
The Cryosphere, 6, 1221–1229, 2012
www.the-cryosphere.net/6/1221/2012/
doi:10.5194/tc-6-1221-2012
© Author(s) 2012. CC Attribution 3.0 License.

The Cryosphere

Effects of nonlinear rheology, temperature and anisotropy on the
relationship between age and depth at ice divides

C. Mart ı́n and G. H. Gudmundsson

British Antarctic Survey, Natural Environment Research Council, Cambridge, UK

Correspondence to:C. Mart́ın (cama@bas.ac.uk)

Received: 1 June 2012 – Published in The Cryosphere Discuss.: 28 June 2012
Revised: 2 October 2012 – Accepted: 4 October 2012 – Published: 30 October 2012

Abstract. Ice flow in divide areas is strongly anisotropic.
The evolution of ice fabric, from the onset of divide flow
towards steady state with a fully developed fabric, has been
shown to profoundly affect both the stratigraphy and surface
topography of ice divides. Here, we investigate the effects
of ice flow on the age-versus-depth relationship at ice di-
vides by using a full Stokes thermomechanical model with
a non-linear anisotropic constitutive relation between stress
and strain rates. We compare our results with analytical ap-
proximations commonly employed in age–depth predictions,
such as the Dansgaard and Lliboutry approximations. We
show that these approximations systematically underestimate
the age of ice at fully developed divides by as much as one
order of magnitude. We also show that divides with fully de-
veloped fabric are ideal locations for ice-core extraction be-
cause ice under them can be up to one order of magnitude
older than ice at the same depth at the flanks. In addition,
these divides have a distinctive morphological structure that
allows them to be clearly identified from satellite imagery or
ground-penetrating radar data.

1 Introduction

Ice cores contain a record of Earth’s climate, and are used, for
example, to understand how recently observed changes in cli-
mate fit within a long history of natural climatic variability.
Ideally, an ice-core timeline is obtained by counting annual
accumulation cycles (annual layers) or seasonal variations in
its chemical constituents, but because of cumulative effects
of vertical compression and ice flow distortion these tech-
niques can often not be used in the lowermost sections of an
ice core. There ice flow modelling is sometimes the only op-

tion available to determine the age of the ice (e.g.Dansgaard
et al., 1982; Parrenin et al., 2007). Due to the complexities
in modelling flow at ice divides, one-dimensional analytical
approximations of ice flow, such asDansgaard and Johnsen
(1969) andLliboutry (1979), are often used to estimate the
age–depth profile at drilling sites.

The underlying difficulty in using flow models to deter-
mine the age of ice cores is the complex nature of ice flow.
The flow of ice is commonly described by a non-linear rhe-
ology known as the Glen flow law (Glen, 1955) where the
parameters are poorly constrained by data and are known to
be dependent on many factors such as ice impurities, temper-
ature and ice fabric (e.g.Paterson, 1994, ch. 5). For a non-
Newtonian fluid such as ice, the effective viscosity is a func-
tion of the deviatoric stress state. For ice divides this implies
that close to the bedrock, where deviatoric stresses tend to be
small, the ice will be harder to deform than in the surrounding
areas that are characterized by, in comparison, larger devia-
toric stresses. Beneath ice divides this non-linear effect gives
rise to the well-known Raymond bump (Raymond, 1983),
i.e. an anticline of the internal isochrones. The ice flow in
the divide is also known to depend on temperature (Hvid-
berg, 1996; Nereson and Waddington, 2002), basal sliding
(Pettit et al., 2003; Mart́ın et al., 2009b), and along-ridge
flow (Mart́ın et al., 2009b). Finally, polycrystalline ice un-
der deformation can develop a preferred crystal orientation
fabric and behave as a highly anisotropic material (e.g.Du-
val et al., 1983). Previous studies have shown that, indepen-
dently of the model used, anisotropy strongly affects the age
distribution around ice divides. The range of models used,
includes stationary models with fixed geometry and fabric
(e.g.Mangeney et al., 1996), models where fabric is not in-
duced by flow (e.g.Pettit et al., 2007, 2011), models that
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assume stationary geometry (e.g.Seddik et al., 2011), and
transient models with flow-induced anisotropy (e.g.Mart́ın
et al., 2009a).

