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1 Introduction 

Copper is applied extensively to protect a number of crops, including vines/grapes, citrus 

and other fruits, against fungal attack. In contrast to biodegradable organic chemicals, 

metals such as copper cannot be degraded in the environment and so can potentially remain 

as contaminants in the environment for extended periods of time. Metals can undergo 

processes such as ‘aging’ in certain environmental compartments, such as soils, that reduce 

their bioavailability and toxicity, but typically a significant proportion of the metal remains in a 

potentially bioavailable form for extended periods. There is thus a need to assess the 

potential ecological risks of the ongoing use of copper as a fungicide. 

This study has been commissioned by the European Copper Task Force (ECTF) to assess 

the potential risks of the current and future use of copper as a fungicide. Using a set of 

typical copper application rates, and a set of scenarios covering a representative range of 

soil types across Europe, we have simulated copper accumulation in soils, surface waters 

and sediments using an intermediate complexity dynamic model (the IDMM) designed 

specifically for the long term behaviour of metals. Predicted copper concentrations over time 

have been compared with Predicted No Effect Concentrations for soil, waters and sediments 

to assess the current potential risks, and the prospects for the future development of risk 

under a scenario of continued copper application have been assessed. 

2 Methods 

2.1 Intermediate Dynamic Model for Metals 

2.1.1 Soil module 

The Intermediate Dynamic Model for Metals (IDMM) is an intermediate complexity model for 

the simulation of metal accumulation in soils and leaching to surface waters. The model 

computes metal pools in soils, and leaching fluxes to surface waters, on an annual timestep, 

in response to metal inputs to the soil surface. Within each soil layer, three metal pools are 

simulated: dissolved, labile particulate and aged particulate. Particulate metal may be 

associated either with the soil solids or with solids suspended in the soil porewater. 

Processes simulated comprise equilibrium solid-solution partitioning of labile metal, 

exchange of soil-bound metal between labile and aged pools, equilibrium speciation of metal 

in the soil porewater, removal of metal following uptake into the harvestable parts of crop 

plants, and weathering of metal from ‘inert’ mineral forms into the labile pool. Two soil layers 

(topsoil and subsoil) of user-defined depth can be simulated. Water entering the topsoil by 

precipitation or irrigation can leach either laterally to surface water or vertically to the subsoil 

layer. From the subsoil layer water may percolate vertically to groundwater or leach to 

surface water. Metal associated with water percolating to groundwater is considered ‘lost’ 

from the system. Metal movement within the soil and to surface waters may occur in one of 

three forms: dissolved metal, labile metal adsorbed to suspended matter in the porewater, 

and aged metal in suspended matter. Concentrations of suspended matter in the porewater 

moving within and out of the soil are specified as driving variables. On each annual timestep, 

labile adsorbed and aged metal pools in each soil layer are calculated. A fuller description of 

the model is given in a previous report [1]. 
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2.1.2 Surface water and sediment module 

In the previous risk assessment of metal inputs to soil using the IDMM[4], PECs for surface 

water and sediment were calculated by simply taking the annual mean of daily predicted 

values for dissolved and suspended particulate copper in the waterbody under simulation. 

While this approach follows the standard EU Risk Assessment practice of considering the 

sediment contaminant concentration to be equal to that of the suspended sediment, 

consideration of the long-term dynamics of the system leads to the conclusion that a more 

complex model that explicitly simulates the transfer of copper to bottom sediments is 

required. Therefore, the original surface water model has been developed to simulate the 

dynamics of sediment more realistically than was previously the case. 

Surface water dissolved copper, and copper concentrations in freshwater sediments, are 

calculated by assuming that water leaching from the soil layers (soilflow) enters a waterbody 

of defined volume, along with a constant baseflow assumed to represent upstream flow and 

seepage from deep soil and groundwater to surface water. The amount of soilflow varies 

daily and is input as a driving variable, while the concentration of copper in soilflow is 

assumed constant over each year. Within each annual timestep, surface water 

concentrations of metal and suspended particulate matter are computed daily by mixing 

baseflow and soilflow with the water present in the waterbody. The baseflow is assumed to 

have a copper concentration of 10-10M and a suspended sediment concentration of 15 mg/l. 

Redistribution of copper between dissolved, labile particulate and aged particulate forms in 

the suspended sediment is first calculated using WHAM/Model VI[2] and the kinetic aging 

model used in the soil model. This step assumes that the organic carbon content of the 

suspended sediment is 5%, in accordance with EU Risk Assessment guidelines[3]. The loss 

of suspended sediment particles and associated copper from the water column by settling is 

then simulated using the fractional settling of suspended sediment on each daily timestep. 

The fractional settling is calculated daily, from the calculated velocity of water through the 

waterbody and assuming a particle settling velocity of 1 metre per day; thus, the settling rate 

varies with the discharge of water from the soil; high discharge will give a lower settling rate. 

The sediment PEC is taken as the mean concentration of copper (mg/kg dry weight) in the 

top 5cm of the settled sediment. Fluxes of dissolved and suspended particulate copper in the 

waterbody outflow are computed assuming the daily outflow to equal the daily inflow. 

In application, the surface water model is initially run to steady state (constant sediment 

copper concentration over time) using the steady state concentrations of copper in the 

soilflow and the fixed, constant concentration of copper in the baseflow. Following attainment 

of steady state the model is then run dynamically to simulate change over time. In practice, 

the steady state copper concentrations in the surface water (dissolved) and sediment varied 

with the scenario, waterbody and attenuation option used. In order to provide a more 

consistent basis for assessing the potential risks resulting from copper input over time, the 

steady state contributions to the copper concentrations were discounted in calculating the 

PECs. Instead, the predicted increases only in dissolved and sediment copper, resulting 

from inputs to the soil, were taken. ‘Background’ concentrations of copper in dissolved form 

and in sediment were then added to the predicted increases. Concentrations of 0.85 µg l-1 

dissolved copper and 21 mg kg d.w.-1 sediment copper were chosen, based on the findings 

of the EU copper Voluntary Risk Assessment[6]. These concentrations were preferred to the 

‘ambient’ concentrations in European surface waters and sediments presented in the Risk 

Assessment, since it is considered unlikely that the waterbodies being simulated would be 
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impacted by anthropogenic inputs other than those simulated, i.e. atmospheric deposition 

and fertiliser application to the catchment. 

In the previous application of the IDMM to metal leaching from agricultural soils, a ‘worst 

case’ for metal losses in sediment due to erosion was simulated. This assumed that (i) metal 

concentrations in eroding soil particles were enriched by a factor of five over the bulk soil 

metal concentration, and (ii) that particles eroding from the topsoil into vertical drainage to 

the subsoil are transported to surface water or groundwater in the lateral runoff from the 

subsoil, rather than being trapped in the subsoil. This simulates the rapid vertical transport of 

particles in soil pipes or cracks. Metal associated with particles transported into groundwater 

is assumed to be ‘lost’ from the system and not considered further. This approach is also 

adopted in the current work. 

2.2 Model application 

The IDMM is applied by initially calculating the metal present in the soil (dissolved, labile 

particulate and aged particulate) under ‘pristine’ steady state conditions (i.e. where the 

annual input and output fluxes in each soil layer balance. The model then simulates metal 

dynamics forward in time from this ‘pristine’ state, in response to changes in metal inputs 

(e.g. from atmospheric deposition and application of fertilisers/fungicides), soil pH, and the 

mass of harvestable plant removed annually. 

2.2.1 Modelling scenarios 

For this work, the model has been applied to the ten soil-water scenarios used by the FOrum 

for Co-ordination of pesticide fate models and their USe.(FOCUS) for risk assessment of 

pesticides[1], and previously used for risk assessment of copper and zinc in animal 

manures[4]. The characteristics of the soils and surface waters in each scenario are given in 

Appendix 1. Basic soil characteristics (e.g. site density, pH, organic matter and clay content) 

are based on measurements at the sites. Surface water characteristics are not based on site 

measurements, but are interpolated from spatial measurements of surface water quality in 

the FOREGS geochemical baselines database[5]. Inputs of copper via atmospheric 

deposition, fertiliser use and application as a fungicide are considered. Temporal patterns of 

inputs due to atmospheric deposition and fertiliser use previously computed were used in 

this study. Four application rates of copper as a fungicide were simulated: 2, 4, 6, and 8 kg 

per hectare per annum. In running the scenarios, it was assumed that all input copper 

(regardless of source) was fully labile and entered the topsoil, i.e. interception of applied 

copper by plant surfaces and subsequent removal by harvesting was negligible. In terms of 

copper entering the soil system, the simulated input rates therefore represent ‘worst case’ 

scenarios for the actual field application rates. 

