothesis that the 57	
  
observations can simply be regarded as one member of the MME without any special status – 58	
  
but those types of tests cannot be applied to future projections to assess their reliability. Others 59	
  
have sought to address the issue of shared approximations in model formulation and exchange 60	
  
of information between modeling groups9. 61	
  
 62	
  
Because of the difficulty in interpreting ad hoc collections of climate model projections, the 63	
  
climate change literature shows a range of different approaches to quantifying uncertainty in 64	
  
projections of future change. Some use simplified climate models, some use complex models 65	
  
built from ‘first principles’, some use multiple observational sources to evaluate those models, 66	
  
others take simple trends or metrics of model skill, some rely on basic understanding of the 67	
  
climate system, others use, what may appear to be, complex statistical techniques. Comparison 68	
  
of the different methods – their strengths, weaknesses and critical assumptions – is difficult 69	
  
because of their seemingly different formulations. 70	
  
 71	
  
In this perspective, some of the different methods that have been used to make quantitative 72	
  
climate projections (including their uncertainties) are described and their assumptions, strengths 73	
  
and weaknesses are discussed. The work is inspired by some of the research that was 74	
  
discussed and undertaken during the 4-month Isaac Newton Programme on Mathematical and 75	
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Statistical Approaches to Climate Modelling and Prediction. Clearly a full explanation of the 76	
  
different methods would require considerable detail so the methods are only discussed at a 77	
  
basic level. The reader is encouraged to look at the original papers to gain further insight. 78	
  
 79	
  
Climate Models, Errors and Uncertainties 80	
  
 81	
  
Let us assume that any climate variable we are interested in can be described by a set of 82	
  
mathematical functions or model. Climate models may be simplified or complex, may be derived 83	
  
from physical principles or empirical relationships, or may contain elements of both. Examples 84	
  
range from simplified energy balance models through to complex climate or Earth System 85	
  
Models (ESMs). The climate variable might be the equilibrium climate sensitivity (the amount of 86	
  
global mean temperature change for a doubling of atmospheric CO2), the amount of Arctic sea 87	
  
ice or something more complex like the amplitude and frequency of El Niño events. The model 88	
  
behaviour is controlled by what may be termed “internal” parameters (see the supplementary 89	
  
information) and by “external” forcing/boundary conditions of the climate system e.g. changes in 90	
  
concentrations of greenhouse gases, volcanic eruptions, orbital variations etc. The model can 91	
  
be used to simulate the past and the future by specifying different external forcings/boundary 92	
  
conditions and the behaviour of the model can be changed by varying the input parameters. In 93	
  
addition there are observations of past climate. 94	
  
 95	
  
In general, simplified climate models only produce output in terms of simple or aggregate 96	
  
variables such as global mean temperatures, and have parameters that may similarly aggregate 97	
  
many physical processes. More complexity is required in the climate model to disaggregate in 98	
  
space and time and to simulate more complex phenomena such as precipitation or sea-ice. For 99	
  
simulations and projections of the smaller-scale climate variables that are required to address 100	
  
many policy questions, and for variables related to e.g. extreme events, requires the most 101	
  
complex ESMs running at high resolution.  102	
  
 103	
  
Even the most complex climate models are approximations to the real climate system. 104	
  
Inadequacies or even ‘errors’ in models lead to inadequacies or errors in projections. Some 105	
  
inadequacies are inherent in the specification of the model (e.g. processes that are judged to be 106	
  
of second-order importance that are deliberately not included); others arise because limitations 107	
  
in computing power prevent the equations from being solved on a fine enough numerical grid, 108	
  
so sub-grid-scale processes must be parameterised. Complex models may simulate natural 109	
  
climate variability such as El Niño events (with varying degrees of success) but more simplified 110	
  
models may only simulate the forced response to a particular agent. For any climate projection 111	
  
there is both a systematic (epistemic) component of uncertainty and a random (aleatoric) 112	
  
component. The approximate partitioning of the range of spread of models between systematic 113	
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(response and forcing) and random sources of uncertainty will depend on the variable, the 114	
  
spatial scale and the projection horizon of interest 10,11. There is some potential for confusion as 115	
  
some studies may seek to quantify only the spread in the forced response of the climate system 116	
  
whereas some may seek to quantify both systematic and random components. 117	
  
 118	
  
Quantifying Uncertainty in Projections 119	
  
 120	
  
Ensembles of simulations of past and current climate, driven by estimates of past radiative 121	
  