In this paper we study ice flow in the proximity of an
ice divide and the age-versus-depth relationship. We use a
model that is an extension of the model described inMart́ın
et al.(2009a). The improvements in the model, described in
Sect.2, allow us to fully explore the effects of the model pa-
rameters on the fabric development, and the effects of tem-
perature on ice flow and fabric. The model includes a num-
ber of processes not fully accounted for in models com-
monly used to study age–depth profiles in ice cores. In par-
ticular, the model used here includes the effect of flow-
induced anisotropy on ice stratigraphy. As shown inMart́ın
et al. (2009a), flow-induced anisotropy has the potential to
profoundly affect the position and the shape of isochrones
around ice-divides, but the effects of anisotropy on age–
depth relationship have, so far, not been described.

2 Model

In this section we present the numerical model and summa-
rize model equations and boundary conditions. The model
builds upon and extends the model used inMart́ın et al.
(2009a). In contrast toMart́ın et al.(2009a), we include the
effect of temperature on flow, we use a better optimised set of
parameters to describe the ice fabric, and we use a more ap-
propriate lateral boundary condition based on a zeroth-order
anisotropic shallow ice approximation (SIA).

2.1 Field equations and boundary conditions

We solve flow in an xz-plane orthogonal to the axis of an
ice divide. The z-axis is aligned vertically, the x-axis repre-
sent the horizontal direction of flow and in the y direction
we assume plane-strain. The ice surface and bed are given by
z = s(x, t) andz = b(x), respectively.

The Stokes system and its boundary conditions are

∂xu + ∂zw = 0, b(x) ≤ z ≤ s(x, t), (1a)

∂xσxx + ∂zσxz = 0
∂xσxz + ∂zσzz = ρg

}
, b(x) ≤ z ≤ s(x, t), (1b)

(σ · n) · n = 0, z = s(x, t), (1c)

u = w = 0, z = b(x). (1d)

Equation (1a) expresses the conservation of mass and
Eq. (1b) the conservation of momentum. Hereσ is the
Cauchy stress tensor,ρ is the density of ice,g is the ver-
tical component of the gravitational acceleration, andv =

(u,0,w) is the velocity vector. Equations (1c) and (1d) are
the boundary conditions at the surface and bed, respectively.
At the lateral boundaries, we assume for the velocity field
the anisotropic shallow ice approximation. This approxima-
tion is discussed in Sect.2.4.

The kinematic boundary condition at the surface is

∂t s + u∂xs = w + a z = s(x, t), (2)

wherea is accumulation rate of ice, expressed as a volume
rate per unit area.

The heat equation and boundary conditions are

ρc (∂tθ + v · ∇θ) = K∇
2θ + QD, b(x) < z < s(x, t),

(3a)

θ − θs
= 0, z = s(x, t), (3b)

− K∇θ · n = QG, z = b(x), (3c)

whereθs is the prescribed surface temperature,κ is the ther-
mal diffusivity of ice,c is the specific heat capacity,QD =

trace(S· D) is the dissipation power,D andS are the strain
rate and deviatoric stress tensors,K is the thermal conduc-
tivity, and QG is the geothermal heat flux. We assume that
the horizontal gradient of temperature is zero at the lateral
margins.