The FOCUS scenarios comprise six ‘drainage’ scenarios D1-D6, and four ‘runoff’ scenarios 

R1-R4. Drainage scenarios represent locations where water transfers to surface water are 

dominated by vertical drainage to drain depth followed by lateral drainage to surface water. 

Surface runoff and losses to groundwater are minimal. These scenarios were simulated 

using a topsoil layer of 30cm depth and subsoil extending from 30cm to the drain depth, 

which varied among scenarios. The two soil layers have their own physicochemical 

characteristics such as bulk density and porewater pH. Runoff scenarios represent locations 

Vertical drainage to the subsoil and groundwater occurs, but is assumed not to contribute to 

metal transport to surface waters.  Runoff scenarios were simulated using a topsoil layer 
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5cm deep and a subsoil layer 25cm deep, both having the same physicochemical 

characteristics. 

Surface water concentrations in the FOCUS scenarios are calculable for up to three types of 

waterbody: stream, pond and ditch, depending upon the specific scenario. Streams are 

simulated in scenarios D1, D2, D4, D5 and R1 to R4. Ponds are simulated in scenarios D4, 

D5 and R1. Ditches are simulated in scenarios D1 to D3 and D6. The three types of 

waterbody differ in their dimensions, water volume and the daily volume of baseflow entering 

the system. The larger this volume, the higher the settling rate of suspended sediment and 

the smaller the loss of metal through surface discharge away from the water body. Ponds 

have the highest volume (900m3) followed by ditches and streams (30m3).  

2.2.2 Crops 

Each FOCUS scenario has an associated set of crops. For this study, the IDMM was set up 

to simulate metal removal in the following crops: grapes/vines, apples, oranges, olives and 

hops. The computation of the annual removal of copper in crops is described in Appendix 2. 

In practice, initial simulations showed that the choice of crop had a negligible effect on the 

computed metal concentrations, i.e. metal removal by cropping was essentially identical 

regardless of the crop simulated. Therefore, for simplicity, all the results presented here are 

for simulations using apples as the crop, with the exception of scenario D6 where grapes are 

used (since apples are not a crop listed for this scenario). 

2.2.3 Attenuation of runoff 

In order to simulate the influence of topsoil runoff attenuation through the use of vegetation 

strips, the fluxes of water and eroded particles to surface water may be empirically 

decreased by fixed proportions. In this study, we used three options for attenuation in the 

runoff scenarios: 

 No attenuation; 

 Presence of 10m wide vegetation filter strips, reducing water fluxes by 60% and 

eroded particle fluxes by 85%; 

 Presence of 20m wide vegetation filter strips, reducing water fluxes by 80% and 

eroded particle fluxes by 95%; 

The latter two attenuation scenarios are those used by FOCUS to simulate mitigation effects 

in pesticide risk assessment. 

For the drainage scenarios, a scenario of ‘no attenuation’ only was run. 

2.3 Risk assessment 

The IDMM calculates annual concentrations of metal in the 0-30cm soil layer, in surface 

waters (dissolved phase) and in the bed sediments of the receiving waterbody. Risks were 

assessed by comparing modelled concentrations of metals with Predicted No Effect 

Concentrations (PNECs) The PNECs are listed in Appendix 3. 

Soil PNECs were calculated using a Microsoft Excel spreadsheet tool produced by Arche 

Consulting, Ghent, Belgium. The tool calculates soil PNECs for copper, largely following the 

methodologies in the copper EU Risk Assessment (RAR)[6]. Fuller details may be found in an 

earlier report[4].  
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Site-specific surface water PNECs were calculated using a Microsoft Excel spreadsheet tool 

produced by Watts & Crane Associates, UK. The tool calculates PNECs using empirical 

equations fitted to outputs of the tools used to calculate site–specific PNECs in the Cu RAR. 

The water quality parameters required for PNEC calculation are the pH, calcium and DOC 

concentrations. 

A sediment PNEC was obtained from the EU Copper Risk Assessment. The PNEC is 

expressed in terms of the concentration of copper per unit mass of organic matter in the 

sediment. Since in this work the sediments were assumed to all have the same organic 

matter content of 5%, the PNEC is the same (87 mg kg d.w.-1) for all the scenarios. 

Soil additions of copper as a fungicide are assumed to start in 2010. Predicted 

concentrations of copper in the topsoil (0-30cm), surface water (dissolved) and sediment are 

presented and compared with Predicted No Effect Concentrations for these compartments. 

The effects of runoff attenuation in runoff-dominated scenarios are also simulated as before. 

Characteristics of the exposure scenarios, and the site-specific PNECs used, are given in 

Appendices 1-3. Three sets of PNECs for dissolved copper in surface waters were used: 

site-specific values calculated based on the calculation methodology presented in the copper 

EU Risk Assessment, a ‘reasonable worst case’ PNEC of 6.8 µg l-1 from the same 

document, and a proposed EU regulatory acceptable concentration (RAC) of 9.5 µg l-1. 

3 Results 

Initial modelling indicated that removal of copper in crops had a negligible effect on 

accumulation. Therefore simulations were done with one crop type (apple) for each scenario, 

with the exception of scenario D6 where grapes were simulated.  

Tables of predicted copper concentrations in topsoil, surface water and sediment for the 

present day and 2020, 2030 and 2060 are given in Appendices 1-3. Charts showing the time 

trends in copper concentrations are presented in Appendices 4-5 and charts illustrating the 

influence of attenuation measures on predicted surface waters and sediments in the runoff 

scenarios are presented in Appendix 9. 

The assessment indicated that over the period 2010-2060, copper concentrations increased 

steadily in response to inputs, with no sign of inputs and outputs to the topsoils balancing 

(steady state). Since copper is retained strongly by soil, the increase in topsoil concentration 

at a given point in time in response to input is closely related to the cumulative input to that 

point.. For a long-term assessment further ageing of soil residues and their availability for 

run-off/drainage as well as removal by transfer to the base sediment need to be considered 

further. 

3.1 Topsoil concentrations and risks 

Predicted concentrations of copper in topsoils do not vary greatly across the scenarios at a 

given point in time for a given application rate. Variations in the concentrations are due 

largely to variations in soil bulk density, with soils of lower bulk density tending to have 

higher copper concentrations. This is due to (i) the strong retention of copper by soil, 

meaning that variations in loss fluxes across the scenarios are not greatly important for soil 

accumulation, and (ii) the fact that a lower bulk density soil will tend to show higher 
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concentrations of a strongly retained contaminant, simply because there is less solid matter 

per unit area to intercept the contaminant. 

The site-specific PNEC is a function of the soil pH, organic matter and clay content. Lower 

PNECs are calculated for soils having low pH and low concentrations of organic matter and 

clay. So the acidic, low clay soil at D3 is predicted to the most intrinsically sensitive of those 

simulated here, while the D2 soil, having circumneutral pH and a high clay content, is 

predicted to be the least intrinsically sensitive. 

In the current assessment inputs commence at the present day (taken to be 2010), therefore 

PNEC exceedence at the present day can only occur in response to the other contamination 

sources considered (atmospheric deposition and fertiliser application). No exceedence of the 

PNEC was found at the present day. Nor was any PNEC exceedence predicted for the years 

2020 or 2030, regardless of the copper input rate. In 2060, exceedences were predicted in 

scenarios D3, D4, D6, R1, R2, R3 and R4 in response to an input rate of 8 kg Cu ha-1 a-1, in 

scenarios D3, D4, D6, R1, R3 and R4 in response to an input rate of 6 kg Cu ha-1 a-1, and in 

Scenarios D3, R1 and R4 in response to an input rate of 4 kg Cu ha-1 a-1. An input rate of 

2 kg Cu ha-1 a-1 was predicted not to cause PNEC exceedence in any scenario in 2060. 