forcing/boundary conditions, may be generated at different internal input parameter values, 122	
  
precise values of which are typically not known (figure 1).  Observations are then used to 123	
  
produce a metric of the model skill in simulating selected aspects of past climate. The metric 124	
  
compares the model output with observed climate fields and may involve many different climate 125	
  
variables, trends and fields that are related to different physical processes (see supplementary 126	
  
information). The more realistic regions of parameter space are accepted or up-weighted, based 127	
  
on heuristic or more formal criteria, as those which are likely to produce the most realistic future 128	
  
climate projections. Less realistic regions are rejected or down-weighted. The model is 129	
  
calibrated by determining suitable values for the internal parameters that produce simulations of 130	
  
past climate consistent with the observations and their uncertainties.  131	
  
 132	
  
Having calibrated the model, the parameters and/or their weights can be used to run an 133	
  
ensemble of simulations of future climate. The uncertainties in the projections are quantified in 134	
  
terms of probabilities. We say that both the input parameters and the projections are 135	
  
constrained by the observations. The climate model acts as a physically-based device to pass 136	
  
from historical or past climate and climate change to future projections. We expect that 137	
  
observations are not sufficient to constrain the parameters to single values so that multiple 138	
  
parameter combinations are consistent with the observations. The resulting projections will have 139	
  
uncertainties because of this. 140	
  
 141	
  
The basic approach to producing projections with uncertainties is the same regardless of the 142	
  
complexity of the model and the climate variable of interest. Nevertheless, the implementation is 143	
  
affected by both factors. In general, the examples presented can all be couched in terms of a 144	
  
Bayesian approach with different assumptions and different techniques used in the 145	
  
implementation of the Bayes theorem. They are not presented in this way because that is not 146	
  
the way that the climate projection literature has evolved. Indeed, there has been a healthy 147	
  
debate within the community about the merits of such an approach and its implementation. 148	
  
What follows are examples of approaches drawn from different regions of the model complexity-149	
  
variable complexity space.  150	
  
 151	
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Quantifying the Global Sensitivity of the Climate System 152	
  
 153	
  
The climate sensitivity is a key measure of the global mean temperature response of a climate 154	
  
model. The equilibrium climate sensitivity may be expressed as the ratio of the radiative forcing 155	
  
and the climate feedback parameter. The time-dependent version of the model/formula has 156	
  
been exploited to compute the effective climate feedback parameter from the historical trend in 157	
  
ocean heat uptake (interchangeable with the top-of-atmosphere flux imbalance), the historical 158	
  
radiative forcing and the historical temperature change12. The study uses independent 159	
  
observations to derive distributions representing the uncertainty in global mean temperature 160	
  
trends and heat uptake. A distribution for radiative forcing is derived similarly, using calculations 161	
  
based on observed concentrations of greenhouse gases, aerosols, ozone and natural factors 162	
  
such as solar input and volcanic stratospheric aerosols. The internal model parameters are then 163	
  
sampled from these distributions and the model is evaluated to give an ensemble of climate 164	
  
sensitivity estimates. This is mathematically equivalent to varying the model parameters widely 165	
  
and then weighting the parameters using their observed and calculated estimates (with some 166	
  
statistical assumptions). Thus the distribution of the climate sensitivity is constrained by the 167	
  
observations (figure 2). 168	
  
 169	
  
The main strength of the approach is in its simplicity in exploiting the global mean energy 170	
  
balance to produce a distribution of a key climate parameter, the climate sensitivity. Because of 171	
  
this simplicity it is relatively easy to perform sensitivity tests to see which of the model 172	
  
parameters is most influential in determining the relatively wide spread found in the study. This 173	
  
turns out to be the estimate of the radiative forcing: if, for example, the standard deviation of the 174	
  
forcing distribution could be halved then the 5th percentile of the climate sensitivity distribution 175	
  
would increase from 1.6ºC to 2.5ºC.  176	
  
 177	
  
Unfortunately the method produces a relatively weak constraint on the distribution, particularly 178	
  
on the upper tail. This is because the climate sensitivity estimated in this way involves a ratio of 179	
  
temperatures to fluxes and the denominator can get close to zero. (In fact, the distribution of the 180	
  
denominator in the equation for climate sensitivity admits negative values, leading to unrealistic 181	
  
negative climate sensitivities and a singularity which means that technically the distributions are 182	
  
not PDFs – a similar problem is found in13 and is discussed in14-18). A further obvious drawback 183	
  
is that the method is only good for producing estimates of the global climate sensitivity (and 184	
  
feedback parameter) and such distributions can be sensitive to prior assumptions for the 185	
  
distributions of parameters which has been the subject of debate in the literature16,19. 186	
  