Isochrones are lines connecting ice particles with equal
age9, where age is calculated from

∂t9 + u∂x9 + w∂z9 = 1, b(x) ≤ z ≤ s(x, t), (4a)

9 = 0, z = s(x, t). (4b)

2.2 Ice fabric: description and evolution

To describe the ice fabric we use the second and fourth-order
orientation tensors,a(2) anda(4), respectively (e.g.Gödert,
2003; Gillet-Chaulet et al., 2006). We assume that the ice
fabric is primarily induced by deformation rather than recrys-
tallisation. In that case, followingGödert(2003) andGillet-
Chaulet et al.(2006) the evolution of the second-order orien-
tation tensora(2) and boundary conditions can be written as

Da(2)

Dt
= Wa(2)

− a(2)W − (Ca(2)
+ a(2)C) + 2a(4)

: C

b(x) ≤ z ≤ s(x, t), (5a)

a(2)
=

1

3
I , z = s(x, t), (5b)

whereW is the spin tensor (the skew-symmetric part of the
gradient tensor)

C = (1− α)D + α
1

2η0
S, (6)

andα is the interaction parameter. The interaction parame-
ter α controls the relative weighting of the strain rate tensor
(D) and the deviatoric stress tensor (S) in the fabric-evolution
equation (Eq.5).

The evolution of the second-order orientation tensora(2)

given by Eq. (5) depends ona(4), and for that reason the
system of equations listed above is not closed. A common
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approach of obtaining a closed system is to express the com-
ponents of the fourth-order orientation tensor as functions of
those of the second-order orientation tensor (e.g.Advani and
Tucker, 1990). We follow this approach and use the invariant-
based closure approximation (IBOF). As shown byChung
and Kwon(2002), the general form of the IBOF closure ap-
proximation is

a
(4)
ijkl = β1Sym(δij δkl) + β2Sym(δija

(2)
kl )

+ β3Sym(a
(2)
ij a

(2)
kl ) + β4Sym(δija

(2)
kma

(2)
ml ) (7)

+ β5Sym(a
(2)
ij a

(2)
kma

(2)
ml ) + β6Sym(a

(2)
im a

(2)
mj a

(2)
kn a

(2)
nl ),

where “Sym” denotes the symmetrical part of its argument
andβi are six functions of the second and third invariants of
a(2). FollowingChung and Kwon(2002), we assume thatβi

are polynomials of degree 5 in the second and third invari-
ant ofa(2), and we use the coefficients computed byGillet-
Chaulet et al.(2006) so thata(4) given by Eq. (7) fits the
fourth-order orientation tensor given by the orientation dis-
tribution function proposed byGagliardini and Meyssonnier
(1999).

2.3 Rheology

We assume that the monocrystal grain behaves as a viscous
transversely isotropic medium and that there is a uniform
stress distribution within the polycrystal (uniform-stress
or static model, e.g.Gödert, 2003; Thorsteinsson, 2001;
Gagliardini and Meyssonnier, 1999). Following Gödert
(2003) and Gillet-Chaulet et al.(2005), we write the or-
thotropic rheology of the polycrystal as,

D =
1

2η0

(
βS+ λ1a(4)

:S+ λ2 (S· a(2)
+ a(2)

· S) + λ3 (a(2)
:S)I

)
,(8)

where I is the identity matrix, the symbols· and : denote
the contracted product and the double contracted product, re-
spectively, and the threeλ symbols are defined as

λ1 = 2

(
β

γ + 2

4γ − 1
− 1

)
,

λ2 = (1− β) and λ3 = −
1

3
(λ1 + 2λ2).

The mechanical properties of the monocrystal can then be
described by the basal shear viscosityη0, and the two relative
viscosity ratioβ, i.e. the ratio of viscosity of the grain for
shear parallel to the basal plane to that in the basal plane, and
γ , the ratio of the viscosity in compression or tension along
the c-axis to that in the basal plane (e.g.Lliboutry, 1987;
Meyssonnier and Philip, 1996). The viscosity ratio parameter
β is known to be smaller than unity, and the parameterγ to
be close to unity (Gillet-Chaulet et al., 2006).