3.2 Surface water concentrations and risks 

In contrast to the soils, the pattern of PNEC exceedences for waters varies among 

scenarios, and among the different waterbodies simulated in each scenario. In part this is 

due to the wide variation in site-specific PNECs, from 1.3 µg l-1 in D6 to 47.0 µg l-1 in D4, but 

is also due to the variation in predicted surface water concentrations. Of the types of 

waterbody simulated, ponds are the most sensitive and streams the least sensitive, relative 

to the other types. This reflects the lower flushing rate of ponds compared to ditches and 

streams, which allows contaminant concentrations in the water column to build up over time 

in response to continually increasing fluxes from the soil. 

The predicted surface water dissolved copper concentrations are assessed against three 

types of PNEC: 

i. Site-specific PNECs calculated using a Microsoft Excel spreadsheet tool produced by 

Watts & Crane Associates, UK. The tool calculates PNECs using empirical equations 

fitted to outputs of the tools used to calculate site–specific PNECs in the Cu RAR. 

The water quality parameters required for PNEC calculation are the pH, calcium and 

DOC concentrations; 

ii. A ‘reasonable worst case’ PNEC of 6.8 µg l-1; 

iii. A proposed EU regulatory acceptable concentration (RAC) of 9.5 µg l-1. 

No exceedence of any surface water PNEC after 10, 20 or 50 years of application was 

predicted to occur in scenarios D1 (stream and ditch), D3, D4 (stream and pond), D5 

(stream and pond), D6, R1 (stream), R3 or R4. In scenarios D2 (stream and ditch) and R2, 

exceedences were predicted only after 50 years of application. In both of these scenarios, 

exceedence of the site-specific PNEC only was predicted, in response to input rates of 6 and 

8 kg Cu ha-1 a-1. In contrast to the other scenarios, exceedences of the site-specific PNEC 

were predicted to occur in scenario R1 pond after 10 years of application, in response to 

input rates of 6 and 8 kg Cu ha-1 a-1. After 20 years of application, all input rates were 

predicted to result in exceedence of the site-specific PNEC and input rates of 6 and 8 
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kg Cu ha-1 a-1 were predicted to cause exceedence of the reasonable worst case PNEC. 

After 50 years of application, input rates of 4, 6 and 8 kg Cu ha-1 a-1 were predicted to cause 

exceedence of the reasonable worst case PNEC and the proposed EU RAC on top of the 

exceedence of the site-specific PNEC in response to all the input rates. 

3.2.1 Distribution of copper in surface waters 

Appendix 10 shows predicted distributions of copper among its different forms in surface 

waters, for the year 2030 and an input rate of 8 kg Cu ha-1 a-1.  The distribution of copper is 

largely dominated by particulate and dissolved organic matter (DOM)-bound forms although 

there are some small contributions from inorganic dissolved complexes, particularly in D5, 

D6 and R1. The proportion of free copper ion is consistently below 0.5%, which is typical for 

this strongly complexing metal. 

The greatest variation in the distribution across the sites is that between the sediment and 

DOM-bound forms. Sediment bound copper is predicted to vary between 50 and 95% of the 

total, and DOM-bound copper between 4% and 50%.  Since the suspended sediment is 

assumed to have the same composition in all the scenarios, the distribution of copper 

between sediment and dissolved organic matter is largely determined by the concentration 

of DOM (Appendix A, (ii), expressed as dissolved organic carbon). The three scenarios 

where DOM is highest (D1, D3 and D4) all show a relatively high proportion of copper in the 

DOM-bound form, and corresponding low proportions of suspended sediment-bound copper. 

Predictions of copper distribution were also done for the other loading rates (data not 

shown). There is negligible influence of loading rate on the predicted distributions. 

3.3 Sediment concentrations and risks 

The sediment PNEC was not predicted to be exceeded after 50 years of application in 

response to any input rate. In a number of the scenarios the predicted increase in sediment 

copper concentration was small (<5 mg kg d.w.-1) in relation to the background concentration 

of 21 mg kg d.w.-1. Generally, ditches, and particularly ponds, showed greater sensitivity to 

inputs than streams. This reflects the nature of the predicted sediment settling in the ponds, 

where settling was predicted to be complete under all baseflow and soilflow conditions, with 

the exception of R1 pond where incomplete settling was predicted in response to soilflow 

events. The highest predicted risk characterisation ratio (RCR) was 0.63, in R1 pond after 50 

years of application at a rate of 8 kg Cu ha-1 a-1. 

3.4 Effects of attenuation in runoff scenarios 

Attenuation was observed to result in greater proportional declines in predicted surface 

water and sediment copper in those scenarios predicted to be relatively more sensitive to 

unattenuated inputs. This was because the predicted copper concentrations were not greatly 

elevated above the background in the relatively less sensitive scenarios, so there was less 

scope for reductions in predicted concentrations. For surface waters, the proportional decline 

in predicted copper concentrations, relative to the unattenuated scenarios, was on average 

19% for 10m wide VFS and 25% for 20m wide VFS in 2030, for an input rate of 8 kg Cu ha-1 

a-1. The proportional decline in predicted concentrations due to attenuation was observed to 

be lower in response to a lower input rate; at 2 kg Cu ha-1 a-1, the predicted proportional 

declines in 2030 were 8% for 10m wide VFS and 12% for 20m wide VFS. Predicted 

sediment concentrations were also reduced when attenuation was simulated. The 



Page 11 of 58 
 

proportional decline in predicted concentration, compared to the simulations where 

attenuation was not considered, was on average 10% for 10m wide VFS and 12% for 20m 

wide VFS in 2020, for an input rate of 8 kg Cu ha-1 a-1. The proportional decline in predicted 

concentration increased with input rate: for the same year and the lowest loading rate the 

proportional declines were 5% and 6% respectively, for 10m wide and 20m wide VFS.  

Since potential risks up to 50 years after commencement of inputs were predicted only for 

scenarios R1 pond and R2 stream (for surface waters only), the pattern of exceedence was 

only predicted to be altered by attenuation in these scenarios. No exceedence of any PNEC 

was seen for R2 when attenuation was simulated. Exceedences for R1 pond remained, but 

were generally reduced in magnitude. Attenuation did not impact the exceedence of the site-

specific PNEC in 2020 in response to input rates of 6 or 8 kg Cu ha-1 a-1. Attenuation using 

20m wide, but not 10m wide, VFS limited the exceedence of the site-specific PNEC in 2030 

to input rates of 6 or 8 kg Cu ha-1 a-1. In 2060, exceedence of the reasonable worst case 

PNEC was limited to input rates of 6 or 8 kg Cu ha-1 a-1 when 20m VFS were simulated. 

Also, no exceedence of the proposed RAC was predicted in 2060 whereas in the absence of 

attenuation exceedence was predicted in response to input rates of 2 kg Cu ha-1 a-1 or 

higher. 

4 Discussion 

 Application of copper as a fungicide is predicted to result in gradual copper 

accumulation in topsoils and increases in copper concentrations in the water column 

and sediments of receiving waters. Accumulation over any number of years was 

predicted to occur at a more or less constant rate in response to a constant annual 

application rate. In the longer term it is reasonable to assume that accumulation in 

topsoil would continue in response to a continuous, constant input rate. The future 

rate of transfer to surface waters is less certain since there is a lack of knowledge 

regarding the long term ageing behaviour of copper. The aging model included in 

the IDMM is based on relatively short-term experiments (2 years) and predicts that 

aging is essentially complete after 12 months. There is currently limited evidence for 

the progress of aging over longer time periods. Ma et al.[7] found that two 

circumneutral vineyard soils from Italy, subjected to copper inputs for 80 years and 

having total copper concentrations of 207 and 389 mg kg d.w.-1, had about 30% of 

the total copper present in labile form, a lower proportion of the total copper than 

was predicted by the IDMM in any soil simulated in this study. There is thus the 

possibility that longer term (decadal) aging may restrict copper fluxes to surface 

waters to a greater degree than the IDMM predicts. 