 187	
  
Different estimates of the probability density functions (PDFs) of the climate sensitivity have 188	
  
also been published20 and other studies have used reconstructions of climate from before the 189	
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observational record21,22. A review of palaeoclimate estimates has also been performed23. The 190	
  
climate sensitivity is one of the most studied and quantified climate projection-related variables. 191	
  
This is partly because model simulations suggest that it can be used to scale regional patterns 192	
  
of change24 and partly because of a historical attachment of climate modelers to the doubled 193	
  
CO2 experiment performed with a complex atmosphere model coupled to a thermodynamic or 194	
  
’slab’ ocean. This attachment may diminish as so-called slab-models fall into disuse because of 195	
  
technical issues with their implementation. 196	
  
 197	
  
Large-scale Trends from Attributable Warming 198	
  
 199	
  
The ASK 25,26 method exploits the possibility, demonstrated using energy balance climate 200	
  
models, that a bias in the temperature change in the future related to a particular forcing agent 201	
  
may be empirically related to the bias in the past change associated with that forcing agent, by 202	
  
a scaling factor (figure 3). The method computes a correction factor or recalibration of simulated 203	
  
past changes that can be used to scale future projections assuming that the empirical 204	
  
relationship continues to hold. The uncertain elements of the approach are the scaling factor 205	
  
and the component of past change related to a forcing agent. In the global mean temperature 206	
  
case, the scaling factor may be relatively well constrained (figure 3). The difficult parameter to 207	
  
assess is the past change that can be associated with a particular anthropogenic component 208	
  
such as CO2, as represented by the histogram on the x-axis in fig. 3.  209	
  
 210	
  
The observed record of global and large-scale temperature change is made of components 211	
  
forced by anthropogenic factors such as greenhouse gas and aerosols, external factors such as 212	
  
solar variability and volcanic eruptions and internally generated natural variability. Detection and 213	
  
attribution techniques seek to estimate these individual components of trends from the observed 214	
  
record, using complex climate model simulations in combination with regression techniques. 215	
  
Uncertainties arise because the responses to some forcing agents may correlate through time 216	
  
(e.g. concurrent rises in greenhouse gases and aerosols) making it hard to estimate the 217	
  
regression coefficients, because of uncertainties in reconstructing past forcing agents and 218	
  
because of potential errors in the complex model response to the forcing. 219	
  
 220	
  
The ASK technique can therefore be thought of as generating an ensemble of future projections 221	
  
by sampling a large number of possible past trends that are attributable to a particular forcing 222	
  
agent. The parameters of the relationship between the past and the future and the attributable 223	
  
warming are constrained by observations and complex model studies and thus the projections 224	
  
are also constrained by those observations. By specifying the components of the radiative 225	
  
forcing separately, it is possible to make projections for combinations of radiative forcing that 226	
  
may occur in the future but that did not occur in the past.  227	
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 228	
  
Initial studies focussed on global mean temperatures27 but have been extended to constrain 229	
  
continental-scale temperature changes25. The strengths of the approach are in the simplicity of 230	
  
the idea of extrapolating uncertainties in past trends. The complexity arises in the need to 231	
  
separate the components of the observed trends into those associated with greenhouse gases, 232	
  
aerosols, natural forcing factors and internal climate variability. For global mean projections, this 233	
  
separation is the largest source of uncertainty26. For regional quantities, relationships between 234	
  
past and future trends may be weak and for some variables and for smaller-scale regions, such 235	
  
relationships may not be evident in the complex models used in the detection and attribution 236	
  
step.  237	
  
 238	
  
In the example highlighted here, a simple energy balance model is used to obtain the 239	
  
relationship between past warming and future change, hence it is tempting to conclude that the 240	
  
projections only quantify the uncertainty in the forced response. However, the estimate of the 241	
  
warming attributable to greenhouse gases is contaminated with natural variability (as we only 242	
  
have one realization of the real-world) so some account is taken of the random component. 243	
  