In accordance to the Glen’s flow law, we propose a non-
linear extension of the rheology described in Eq. (8) where

η0 =
1

2
A(θ)−

1
n

(
1

2
tr(D2)

1−n
2n

)
, (9)

whereA(θ) is the rate factor and it is temperature dependent,
n the rheological index and “tr” denotes trace. We use the
Dahl-Jensen(1989) relationship for the rate factor

A(θ) = (0.2071e0.5978θc+0.09833e0.14747θc )×10−15Pa−3yr−1,

(10)

with n = 3 andθc = θ − 273.16 (i.e. is given in◦C).
Ma et al.(2010) andPettit et al.(2007) propose a similar

non-linear extension to Glen’s flow law (Eq.9) that depends
only on the stress tensor instead of on the strain rate tensor.
As observed byMa et al. (2010), no theoretical or experi-
mental results are available that allow us to discard either of
these solutions. We adopt the non-linear extension described
in Eq. (9) because it reproduces qualitative aspects of the lay-
ering in the stratigraphy of a divide evolving towards steady
state (see discussion in Sect.4). Further numerical exper-
iments (not reported here), showed that those observations
cannot be reproduced using the model described above when
using a non-linear extension depending on the stress tensor
only.

2.4 Anisotropic shallow ice approximation and outflow
boundary conditions

Mangeney and Califano(1998) proposed the extension of
the SIA (Hutter, 1983) for anisotropic ice. Its use as lat-
eral boundary conditions in full Stokes models is described
by Gagliardini and Meyssonnier(2002). The zeroth-order
shallow ice expansion approximate Eqs. (1a) and (1b) as
(Mangeney and Califano, 1998; Gagliardini and Meysson-
nier, 2002),

∂xu + ∂zw = 0,

∂z (ηxzxz∂zu) = ρg, (11)

P = ρg(h − z),

whereηxzxz is, from Eq. (8), the reduced component of the
viscosity tensor linking strain rate and stress shear compo-
nents.

2.5 Numerical details

The model presented in the previous sections is similar to
that described inMart́ın et al. (2009a) aside from the cou-
pling between heat equation and ice flow through the viscos-
ity (Eq. 9) and the dissipation power (Eq.3a). The numerical
algorithms are, however, different.

The system represented by Eqs. (1)–(5) with their respec-
tive boundary conditions, is solved with the open-source
software Elmer (http:/www.csc.fi/elmer). The Stokes system,
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Table 1. Numerical values of the parameters used in the simula-
tions.

Parameter Value

Geometry
H 1 km
L ±10 H

Flow a 0.5 myr−1

Heat

K 2.10 W m−1 K−1

c 2009.0 J kg−1 K−1

θs −30◦C
QG 50 mWm−2

Rheology

α {1,0}

β {0.1,0.01}
γ 1
n 3

heat equation and free surface evolution are solved with the
Elmer build-in finite element solvers, using linear elements
and stabilised with free residual-free bubbles (see Elmer doc-
umentation for details). In contrast, fabric evolution and age
equations are solved using a semi-Lagrangian method using
a two-time-level scheme and linear interpolation (details in
Mart́ın et al., 2009a). The reason for not using a finite ele-
ment solver in the equations of fabric and age, is that we find
the semi-Lagrangian approach more stable close to the base
of the divide where the ice is stagnant.

2.6 Ice flow analytical approximations

We include here, for reference, the two most commonly em-
ployed analytical approximations for ice flow at the ice di-
vide.

Dansgaard and Johnsen(1969) approximation for vertical
velocityw can be expressed as

w(z,zk) =

{
−a

2z−zk

2H−zk
zk ≤ z ≤ H

−a z2

(2H−zk)zk
0 ≤ z ≤ zk

, (12)

wherez = 0 represent the bedrock,H the ice thickness and
zk is a free parameter.