 Risks due to topsoil accumulation are predicted to be driven largely by the intrinsic 

sensitivity of the soil to copper (i.e. the PNEC), since accumulation rates are similar 

for the soils simulated. Risks are predicted to be generally low for inputs commencing 

in 2010. 

 Potential risks to soil in responses to inputs starting in 2010 are not predicted by 

2020 or by 2030. Risks are predicted in seven of the scenarios by 2060. 

 Risks due to increasing copper concentrations in the water column of receiving 

waters are predicted to vary with the intrinsic sensitivity of the waterbody, which 

comprises the chemical sensitivity (the PNEC) and the tendency for the waterbody to 

retain contaminants, which is related to its flushing time. Ponds have the longest 
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flushing time and are thus predicted to be more sensitive to contamination than 

ditches and streams. 

 No risk to surface waters by 2020 or 2030 is predicted with the exception of the R1 

pond scenario. Predicted risks by 2060 are confined to scenarios D2 stream, D2 

ditch, R1 pond and R2 stream. Exceedence of the proposed EU RAC is seen only for 

R1 pond in 2060 at the three highest input rates. 

 No potential risks to sediments prior to 2060 are indicated. This is in contrast to the 

previous simulation of copper inputs to soils[4], and results from the description of 

sediment behaviour implemented in the IDMM for this study. In particular, dilution of 

bottom sediment by settling of suspended particles from the baseflow, during periods 

of low soilflow, is predicted to restrict accumulation of added copper in bottom 

sediments. 

 Simulation of attenuation in the runoff scenarios indicated that attenuation 

(vegetation filter strips) should cause declines in the surface water and sediment 

concentrations, with greater declines seen for higher loading rates. The extent to 

which this attenuation reduces the predicted concentrations to below the PNEC 

depends on the magnitude of the predicted concentrations and (for surface waters) 

the PNEC chosen. In the R1 pond scenario, where exceedence of PNECs in 2030 

and 2060 remains extensive, RCRs are mostly between one and five when 20m wide 

VFS are simulated. 

 Assuming that the application rates and the timescale of application simulated here 

are reasonable, application of copper over the next 10-50 years, in locations where 

application has not previously occurred, may cause some potential risks to soils, 

surface waters and freshwater sediments. The degree to which risk is predicted is 

highly dependent on the nature of the scenario, with R1 pond proving to be 

particularly sensitive. However, this should ideally be verified against field data for 

locations with well-characterised soils and known histories of copper application. 

 Since copper is known to be strongly retained in soils following input (e.g. [8]) and 

thus to remain in soils for long periods of time following application, management of 

the potential risks to soils, surface waters and sediments due to copper use as a 

fungicide would be optimally done by considering also its bioavailability in the 

different compartments. 
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Appendix 1:Characteristics of the FOCUS scenarios 

(i) general and soils 

Scenario Country Latitude Longitude Mean 

Temperature 

(oC) 

Bulk density 

g cm-3 pHss
 %OM %clay Texture Crops simulated 

D1 Sweden 58.33 13.05 6.1 1.35 7.7 4.0 47 Silty clay Apples 

D2 UK 51.65 -1.63 9.7 1.25 7.7 4.8 55 Clay Apples 

D3 Netherlands 51.53 5.87 9.9 1.35 6.0 4.6 3 Sand Apples 

D4 Denmark 55.62 12.08 8.2 1.51 7.4 2.6 12 Loam Apples 

D5 France 47.45 0.97 11.8 1.56 7.1 3.8 20 Loam Apples 

D6 Greece 38.38 23.10 16.7 1.35 7.9 2.4 30 Clay loam 
Grapes, olives, 

oranges 

R1 Germany 49.00 8.67 10.0 1.43 7.8 2.4 13 Silt loam 
Apples, grapes, 

hops 

R2  Portugal 41.18 -8.07 14.8 1.20 5.4 6.8 13 Sandy loam Apples, grapes 

R3  Italy 44.50 11.40 13.6 1.46 8.3 2.0 34 Clay loam Apples, grapes 

R4  France 43.50 3.32 14.0 1.52 8.7 1.2 25 
Sandy clay 

loam 

Apples, grapes, 

olives, oranges 
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(ii) surface waters 

Scenario Country pH DOC mg l-1 a 

 (Na, Mg, 

K, Ca) 

µeq l-1 b 

Ditch 

baseflow 

mm a-1 

Stream 

baseflow 

mm a-1 

Pond 

baseflow 

mm a-1 

D1 Sweden 6.4 14.6 0.55 8.4 12.0  

D2 UK 8.3 3.6 6.86 1.1 0.2  

D3 Netherlands 7.4 10.1 4.31 84.2   

D4 Denmark 7.6 19.0 4.15  38.8 0.3 

D5 France 8.0 2.8 6.38  27.1 0.3 

D6 Greece 8.1 0.8 5.53 42.1   

R1 Germany 7.9 1.6 4.37  70.1 1.1 

R2  Portugal 6.5 2.4 0.95  102.2  

R3  Italy 8.3 1.7 6.74  27.8  

R4  France 8.1 1.6 1.43  70.4  
a dissolved organic carbon. 

b sum of the concentrations of the major cations sodium, magnesium, potassium and calcium. 
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Appendix 2: Computation of copper removal in harvestable plant 

material 

Plant yields 

The plants to be simulated for each scenario are given in the table below. 

Scenario  Country Crop 

  Apples Grapes Oranges Hops Olives 

D1 Sweden  – – – –
D2 UK  – – – –

D3 Netherlands  – – – –

D4 Denmark  – – – –

D5 France  – – – –

D6 Greece –   – 

R1 Germany   –  –

R2 Portugal   – – –

R3 Italy   – – –

R4 France    – 

 

Available data on yields of the harvestable parts of plants in the relevant countries were 

obtained from the Food and Agriculture Organisation of the United Nations statistical 

database (FAOSTAT[9]). Starting years for which yield data were available are listed below 

(all records are up to 2009): 

Scenario  Country Plant 

  Apples Grapes Oranges Hops Olives 

D1 Sweden 1985 – – – – 
D2 UK 1961 – – – – 

D3 Netherlands 1984 – – – – 

D4 Denmark 1985 – – – – 

D5 France 1961 – – – – 

D6 Greece – 1961 1961 – 1985 

R1 Germany 1985 1961 – 1961 – 

R2 Portugal 1961 1961 – – – 

R3 Italy 1961 1961 – – – 

R4 France 1961 1961 1961 – 1961 

 

Time trends of plant yields were calculated as follows: 

1. Period covered by FAO yield data (1961-2009 or 1985-2009). Either a linear trend in 

yield over time, or no trend, was assumed. If a significant increase or decrease in 

yield occurred during the period, a linear trend was used, which was found to 

adequately describe the trend in all cases. Where no trend was apparent the mean 

yield value for the period was used. 

2. Period from 1700 to 1961 or 1985. The trend in yield was assumed to follow that of 

European per capita Gross Domestic Product (GDP), such that 
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p_yr

yr

p_yryr
GDP

GDP
YldYld  

where Yld is the yield (tons fresh weight ha-1), GDP is the known GDP and the 

subscripts yr and p_yr refer to the year for which the yield is being calculated and the 

first year for which FAO data are available. The time trend in per capita GDP was 

taken from [10]. 

Copper content of harvestable parts of plants 

Copper contents of the harvestable parts of plants, with the exception of hops, were taken 

from the USDA National Nutrient Database for Standard Reference[11]. The copper content of 

hops was taken from Vinas et al, 2002[12]. The copper contents used are given in the table 

below: 

Crop Copper content g (ton fresh weight)-1 

Apples 0.29 
Grapes 1.27 
Oranges 0.57 
Hops 2.04a 
Olives 2.51 

a
 Calculated from a copper content of 13.6 g (ton fresh weight)

-1
, assuming a water content of 85% by weight. 