Limitations on computer resource also mean that results are often obtained from initial-condition 244	
  
ensembles from a small number of different climate models. Hence there is a potential for 245	
  
modeling uncertainties to be undersampled.  246	
  
 247	
  
Emergent Constraints and Process-Based Metrics 248	
  
 249	
  
Data archives from MMEs can also be used to link errors in simulating future and past change, 250	
  
in a similar spirit to the ASK technique. These data archives can be considered as representing 251	
  
our physical understanding of the climate system, as derived from climate models themselves. 252	
  
For some variables, simple relationships have been uncovered between future projection 253	
  
variables and past observed trends or variability. Future changes in September sea-ice extent in 254	
  
the Arctic have an approximately linear relationship with the past trends in the CMIP3 models28 255	
  
(figure 4). It is possible to empirically determine future trends using a simple scaling of the past 256	
  
trends, with some spread due to model errors and natural variability. The situation is similar to 257	
  
that seen in figure 3 except that the relationship is derived from complex climate model 258	
  
simulations rather than a simple energy balance model. By constraining the parameters of the 259	
  
linear relationship using the observations, it is possible to produce a calibrated projection of 260	
  
future September sea ice trends. Note that a different ensemble may produce a different 261	
  
relationship or a wider spread, but at least the sensitivity of the projections can be tested by 262	
  
varying such assumptions. 263	
  
 264	
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This Arctic-sea-ice study provides an example of what we might call an emergent constraint i.e. 265	
  
a relationship between past trends and future trends, developed empirically from climate model 266	
  
output used to make projections of the future. If the empirical relationship can be understood on 267	
  
simple physical grounds, belief in it is strengthened. It provides justification for attaching more 268	
  
credibility to models that match the observed trend well over the recent period, and hence for 269	
  
treating the difference between modeled and observed trends as a metric for the purposes of 270	
  
weighting or correcting models. Such a metric might be considered to be an example of a 271	
  
process-based metric i.e. a metric that is used to evaluate a process (the sensitivity of sea ice 272	
  
change) rather than simply a metric of how the model compares with reality in terms of the 273	
  
spatial distribution of sea-ice in the time average. However, a precise definition of what is 274	
  
process-based and what is not has not been provided in the literature and is an area that needs 275	
  
to be developed. 276	
  
 277	
  
The main strength of the approach is in the simplicity and in the physical transparency. The 278	
  
main weakness is that it may not work in such a transparent way for all climate projection 279	
  
variables – although other relationships have been found29. Also, care must be taken to test the 280	
  
validity of the relationship. In the case of September sea ice, as conditions become ice free in 281	
  
the simulations, the trends become non-linear and the use of a simple linear regression in figure 282	
  
4 would not be valid. 283	
  
 284	
  
Bayesian Projections with Perturbed Physics Ensembles 285	
  
 286	
  
Emergent constraints have only been found for a few climate projection variables and there is a 287	
  
further issue that projections of different variables produced in this way may be inconsistent with 288	
  
each other. Such issues have led to the development of the so-called perturbed-physics 289	
  
approach 30-34. Uncertain parameters in a single climate model may be perturbed to produce 290	
  
alternative simulations of past and future climate and climate change (as in the case of the 291	
  
simplified climate model approaches described above).  292	
  
 293	
  
In the perturbed physics approach, the input parameters are varied and the model is run using 294	
  
past and future radiative forcing. As in the general algorithm (figure 1) we can imagine a point in 295	
  
the parameter space that maps to a point in the past-climate-space that is consistent with the 296	
  
observations as measured by some metric i.e. is within the observational error bound. A 297	
  
simulation from a second point of parameter space may be less consistent with the 298	
  
observations. When we look at the future projections made using the model run from the first 299	
  
point, we may assume that these are more likely that the projections made from the second 300	
  
point. By running many ensemble members with the model covering the parameter space, it is 301	
  
possible to build up a weighted-distribution of future projections where the weights relate to the 302	
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metric35. A key step in such analyses is to decide what observations to use: the choice is often 303	
  
determined by the design of the perturbed physics ensemble. In much of the work that has been 304	
  
conducted, a version of the atmosphere model coupled to a simple slab ocean has been used, 305	
  
restricting the observations to mainly time-averaged climatological fields36,37. 306	
  
 307	
  
In practice, running enough simulations to adequately sample a complex model parameter 308	
  
space and, moreover, to test the sensitivity of the projections to different assumptions about the 309	
  
distributions of those parameters, is computationally challenging. The burden can be eased 310	
  
using emulators, which are statistical models of ensembles that map input parameters to 311	
  
outputs, so enabling larger pseudo-ensemble calculations to be performed (albeit with loss of 312	
  
numerical accuracy)38.  To combine the climate model outputs with the observations and 313	
  
emulators is a difficult statistical problem that is most easily handled in a Bayesian framework35. 314	
  