Similarly, Lliboutry (1979) approximation for vertical ve-
locity w is

w(z,p) = −a

(
1−

p + 2

p + 1

(
1−

z

H

)
+

1

p + 1

(
1−

z

H

)p+2
)

,

(13)

wherep is a parameter for the vertical profile of deformation
that depends on the rheological indexn and the gradient of
temperature at the base of the divide (seeParrenin and Hind-
marsh, 2007, for details).

t = 1/10 t
D

t = t
D

t = 4 t
D

t = 10 t
D

t
D

10 t
D

50 t
D

0

Fig. 1. Modelled ice stratigraphy (isochrones) at different stages of
the divide development assuming that fabric evolution is driven only
by stress (upper panels:α = 1) or strain rate (lower panels:α = 0).
Colour represents the age of ice distribution as a multiple of the
characteristic time of the divide (tD = H/a). Sub-figures show the
solution within an horizontal distance from the divide of five times
the initial ice thickness.

3 Results

3.1 Evolution of ice fabric and stratigraphy towards the
steady state

In order to understand the ice fabric development and its ef-
fect on the age–depth relationship, we simulate the evolution
of an ice divide from the onset of divide flow towards a steady
state.

Initial conditions are a flat surface over the whole model
domain; ice fabric varying linearly from isotropic at the sur-
face to vertically-aligned single-maximum fabric at the base;
temperature following theRobin (1955) analytical approxi-
mation; and, for the age of ice, we use the steady state solu-
tion for anisotropic SIA. The values of the parameters used
in the simulation are listed in Table1.

A constant surface accumulation rate is prescribed. Ice is
allowed to flow out from the left- and right-hand side margins
of the domain at a rate that equals the surface influx of ice so
that the total ice volume in the domain is constant through-
out time. The results are presented in non-dimensional units
where both the initial thickness (H ) and the accumulation
rate (a) are equal to unity and time is proportional to the char-
acteristic time of the divide (tD = H/a).

As discussed inMart́ın et al. (2009a), the initial values
of fabric and age do not affect the evolution of the divide
towards the steady state but they affect the initial stages of
divide development (t . tD). Experiments not reported here
show that the same applies to temperature. The initial condi-
tions in this study approximate the steady state solutions for
flow, temperature and fabric in an area at the flanks of a di-
vide, where ice flow is dominated by shear. Consequently, we
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are simulating the development of a divide from the onset of
divide flow in an area that has been previously dominated by
shear. Different initial conditions will affect the solution in
the initial stages of divide development (t . tD) but not the
evolution towards the steady state.

Figure1 shows the ice stratigraphy at different stages of
the divide development (t = {1/10,4,5,10}tD). Results are
presented for two limiting values of the interaction param-
eterα. As described above,α = 0 implies a fabric evolution
driven only by strain rate, andα = 1 a fabric evolution driven
only by stress (see Eq.6). To reproduce the approximate di-
mensions of the observed ice stratigraphy (e.g.Mart́ın et al.,
2009a), we have, for each given value ofα, chosen an opti-
mised value of the relative viscosity ratioβ (see Table1).

Figure 1 shows how, once the ice starts to flow, the
isochrones in the lower sections of the ice column start to
take the form of anticlines. The amplitudes of the anticlines
vary with depth, with the maximum located at around two-
thirds of the total depth. This feature is known as Raymond
bump and is prominent during the first stages of the di-
vide evolution (0≤ tD . 4tD). Subsequently, i.e. after about
t = 4tD, a syncline starts to develop in the apices of the an-
ticlines giving rise to double-peaked Raymond bumps. At
t = 10tD an approximate steady state is reached.

Due to limitations of the model used inMart́ın et al.
(2009a), ice stratigraphy could only be calculated for values
of α � 1. These limitations have now been addressed and
Fig.1 shows results for bothα = 0 andα = 1. As can be seen
from inspection comparison of the upper and the lower pan-
els of that figure, despite some quantitative differences, the
qualitative features of the ice stratigraphy, i.e. number and
general location of synclines and anticlines, are identical. It
can be concluded that the results presented inMart́ın et al.
(2009a) for α � 1 are in fact generally valid for any value of
α.