Annual copper removal in the harvestable parts of plants 

Annual copper removal (g ha-1 a-1) is simply calculated as the copper concentration in the 

plant harvest (g (ton fresh weight)-1) multiplied by the plant yield (tons fresh weight ha-1 a-1). 
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Appendix 3: Predicted No Effect Concentrations (PNECs) for copper in 

topsoils, surface waters and sediments 

Scenario PNECs 

 Soil Water Sediment 

 µg g-1 µg l-1  µg g-1 

D1 139 30.1 87 

D2 157 1.9 87 

D3 55 17.4 87 

D4 67 47.0 87 

D5 97 4.1 87 

D6 94 1.3 87 

R1 64 3.0 87 

R2 98 4.0 87 

R3 90 2.4 87 

R4 62 4.1 87 
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Appendix 4: Tables of predicted copper concentration in topsoils, 

surface waters and sediments, and Risk Characterisation Ratios (RCRs), 

in the absence of runoff attenuation 

Predicted concentrations and RCRs are presented for the present day and for the years 

2020, 2030 and 2060. Units of predicted concentrations are µg g-1 for soils, µg l-1  for waters 

and µg g-1 for sediments. The RCR values are listed below the predicted concentrations. 

Values greater than or equal to one, indicating a potential risk, are highlighted in bold. 
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Table A4-1. Predicted copper concentrations and RCRs for scenario D1. 

 
Copper application rate kg ha-1 a-1 

 
2 4 6 8 

soil 
    

present day 
9.8 9.8 9.8 9.8 
0.18 0.18 0.18 0.18 

     
2020 

10.3 10.8 11.3 11.8 
0.07 0.08 0.08 0.08 

     
2030 

15.2 20.7 26.1 31.5 
0.11 0.15 0.19 0.23 

     
2060 

35.0 60.2 85.3 110.5 
0.25 0.43 0.61 0.79 

     water - stream 
   

present day 
0.9 0.9 0.9 0.9 
0.03 0.03 0.03 0.03 

     
2020 

1.0 1.0 1.1 1.2 
0.03 0.03 0.04 0.04 

     
2030 

1.0 1.2 1.3 1.4 
0.03 0.04 0.04 0.05 

 
1.2 1.6 1.9 2.2 

2060 0.04 0.05 0.06 0.07 

         water – ditch 
   

present day 
0.9 0.9 0.9 0.9 
0.03 0.03 0.03 0.03 

     
2020 

1.0 1.1 1.1 1.2 
0.03 0.04 0.04 0.04 

     
2030 

1.1 1.2 1.4 1.5 
0.04 0.04 0.05 0.05 

     
2060 

1.3 1.7 2.1 2.5 
0.04 0.06 0.07 0.08 

     sediment – stream 
   

present day 
20.9 20.9 20.9 20.9 
0.24 0.24 0.24 0.24 

     
2020 

20.9 21.0 21.1 21.5 
0.23 0.24 0.24 0.25 

     
2030 

21.1 21.3 21.5 22.1 
0.24 0.25 0.25 0.25 

     
2060 

22.4 23.0 23.9 25.3 
0.26 0.26 0.27 0.29 

     sediment – ditch 
   

present day 
21.8 21.8 21.8 21.8 
0.25 0.25 0.25 0.25 

     
2020 

22.0 22.1 22.3 22.4 
0.25 0.25 0.26 0.26 

     
2030 

22.4 22.9 23.4 23.9 
0.26 0.26 0.27 0.27 

     
2060 

24.0 27.6 30.2 32.9 
0.29 0.32 0.35 0.38 
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Table A4-2. Predicted copper concentrations and RCRs for scenario D2. 

 
Copper application rate kg ha-1 a-1 

  2 4 6 8 

soil 
    

present day 
25.4 25.4 25.4 25.4 
0.17 0.17 0.17 0.17 

     
2020 

31.4 37.2 43.1 49.0 
0.20 0.24 0.27 0.31 

     
2030 

36.8 48.0 59.2 70.4 
0.23 0.31 0.38 0.45 

     
2060 

53.1 80.2 107.4 134.5 
0.34 0.51 0.68 0.86 

     water - stream 
   

present day 
1.0 1.0 1.0 1.0 

0.52 0.52 0.52 0.52 

     
2020 

1.1 1.1 1.2 1.2 
0.55 0.58 0.61 0.64 

     
2030 

1.1 1.2 1.3 1.5 
0.59 0.65 0.71 0.77 

     
2060 

1.3 1.6 1.9 2.2 
0.69 0.85 1.01 1.17 

     water - ditch 
    

present day 
1.0 1.0 1.0 1.0 

0.54 0.54 0.54 0.54 

     
2020 

1.1 1.2 1.3 1.3 
0.59 0.62 0.66 0.70 

     
2030 

1.2 1.3 1.5 1.7 
0.63 0.71 0.79 0.88 

     
2060 

1.5 1.9 2.3 2.7 
0.77 0.98 1.19 1.40 

     sediment - stream 
   

present day 
23.2 23.2 23.2 23.2 
0.27 0.27 0.27 0.27 

     
2020 

23.3 23.6 23.7 23.8 
0.27 0.27 0.27 0.27 

     
2030 

23.8 24.4 24.7 25.0 
0.27 0.28 0.28 0.29 

     
2060 

26.0 28.1 29.8 31.5 
0.30 0.32 0.34 0.36 

     sediment - ditch 
   

present day 
28.3 28.3 28.3 28.3 
0.32 0.32 0.32 0.32 

     
2020 

28.8 29.8 30.1 30.3 
0.33 0.34 0.35 0.35 

     
2030 

30.5 32.3 33.3 34.3 
0.35 0.37 0.38 0.39 

     
2060 

37.7 44.5 50.1 55.6 
0.43 0.51 0.58 0.64 
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Table A4-3. Predicted copper concentrations and RCRs for scenario D3. 

  Copper application rate kg ha
-1

 a
-1

 

  2 4 6 8 

soil 
    present day 11.3 11.3 11.3 11.3 

 
0.21 0.21 0.21 0.21 

2020 16.7 22.1 27.5 32.9 

 
0.30 0.40 0.50 0.60 

2030 21.6 31.9 42.3 52.6 

 
0.39 0.58 0.88 0.96 

2060 36.3 61.3 86.4 111.5 
  0.66 1.12 1.57 2.03 

     water - ditch 
    present day 0.9 0.9 0.9 0.9 

 
0.05 0.05 0.05 0.05 

2020 1.1 1.2 1.4 1.5 

 
0.06 0.07 0.08 0.09 

2030 1.2 1.5 1.8 2.1 

 
0.07 0.09 0.10 0.12 

2060 1.6 2.3 3.0 3.7 
  0.09 0.13 0.17 0.21 

     sediment - ditch 
   present day 22.9 22.9 22.9 22.9 

 
0.26 0.26 0.26 0.26 

2020 23.5 23.7 24.0 24.2 

 
0.27 0.27 0.28 0.28 

2030 24.5 25.5 26.6 27.6 

 
0.28 0.29 0.31 0.32 

2060 29.9 35.8 41.7 47.6 
  0.34 0.41 0.48 0.55 
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Table A4-4. Predicted copper concentrations and RCRs for scenario D4. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