 315	
  
A further refinement is to introduce a term to represent irreducible or structural errors in climate 316	
  
model. If we imagine a point in parameter space at which the model produces its best 317	
  
simulation of both past and future climate, then, unless the model is perfect, there will still be a 318	
  
mismatch between model outputs and reality. Specifying the structure of this mismatch remains 319	
  
one of the most challenging problems in climate projection. One possibility is to take the 320	
  
discrepancy from the multi model ensemble as a lower bound on this ‘structural error’37. 321	
  
 322	
  
The strengths of the perturbed-physics/Bayesian approach are that, in principle, many different 323	
  
observational constraints can be brought to bear on the projections, and projections of many 324	
  
complex climate variables (e.g. involving regional averages and extremes) may be 325	
  
produced39(figure 5). Projections of several quantities simultaneously (joint projections) are also 326	
  
possible where the complex climate model provides the physical link between changes in those 327	
  
different variables. The main weakness is that, in order to use the latest, most comprehensive of 328	
  
climate models, the implementation is expensive in terms of computing resources and requires 329	
  
a very high level of technical expertise. This makes it hard to understand in simple physical 330	
  
terms how the observations constrain the projections. 331	
  
 332	
  
Making Progress in Quantitative Projection 333	
  
 334	
  
Simplified climate models (including empirical models derived from complex model output) can 335	
  
be easily used with formal statistical approaches to quantify uncertainty in projections but can 336	
  
only produce limited output: thus limited observations may be used to constrain parameters, 337	
  
and projections can only be made in terms of limited climate variables. As models become more 338	
  
complex, simulations and projections of more complex variables may be made, widening both 339	
  
the possible observational data that may be used to constrain parameters and the range of 340	
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variables for which projections may be generated. But it becomes more expensive to produce 341	
  
ensembles and harder to implement and understand the projections. 342	
  
 343	
  
The use of metrics, skill measures, model ranking and even model weighting are starting to be 344	
  
more widely adopted in the climate model evaluation and projection literature. This is fine when 345	
  
such quantitative approaches are used as a guide to future model development or as a guide to 346	
  
the validity of some physical understanding derived from models, although care should be taken 347	
  
to fully understand why that metric is a useful measure. Where metrics are used in projections, 348	
  
it is not safe to assume that a weighted distribution of models is superior to an unweighted 349	
  
distribution without demonstrating that the metric does relate, in some physically plausible way, 350	
  
to the projection variable of interest, and without testing the underlying assumptions40.  351	
  
 352	
  
There is growing use in the community of terms such as process-based metric and ‘process-353	
  
based’ evaluation, yet it is not possible to find a formal definition of process-based in the 354	
  
literature. It could be argued that surface fluxes are the processes that determine the spatial 355	
  
variations in surface air temperature (SAT) change, so they should be used in a process-based 356	
  
metric of SAT changes. But clouds have a leading-order impact on surface radiation, so should 357	
  
cloud effects be defined as the process? It is unclear. Perhaps “process” implies rates-of-358	
  
change of one variable with respect to another – under climate change or under forced or free 359	
  
variations on shorter time scales29. Is the warming attributable to greenhouse gases process-360	
  
based? A better characterisation of the concept is required. 361	
  
 362	
  
The concept of the emergent constraint is appealing because of the clear physical 363	
  
interpretation. However the implementation may be challenging as we have yet to produce a 364	
  
generic mathematical algorithm or recipe that can be used in other cases in which all the 365	
  
assumptions are revealed and all sources of uncertainty are considered. Perhaps the approach 366	
  
might be extended to account for non-linearities or even assess the impact of inadequacies that 367	
  
are common to all models. It is recommended that work is undertaken on both the theoretical 368	
  
underpinning and numerical implementation of the approach, so that it can be applied more 369	
  
widely.  370	
  
 371	
  
If the behaviour of the complex models can be reproduced by fitting the parameters of a simple 372	
  
or intermediate models (physical or empirical) to the complex model output, then it is possible to 373	
  
use observations to constrain the smaller set of parameters from larger ensembles of the 374	
  
simple/intermediate model. We might consider this a form of “process-based emulation”, without 375	
  