Further details of the ice fabric and the difference in result-
ing ice stratigraphy forα = 0 andα = 1 are shown in Fig.2.
In both cases, the fabric varies gradually from being isotropic
at the surface, to a vertical girdle fabric in the middle section,
and then to a single maximum fabric at the bottom. For a fab-
ric evolution controlled only by the stress tensor (α = 1), the
angle between the reference and the orthotropic frameδ is
larger and the girdle fabric more pronounced than for a fab-
ric evolution controlled by strain rate tensor (α = 0). The
difference between girdle and single maximum is illustrated
with the Woodcock(1977) K-value (K < 1 indicate girdle
andK > 1 single maximum).

3.2 Effects of divide evolution on age–depth and com-
parison with Dansgaard and Lliboutry analytical
approximations

We present here detailed results of the simulation described
in Sect.3.1(Table1) with parameterα equal to one.

1/3 0.5 0.75 1

λ
3

δ (o) K

-15 0 15 0.5 1 2

Fig. 2. Contours of the maximum eigenvalue of the orientation ten-
sora33 ( a33 = 1/3 represents isotropic ice anda33 = 1 single max-
imum fabric), the angle in the divide plane between the reference
and the orthotropic frameδ and K-Woodcock-value (K < 1 indi-
cate girdle and atK > 1 single maximum) at quasi steady state
(t = 10tD) assuming that fabric evolution is driven by stress (α = 1;
top) or strain rate (α = 0; bottom). Sub-figures only show the solu-
tion within an horizontal distance from the divide of five times the
initial ice thickness.

Figure3 compares the vertical velocity and the age varia-
tion with depth at the ice divide for different stages of divide
development with the space of possible solutions of Dans-
gaard (Eq.12) and Lliboutry (Eq.13) approximations. The
space of solutions include all the possible values of the pa-
rameterzk for the Dansgaard approximation (0≤ zk ≤ H )
and a wide range of the parameterp (0 ≤ p ≤ 10) for the
Lliboutry approximation.

After the onset of flow, in less than one-tenth oftD, the
vertical velocity distribution at the divide is just outside the
area that represents the space of possible solutions of the ana-
lytical approximations. From then onwards there is a gradual
transition towards steady state, that it is reached for the ver-
tical velocity after about 3 timestD. The difference between
the numerical solutions and the analytical approximations in-
creases with time as the divide evolves towards the steady
state. In steady state numerically and analytically calculated
vertical velocities differ by as much as 20 % (see Fig.3).

Regarding the age–depth distribution, there are two stages.
First, a gradual increase of the age of ice (t . 3tD) and then
a sharp transition towards the steady state. The first stage is
characterized by the genesis of a single Raymond bumps in
ice stratigraphy and the second by double-peaked Raymond
bumps (see Fig.1).

Figure 4 shows the vertical velocity for the same simu-
lation at a horizontal distance of five ice thicknesses from
the divide. Unlike under the divide, the full system solution
is within the space of possible solution of the analytical ap-
proximations. At this flanking position and for this particular
simulation with the parameters described in Table1, we find
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Fig. 3. Top: vertical velocity and age of ice (bottom) along depth at the divide. Lines represent model results at different stages of the divide
development (t = {1/10,2/10, . . . ,9/10,1,2, . . . ,10}tD), the grey area represents the possible solutions of Dansgaard (0≤ zk ≤ H ), left
panels, and Lliboutry (0≤ p ≤ 10) approximations, right panels.

that the analytical approximation fits the full system vertical
velocity with under 1 % error in velocity for the Dansgaard
approximation (best fitzk varying with time from 0.15H
to 0.25H ) and under 0.1 % for the Lliboutry approximation
(best fitp varying with time from 8 to 4, being 4.21 the ex-
pected value for a steady state isotropic model).

Figure4 also shows the transient age–depth relationship
at a horizontal distance of five ice thicknesses from the di-
vide. At this position, the transient effects on the age–depth
are small (about 2 % in elevation) and within the space of
solutions of the analytical approximations. Because the ini-
tial age–depth variation is set to that corresponding to the
steady state solution of the SIA approximation, we can con-
clude from this small difference that, at the flanks of the di-
vide area, analytical and SIA approximations predict a simi-
lar age–depth to that predicted by the full system.