Soil 
    

present day 
6.2 6.2 6.2 6.2 

0.09 0.09 0.09 0.09 

     
2020 

11.1 15.9 20.8 25.6 
0.17 0.24 0.31 0.38 

     
2030 

15.5 24.7 34.0 43.3 
0.23 0.37 0.51 0.65 

     
2060 

28.7 51.2 73.6 96.1 

0.43 0.76 1.10 1.43 

     water - stream 
   

present day 
0.9 0.9 0.9 0.9 

0.02 0.02 0.02 0.02 

     
2020 

1.0 1.0 1.1 1.2 
0.02 0.02 0.02 0.02 

     
2030 

1.0 1.2 1.3 1.4 
0.02 0.02 0.03 0.03 

     
2060 

1.2 1.6 1.9 2.3 
0.03 0.03 0.04 0.05 

     water - pond 
   

present day 
0.9 0.9 0.9 0.9 

0.02 0.02 0.02 0.02 

     
2020 

1.4 1.3 1.4 1.6 
0.03 0.03 0.03 0.03 

     
2030 

1.6 1.6 1.9 2.1 
0.03 0.03 0.04 0.05 

     
2060 

2.0 2.5 3.2 3.9 
0.04 0.05 0.07 0.08 

     sediment - stream 
   

present day 
21.1 21.1 21.1 21.1 
0.24 0.24 0.24 0.24 

     
2020 

21.1 21.2 21.2 21.2 
0.24 0.24 0.24 0.24 

     
2030 

21.2 21.3 21.4 21.6 
0.24 0.25 0.25 0.25 

     
2060 

21.7 22.3 22.9 23.6 
0.25 0.26 0.26 0.27 

     sediment – pond 
   

present day 
21.2 21.2 21.2 21.2 
0.24 0.24 0.24 0.24 

     
2020 

21.3 21.3 21.4 21.4 
0.25 0.24 0.25 0.25 

     
2030 

21.5 21.7 21.9 22.1 
0.25 0.25 0.25 0.25 

     
2060 

22.6 23.8 24.9 26.1 
0.26 0.27 0.29 0.30 
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Table A4-5. Predicted copper concentrations and RCRs for scenario D5. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

soil 
    

present day 
9.6 9.6 9.6 9.6 

0.10 0.10 0.10 0.10 

     
2020 

14.2 18.9 23.6 28.3 
0.15 0.20 0.24 0.29 

     
2030 

18.5 27.4 36.4 45.4 
0.19 0.28 0.38 0.47 

     
2060 

31.2 52.9 74.7 96.4 
0.32 0.55 0.77 0.99 

     water - stream 
   

present day 
0.9 0.9 0.9 0.9 

0.21 0.21 0.21 0.21 

     
2020 

0.9 0.9 1.0 1.0 
0.22 0.23 0.24 0.24 

     
2030 

0.9 1.0 1.1 1.1 
0.23 0.24 0.26 0.28 

     
2060 

1.0 1.2 1.4 1.6 
0.25 0.30 0.34 0.38 

     water - pond 
   

present day 
0.9 0.9 0.9 0.9 

0.21 0.21 0.21 0.21 

     
2020 

0.9 0.9 1.0 1.0 
0.22 0.22 0.23 0.24 

     
2030 

0.9 1.0 1.1 1.1 
0.22 0.24 0.26 0.28 

     
2060 

1.0 1.2 1.4 1.6 
0.25 0.30 0.34 0.39 

     sediment - stream 
   

present day 
20.9 20.9 20.9 20.9 
0.24 0.24 0.24 0.24 

     
2020 

20.9 21.0 21.0 21.0 
0.24 0.24 0.24 0.24 

     
2030 

21.0 21.1 21.2 21.2 
0.24 0.24 0.24 0.24 

     
2060 

21.4 21.8 22.3 22.7 
0.25 0.25 0.26 0.26 

     sediment – pond 
   

present day 
20.8 20.8 20.8 20.8 
0.24 0.24 0.24 0.24 

     
2020 

20.9 21.0 21.1 21.2 
0.24 0.24 0.24 0.24 

     
2030 

21.2 21.6 22.0 22.5 
0.24 0.25 0.25 0.26 

     
2060 

23.1 25.5 27.9 30.3 
0.27 0.29 0.32 0.35 
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Table A4-6. Predicted copper concentrations and RCRs for scenario D6. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

soil 
    

present day 
24.7 24.7 24.7 24.7 
0.27 0.27 0.27 0.27 

     
2020 

29.8 34.9 40.1 45.2 
0.32 0.37 0.43 0.48 

     
2030 

34.4 44.2 54.0 63.8 
0.37 0.47 0.57 0.68 

     
2060 

48.3 72.0 95.7 119.4 
0.51 0.77 1.02 1.27 

     water - ditch 
    

present day 
0.8 0.8 0.8 0.8 
0.65 0.65 0.65 0.65 

     
2020 

0.9 0.9 0.9 0.9 
0.66 0.67 0.69 0.70 

     
2030 

0.9 0.9 0.9 1.0 
0.68 0.70 0.73 0.75 

     
2060 

0.9 1.0 1.1 1.2 
0.72 0.78 0.85 0.93 

     sediment – ditch 
   

present day 
21.1 21.1 21.1 21.1 
0.24 0.24 0.24 0.24 

     
2020 

21.4 21.4 21.6 21.7 
0.24 0.25 0.25 0.25 

     
2030 

21.7 22.4 23.1 23.6 
0.25 0.26 0.27 0.27 

     
2060 

24.0 28.4 32.0 35.4 
0.28 0.33 0.37 0.41 
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Table A4-7. Predicted copper concentrations and RCRs for scenario R1. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

Soil 
    

present day 
15.0 15.0 15.0 15.0 
0.23 0.23 0.23 0.23 

     
2020 

20.4 25.9 31.3 36.7 
0.32 0.40 0.49 0.57 

     
2030 

25.3 35.7 46.0 56.3 
0.40 0.56 0.72 0.88 

     
2060 

39.9 64.9 89.8 114.8 
0.62 1.01 1.40 1.79 

     water - stream 
   

present day 
0.9 0.9 0.9 0.9 
0.29 0.29 0.29 0.29 

     
2020 

0.9 1.0 1.1 1.1 
0.31 0.34 0.35 0.37 

     
2030 

1.0 1.1 1.2 1.3 
0.33 0.37 0.41 0.44 

     
2060 

1.2 1.4 1.6 1.9 
0.39 0.47 0.55 0.62 

     water - pond 
   

present day 
1.4 1.4 1.4 1.4 
0.46 0.46 0.46 0.46 

     
2020 

2.5 3.5 4.5 5.5 
0.85 1.18 1.50 1.82 

     
2030 

3.6 5.5 7.4 9.3 
1.19 1.84 2.47 3.10 

     
2060 

6.5 11.2 15.9 20.7 
2.16 3.73 5.30 6.89 

     sediment - stream 
   

present day 
21.6 21.6 21.6 21.6 
0.25 0.25 0.25 0.25 

     
2020 

21.6 21.9 22.0 22.1 
0.25 0.25 0.25 0.25 

     
2030 

22.0 22.6 23.0 23.3 
0.25 0.26 0.26 0.27 

     
2060 

24.1 26.5 28.6 30.7 
0.28 0.30 0.33 0.35 

     sediment - pond 
   

present day 
23.3 23.3 23.3 23.3 
0.27 0.27 0.27 0.27 

     
2020 

23.5 24.4 24.7 25.1 
0.27 0.28 0.28 0.29 

     
2030 

24.9 26.8 28.2 29.5 
0.29 0.31 0.32 0.34 

     
2060 

32.3 40.5 47.7 54.7 
0.37 0.47 0.55 0.63 
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Table A4-8. Predicted copper concentrations and RCRs for scenario R2. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

soil 
    

present day 
8.3 8.3 8.3 8.3 
0.08 0.08 0.08 0.08 

     
2020 

14.3 20.4 26.5 32.5 
0.15 0.21 0.27 0.33 

     
2030 

19.7 31.3 42.8 54.3 
0.20 0.32 0.44 0.55 

     
2060 

35.8 63.5 91.1 118.8 
0.37 0.65 0.93 1.21 

     water - stream 
   

present day 
0.9 0.9 0.9 0.9 
0.21 0.21 0.21 0.21 

     
2020 

1.1 1.4 1.6 1.8 
0.28 0.35 0.40 0.46 

     
2030 

1.4 1.8 2.3 2.8 
0.34 0.46 0.58 0.69 

     
2060 

2.0 3.2 4.3 5.6 
0.51 0.79 1.09 1.39 

     sediment - stream 
   

present day 
21.2 21.2 21.2 21.2 
0.24 0.24 0.24 0.24 

     
2020 

21.3 21.4 21.6 21.7 
0.24 0.25 0.25 0.25 

     
2030 

21.7 22.2 22.6 23.1 
0.25 0.25 0.26 0.27 

     
2060 

24.0 26.5 29.0 31.4 
0.28 0.30 0.33 0.36 
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Table A4-9. Predicted copper concentrations and RCRs for scenario R3. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