being at all rigorous about the definition of such a term. Intermediate models exist for even quite 376	
  
complex phenomena such as the El Nino Southern Oscillation41,42. They have generally been 377	
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used to understand models and the real world but could also be applied to the projection 378	
  
problem. 379	
  
 380	
  
To conclude, it is possible to produce quantitative projections of climate change, combining 381	
  
models of varying complexity and observations, expressed in terms of probabilities that 382	
  
measure our current uncertainty in those projections. Of course, our knowledge, as embodied in 383	
  
models and observations, may improve in time and thus we might be able to reduce those 384	
  
uncertainties. However, the possibility that new models, new observations or new theoretical 385	
  
research might alter the current set of projections considerably cannot be ruled out. For 386	
  
example, new feedbacks may be discovered or resolution thresholds are crossed so that 387	
  
previously parameterised process are directly resolved in models. 388	
  
 389	
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Figure Captions 396	
  
 397	
  
Figure 1: A schematic representation of the general framework for producing projections of 398	
  
future climate. The climate model, M, produces output in terms of a climate variable, c, and is 399	
  
controlled by the model parameters, p, and the input forcing R. The model may be run with 400	
  
different parameter values p1, p2, … to produce simulations of historical climate ch, and 401	
  
projections of future climate, cf . The dark grey shaded area in the left represents the space of 402	
  
plausible input parameters of the model that we would consider before doing any simulations. 403	
  
The dark grey shaded areas on the right represent the spaces of past or historical simulated 404	
  
climate variables and future projections generated by running the model at that wide range of 405	
  
different input parameters. The simulations of historical climate may be compared with 406	
  
observations, o, using a metric, and taking into account observational errors. If one point in the 407	
  
climate model parameter space, p1, produces a better simulation of historical climate than 408	
  
another point p2, then the hope is that it will give a better (i.e. less error-prone) simulation of 409	
  
future climate. Thus we can contract the space of past or historical climate change produced by 410	
  
the model (light grey shading). Because there is a three-way mapping between this historical 411	
  
simulation space, the input parameters and the future projections, the parameter ranges are 412	
  
also constrained, as are the future projections, again represented by the light grey shading. 413	
  
 414	
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Figure 2: A PDF for the climate sensitivity obtained using a simple energy balance model 415	
  
approach12. The thick black PDF shows the curve from the original study. The thin black curve is 416	
  
the climate sensitivity PDF obtained if the standard deviation of the distribution of the radiative 417	
  
forcing input parameter is halved. 418	
  
 419	
  
Figure 3: (a) Global mean temperature anomalies produced using an energy balance model24,43 420	
  
forced by historical changes in well-mixed greenhouse gases and future increases based on the 421	
  
SRES A1B scenario. The different curves are generated by varying the feedback parameter 422	
  
(climate sensitivity) in the EBM. (b) Changes in global mean temperature at the year 2000 (x-423	
  
axis) vs changes in global mean temperature at 2050 obtained from the figure in the left panel 424	
  
showing the relationship between past changes and future temperature changes. The histogram 425	
  
on the x-axis represents an estimate of the 20th-century warming attributable to greenhouse 426	
  
gases44. The histogram on the y-axis uses the relationship between the past and the future to 427	
  
obtain a projection of future changes. 428	
  
 429	
  
Figure 4: The modelled trend in 1979-2007 September Arctic sea-ice extent (expressed as a 430	
  
percentage of the total – average of 1900-1979 – x-axis) vs the 2021-2040 trend in the same 431	
  
variable (y-axis) computed from the CMIP3 model simulations28 of historical climate change and 432	
  
future climate change under the SRES A1B scenario (solid dots) and from perturbed physics 433	
  
ensembles30 (open dots). The solid black diagonal line shows the line of best fit between the 434	
  
historical trends and the future extents. The best estimate of the observed trend in September 435	
  
sea ice extent is shown by the vertical dotted line. 436	
  
 437	
  
Figure 5: PDFs of 20-year average changes in Northern European surface air temperature (a) 438	
  
and precipitation (b) under the SRES A1B scenario derived using perturbed physics ensembles 439	
  
and a Bayesian statistical approach39. Changes are expressed as anomalies w.r.t. 1961-1990 440	
  
period. The different PDFs correspond to different future time periods from left to right; 2000-441	
  
2020, 2020-2040, 2040-2060 and 2080-2100.  442	
  
 443	
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