4 Discussion

The main unconstrained parameters of the anisotropic rheol-
ogy model used here (see Sects.2.2 and2.3), are the stress
exponentn, the relative viscosity ratiosβ andγ , and the in-
teraction parameterα. We assume thatγ equals unity (e.g.
Gillet-Chaulet et al., 2006). We also fix the stress exponent
to 3 and use the temperature-dependent rate factor proposed
by Dahl-Jensen(1989) for that value (Eq.10). The effect of
the interaction parameterα on modelled stratigraphy is de-
scribed in Sect.3.1.

The main difficulty in selecting the model parametersn,
α, β andγ , is that they are not independent. In Sect.3, we
explore two cases that represent extreme values of parame-
ter α: α = 0 andβ = 0.01, andα = 1 andβ = 0.1. The for-
mer corresponds with the model presented inMart́ın et al.
(2009a), the later has been chosen so that the model rheol-
ogy (Sect.2.3) reproduce the anisotropic properties of ice
measured byPimienta et al.(1987). Their experimental data
suggests that single maximum fabric is about ten times softer
to shear than isotropic ice. For the rheology discussed in
Sect.2.3, that implies

β =
5

3

(
1

10

) 1
n

−
2

3
. (14)

For the valuen = 3, the above equation givesβ = 0.1.
In a previous studyMart́ın et al.(2009a) used a value of

α equal to zero and a value ofβ = 10−2. Similarly small
values ofα � 1 have been also used for linear rheology by
(e.g. Gillet-Chaulet et al., 2006; Durand et al., 2007). As
discussed inDrews et al.(2012), the fit between modelled
and observed stratigraphy of Halvfarryggen Ridge suggests
a value ofα close to unity andβ ≈ 0.1. Within the context
of our model, a value ofα so close to unity implies a fabric
evolution primarily driven by stress rather than strain rate. It
can be argued that using aα value close to unity makes our
model approach more consistent, sinceα = 1 implies that the
stress acting on the microscopic crystals and the polycrystal
are identical. This is indeed one of the assumptions made in

The Cryosphere, 6, 1221–1229, 2012 www.the-cryosphere.net/6/1221/2012/



C. Mart ı́n and G. H. Gudmundsson: Effects of nonlinear anisotropic rheology on age–depth 1227

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.2

0.4

0.6

0.8

1

w (m/yr)

N
or

m
al

iz
ed

 E
le

va
tio

n

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.2

0.4

0.6

0.8

1

w (m/yr)

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Age (yr)

N
or

m
al

iz
ed

 E
le

va
tio

n

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Age (yr)

 

 

tim
e 

(t
d)

0.1

1

2

3

4

5

6

7

8

9

10

Fig. 4. Age of ice versus depth in a lateral along-flow position, 5 times the ice thickness from the divide. Lines represent model results
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the development of the rheology model we employ (i.e. the
uniform stress approximation, see Eq.8).

The rate factorA is highly sensitive to temperature and for
that reason we have used a fully-coupled thermomechanical
model in our study. A number of different modelling runs
were performed to explore the effect of temperature on the
general features of the flow stratiagraphy. We will not report
in detail the results of these runs. The main finding is that al-
though temperature can clearly have a strong quantitative ef-
fect on the age–depth distribution, the qualitative aspects of
the flow (number of synclines and anticlines) do not change.
In particular, we find that the introduction of the temperature
variable does not alter the results presented inMart́ın et al.
(2009a) obtained using an isothermal model. In agreement
with the results obtained byHvidberg (1996) for isotropic
ice, we find that the coupling between temperature and vis-
cosity produces a zone of relatively warm ice at the base of
the divide. The effect of this “warm spot” is to soften the ice
and to increase ice flow in this area, with the effect that the
ice, for a given depth, is younger than when calculated using
an isothermal model.