soil 
    

present day 
30.9 30.9 30.9 30.9 
0.34 0.34 0.34 0.34 

     
2020 

35.9 40.9 45.9 50.9 
0.40 0.45 0.51 0.57 

     
2030 

40.4 49.9 59.4 68.9 
0.45 0.55 0.66 0.77 

     
2060 

53.9 76.8 99.7 122.6 
0.60 0.85 1.11 1.36 

     water - stream 
   

present day 
0.9 0.9 0.9 0.9 

0.37 0.37 0.37 0.37 

     
2020 

0.9 0.9 1.0 1.0 
0.38 0.39 0.40 0.41 

     
2030 

0.9 1.0 1.0 1.1 
0.39 0.41 0.42 0.44 

     
2060 

1.0 1.1 1.2 1.3 
0.41 0.45 0.49 0.53 

     sediment - stream 
   

present day 
24.5 24.5 24.5 24.5 
0.28 0.28 0.28 0.28 

     
2020 

25.1 25.2 25.3 25.4 
0.29 0.29 0.29 0.29 

     
2030 

25.9 26.4 26.9 27.3 
0.30 0.30 0.31 0.31 

     
2060 

29.3 32.2 35.0 37.7 
0.34 0.37 0.40 0.43 
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Table A4-10. Predicted copper concentrations and RCRs for scenario R4. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

soil 
    

present day 
19.8 19.8 19.8 19.8 
0.32 0.32 0.32 0.32 

     
2020 

25 29 34 39 
0.40 0.47 0.55 0.63 

     
2030 

29 38 47 57 
0.47 0.61 0.76 0.91 

     
2060 

42 64 86 109 
0.68 1.04 1.39 1.75 

     water - stream 
   

present day 
0.8 0.8 0.8 0.8 

0.20 0.20 0.20 0.20 

     
2020 

0.8 0.9 0.9 0.9 
0.21 0.21 0.21 0.21 

     
2030 

0.9 0.9 0.9 0.9 
0.21 0.21 0.22 0.22 

     
2060 

0.9 0.9 1.0 1.0 
0.21 0.22 0.23 0.24 

     sediment - stream 
   

present day 
20.9 20.9 20.9 20.9 
0.24 0.24 0.24 0.24 

     
2020 

20.9 20.9 21.0 21.1 
0.24 0.24 0.24 0.24 

     
2030 

21.0 21.2 21.3 21.6 
0.24 0.24 0.25 0.25 

     
2060 

21.8 22.7 23.6 24.6 
0.25 0.26 0.27 0.28 
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Appendix 5: Tables of predicted copper concentration in topsoils, 

surface waters and sediments, and Risk Characterisation Ratios (RCRs), 

with attenuation due to 10m wide vegetation filter strips (runoff 

scenarios only) 

Predicted concentrations and RCRs are presented for the years 2020, 2030 and 2060. Units 

of predicted concentrations are µg g-1 for soils, µg l-1 for waters and µg g-1 for sediments. The 

RCR values are listed below the predicted concentrations. Values greater than or equal to 

one, indicating a potential risk, are highlighted in bold. 
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Table A5-1. Predicted copper concentrations and RCRs in waters for scenario R1, 
simulating VFS of 10m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water - stream 
        

2020 
0.9 0.9 1.0 1.0 

0.30 0.31 0.32 0.33 

     
2030 

0.9 1.0 1.0 1.1 
0.31 0.3 0.34 0.36 

     
2060 

1.0 1.1 1.2 1.3 
0.34 0.37 0.41 0.44 

     water - pond 
        

2020 
2.3 3.0 3.5 4.1 

0.76 0.99 1.18 1.36 

     
2030 

3.0 4.2 5.2 6.2 
1.00 1.40 1.74 2.06 

     
2060 

4.8 7.3 9.5 11.7 
1.60 2.43 3.18 3.91 

     sediment – stream 
        

2020 
21.5 21.5 21.5 21.6 
0.25 0.25 0.25 0.25 

     
2030 

21.7 21.8 21.9 22.1 
0.25 0.25 0.25 0.25 

     
2060 

22.6 23.4 24.2 25.0 
0.26 0.27 0.28 0.29 

     sediment - pond 
        

2020 
21.5 21.6 21.6 21.7 
0.25 0.25 0.25 0.25 

     
2030 

21.7 21.9 22.2 22.4 
0.25 0.25 0.25 0.26 

     
2060 

22.9 24.1 25.2 26.3 
0.26 0.28 0.29 0.30 
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Table A5-2. Predicted copper concentrations and RCRs for scenario R2, simulating 
VFS of 10m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water - stream 
        

2020 
1.0 1.2 1.3 1.5 

0.26 0.30 0.33 0.36 

     
2030 

1.2 1.5 1.7 1.9 
0.30 0.36 0.42 0.48 

     
2060 

1.6 2.2 2.7 3.3 
0.39 0.54 0.68 0.82 

     sediment - stream 
        

2020 
21.2 21.2 21.3 21.3 
0.24 0.24 0.24 0.24 

     
2030 

21.3 21.5 21.7 21.9 
0.25 0.25 0.25 0.25 

     
2060 

22.3 23.3 24.2 25.1 
0.26 0.27 0.28 0.29 
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Table A5-3. Predicted copper concentrations and RCRs for scenario R3, simulating 
VFS of 10m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water - stream 
        

2020 
0.9 0.9 0.9 0.9 

0.37 0.37 0.38 0.38 

     
2030 

0.9 0.9 0.9 0.9 
0.37 0.38 0.39 0.39 

     
2060 

0.9 1.0 1.0 1.0 
0.38 0.40 0.42 0.44 

     sediment - stream 
        

2020 
22.8 22.8 22.9 22.9 
0.26 0.26 0.26 0.26 

     
2030 

23.1 23.3 23.5 23.6 
0.27 0.27 0.27 0.27 

     
2060 

24.4 25.5 26.5 27.5 
0.28 0.29 0.30 0.32 
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Table A5-4. Predicted copper concentrations and RCRs for scenario R4, simulating 
VFS of 10m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water – stream 
        

2020 
0.8 0.9 0.9 0.9 

0.21 0.21 0.21 0.21 

     
2030 

0.9 0.9 0.9 0.9 
0.21 0.21 0.21 0.21 

     
2060 

0.9 0.9 0.9 0.9 
0.21 0.21 0.22 0.22 

     sediment - stream 
        

2020 
20.9 21.0 21.0 21.0 
0.24 0.24 0.24 0.24 

     
2030 

21.0 21.1 21.1 21.2 
0.24 0.24 0.24 0.24 

     
2060 

21.3 21.6 22.0 22.3 
0.24 0.25 0.25 0.26 
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Appendix 6: Tables of predicted copper concentration in topsoils, 

surface waters and sediments, and Risk Characterisation Ratios (RCRs), 

with attenuation due to 20m wide vegetation filter strips (runoff 

scenarios only) 

Predicted concentrations and RCRs are presented for the years 2020, 2030 and 2060. Units 

of predicted concentrations are µg g-1 for soils, µg l-1 for waters and µg g-1 for sediments. The 

RCR values are listed below the predicted concentrations. Values greater than or equal to 

one, indicating a potential risk, are highlighted in bold. 
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Table A6-1. Predicted copper concentrations and RCRs in waters for scenario R1, 
simulating VFS of 20m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water - stream 
        

2020 
0.9 0.9 0.9 0.9 

0.30 0.30 0.31 0.31 

     
2030 

0.9 0.9 1.0 1.0 
0.30 0.31 0.32 0.32 

     
2060 

1.0 1.0 1.1 1.1 
0.32 0.34 0.36 0.38 

     water – pond 
        

2020 
2.1 2.7 3.2 3.6 

0.71 0.89 1.05 1.20 

     
2030 

2.7 3.7 4.5 5.2 
0.91 1.23 1.49 1.74 

     
2060 

4.2 6.1 7.7 9.3 
1.41 2.03 2.58 3.10 

     sediment – stream 
        

2020 
21.4 21.4 21.4 21.4 
0.25 0.25 0.25 0.25 

     
2030 

21.5 21.6 21.7 21.8 
0.25 0.25 0.25 0.25 

     
2060 

22.2 22.7 23.2 23.7 
0.25 0.26 0.27 0.27 

     sediment – pond 
        

2020 
21.2 21.2 21.2 21.2 
0.24 0.24 0.24 0.24 

     
2030 

21.3 21.3 21.4 21.5 
0.24 0.25 0.25 0.25 

     
2060 

21.7 22.1 22.5 22.9 
0.25 0.25 0.26 0.26 
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Table A6-2. Predicted copper concentrations and RCRs for scenario R2, simulating 
VFS of 20m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water - stream 
        