There are some additional effects that are known to af-
fect fabric and age of ice such as divide migration in a tran-
sient stage, recrystallisation, along-ridge flow and basal slid-
ing. Their detailed effect is unclear but generally they tend to
reduce the fabric development and the amplitude of the Ray-
mond bump (Mart́ın et al., 2009a). Because of this we expect

our age predictions for a given depth to represent an upper
limit.

As shown above, once the divide is in steady state, com-
monly used analytical approximations are unable to repro-
duce our numerical results (see Sect.3.2). These analytical
approximation can, however, reproduce modelled age–depth
distribution in the early stages of divide development. Also,
at a horizontal distance of more than 5 times the ice thick-
ness from the divide, the age–depth profiles calculated with
our numerical model and the analytical Dansgaard and Lli-
boutry approximations are similar, differing at all stages of
the divide evolution generally by less than 2 %.

Giving our modelling results discussed above the question
arises as to what represents the ideal location for an ice-core
extraction in ice-divide areas. Particular conditions around
the divide, such as non-uniform accumulation (Drews et al.,
2012) or thermo-dynamical conditions at the ice-bedrock in-
terface (Seddik et al., 2011), may add elements to the dis-
cussion or define the location, but we will focus here on the
effects of non-linear flow and flow-induced anisotropy under
the divide described in this paper. Ice cores are typically ex-
tracted outside but close to an ice dome divide (less than 3–5
times the ice thickness). At this short distance away from the
divide, the ice flow regime is arguably simpler to simulate as
the effects of anisotropic flow are less pronounced than di-
rectly at the divide. From the point of view of ice core inter-
pretation this can be considered to be an advantage. However,
ice under the divide could be up to one order of magnitude
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older than ice at the same depth at the flanks. If the primary
aim of an ice-core project is to extract as old an ice as possi-
ble, the site should therefore clearly be at the divide and not
some distance away from it.

In this context we point out that, as discussed inMart́ın
et al. (2009a), given sufficient time anisotropic flow at ice
divides gives rise to distinct morphological surface features.
These are commonly clearly visible in satellite imagery as
linear features running parallel to the ridge. These linear sur-
face features results from subtle changes in slope in the vicin-
ity of the dome. A further indication of long-term stability,
as well as a product of anisotropic flow, is the formation of
double-peaked Raymond bumps. Hence, stable ice divides
can easily be identified.

These features in satellite imagery and ground-penetrating
radar data are widespread in coastal areas of West Antarctica
(H. Pritchard, personal communication, 2012). The reason
is that the particular conditions in these areas of high snow
accumulation and modest ice thickness can produce fully de-
veloped divides after as little as a few hundred years of divide
position stability (Mart́ın et al., 2009a).

5 Summary

In this paper, we have improved on the model presented in
Mart́ın et al.(2009a) exploring further the influence of fabric,
temperature and rheology in ice stratigraphy and age–depth
prediction. We have been able to fully explore the effects of
the interaction parametersα on the fabric development, and
have included the effect of temperature on ice flow and ice
fabric. We find that although temperature and the value of
the interaction parameterα can clearly have a strong quanti-
tative effect on the age–depth distribution, they do not alter
qualitative aspects of the flow (number of synclines and an-
ticlines).

Ice-core dating often rely on ice flow modelling in ar-
eas where counting annual layers or seasonal variations of
chemical constituents is not possible. We show that the com-
monly used Dansgaard and Lliboutry approximations sys-
tematically underestimate the age of ice at the divide, but are
flexible enough to produce results similar to the full system
solution when used at a certain distance from the ice divide.

Our study suggests that divides that show double-peaked
features in their radar stratigraphy provide ideal locations
fore ice-core drilling. The existence of such double-peaked
features is indicative of a fully developed ice fabric and sug-
gests stable flow conditions over a period of time comparable
to or longer than the characteristic time (ice thickness divided
by accumulation). Finally, we have shown that the ice in the
summit area can be up to one order of magnitude older than
ice at the same depth at the flanks.
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