2020 
1.0 1.1 1.2 1.3 

0.25 0.28 0.30 0.32 

     
2030 

1.1 1.3 1.4 1.6 
0.28 0.32 0.36 0.40 

     
2060 

1.4 1.8 2.1 2.5 
0.34 0.44 0.53 0.62 

     sediment – stream 
        

2020 
21.1 21.2 21.2 21.2 
0.24 0.24 0.24 0.24 

     
2030 

21.2 21.4 21.5 21.6 
0.24 0.25 0.25 0.25 

     
2060 

21.9 22.6 23.3 23.9 
0.25 0.26 0.27 0.27 
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Table A6-3. Predicted copper concentrations and RCRs for scenario R3,  
simulating VFS of 20m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water - stream 
        

2020 
0.9 0.9 0.9 0.9 

0.36 0.37 0.37 0.37 

     
2030 

0.9 0.9 0.9 0.9 
0.37 0.37 0.38 0.38 

     
2060 

0.9 0.9 1.0 1.0 
0.37 0.39 0.40 0.41 

     sediment - stream 
        

2020 
22.2 22.3 22.3 22.3 
0.26 0.26 0.26 0.26 

     
2030 

22.4 22.6 22.7 22.8 
0.26 0.26 0.26 0.26 

     
2060 

23.3 24.0 24.6 25.2 
0.27 0.28 0.28 0.29 
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Table A6-4. Predicted copper concentrations and RCRs for scenario R4,  
simulating VFS of 20m width. 

  Copper application rate kg ha-1 a-1 
  2 4 6 8 

water – stream 
        

2020 
0.8 0.8 0.9 0.9 

0.21 0.21 0.21 0.21 

     
2030 

0.8 0.9 0.9 0.9 
0.21 0.21 0.21 0.21 

     
2060 

0.9 0.9 0.9 0.9 
0.21 0.21 0.22 0.22 

     sediment - stream 
        

2020 
20.9 21.0 21.0 21.0 
0.24 0.24 0.24 0.24 

     
2030 

21.0 21.0 21.1 21.1 
0.24 0.24 0.24 0.24 

     
2060 

21.4 21.4 21.7 21.9 
0.24 0.25 0.25 0.25 
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Appendix 7: Charts of copper concentrations in topsoils, surface waters 

and sediments, in the absence of vegetation filter strips 

Charts show the evolution of predicted copper concentrations from 2000 (representing pre-

contamination conditions) to 2060. Concentrations resulting from specific application rates 

are denoted as follows on the charts: 

2 kg Cu ha-1 a-1 Solid green line 

4 kg Cu ha-1 a-1 Dashed yellow line 

6 kg Cu ha-1 a-1 Dash-dot orange line 

8 kg Cu ha-1 a-1 Dash-dot-dot red line 

On each chart, the relevant copper PNEC is indicated by a solid horizontal blue line. On the 

chart displaying the simulations of surface water concentrations, the ‘reasonable’ worst case’ 

PNEC of 6.8 µg l-1 copper is displayed as a dashed horizontal blue line, and the proposed 

EU RAC of 9.5 µg l-1 is displayed as a thick red line. 
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Figure A7-1. Topsoil copper accumulation for scenarios D1 to D6. 
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Figure A7-2. Topsoil copper accumulation for scenarios R1 to R4. 
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Figure A7-3. Copper surface water concentrations for scenarios D1-D3. 
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Figure A7-4. Copper surface water concentrations for scenarios D4-D6. 
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Figure A7-5. Copper surface water concentrations for scenarios R1-R4. 
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Figure A7-6. Copper sediment concentrations for scenarios D1-D3. 
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Figure A7-7. Copper sediment concentrations for scenarios D4-D6. 
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Figure A7-8. Copper sediment concentrations for scenarios R1-R4. 
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Appendix 8: Charts of copper concentrations in topsoils, surface 

waters and sediments, in the presence of 10m and 20m vegetation 

filter strips 

Charts show the evolution of predicted copper concentrations from 1850 (representing pre-
contamination conditions) to 2060. Concentrations resulting from specific application rates 
are denoted as follows on the charts: 
  
2 kg Cu ha-1 a-1 Solid green line  
4 kg Cu ha-1 a-1 Dashed yellow line  
6 kg Cu ha-1 a-1 Dash-dot orange line  
8 kg Cu ha-1 a-1 Dash-dot-dot red line  
 
On each chart, the relevant copper PNEC is indicated by a solid horizontal blue line. On the 

chart displaying the simulations of surface water concentrations, the ‘reasonable’ worst case’ 

PNEC of 6.8 μg l-1 is displayed as a dashed horizontal blue line, and the proposed EU RAC 

of 9.5 µg l-1 is displayed as thick red line. 
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Figure A8-1. Surface water copper concentrations for scenarios R1 to R4,  

assuming VFS of 10m width. 

Surface water: R2-stream
10m VFS, inputs start 2010

Year

2000 2010 2020 2030 2040 2050 2060

S
u

rf
a

c
e

 w
a

te
r 

d
is

s
o

lv
e

d
 C

u
 (

µ
g

/l
)

0

2

4

6

8

10

Surface water: R3-stream
10m VFS, inputs start 2010

Year

2000 2010 2020 2030 2040 2050 2060

S
u

rf
a

c
e

 w
a

te
r 

d
is

s
o

lv
e

d
 C

u
 (

µ
g

/l
)

0

2

4

6

8

10

Surface water: R4-stream
10m VFS, inputs start 2010

Year

2000 2010 2020 2030 2040 2050 2060

S
u

rf
a

c
e

 w
a

te
r 

d
is

s
o

lv
e

d
 C

u
 (

µ
g

/l
)

0

2

4

6

8

10

Surface water: R1-stream
10m VFS, inputs start 2010

Year

2000 2010 2020 2030 2040 2050 2060

S
u

rf
a

c
e

 w
a

te
r 

d
is

s
o

lv
e

d
 C

u
 (

µ
g

/l
)

0

2

4

6

8

10

Surface water: R1-pond
10m VFS, inputs start 2010

Year

2000 2010 2020 2030 2040 2050 2060

S
u

rf
a

c
e

 w
a

te
r 

d
is

s
o

lv
e

d
 C

u
 (

µ
g

/l
)

0

2

4

6

8

10

12

14



Page 50 of 58 
 

 

Figure A8-2. Sediment copper concentrations for scenarios R1 to R4,  

assuming VFS of 10m width. 
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 Figure A8-3. Surface water copper concentrations for scenarios R1 to R4,  

assuming VFS of 20m width. 
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Figure A8-4. Sediment copper concentrations for scenarios R1 to R4,  

assuming VFS of 20m width.   
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Appendix 9: Charts of copper concentrations in surface waters and 

sediments, illustrating the influence of simulating vegetation filter 

strips 

Charts show the predicted copper concentrations in either surface waters or sediments in 
2030, under the three scenarios for the simulation of vegetation filter strips (VFS): 
  
No VFS: Unshaded (white) bars 
10m wide VFS: Light shaded (grey) bars 
20m wide VFS: Dark shaded (dark grey) bars 
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Figure A9-1. Predictions of copper concentrations in surface waters of the runoff 

scenarios in 2030. 
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Figure A9-2. Predictions of copper concentrations in sediments of the runoff 

scenarios in 2030. 

Copper input rate kg/ha/a

L1 L2 L3 L4

S
e
d

im
e
n

t 
C

u
 (

µ
g

/g
 d

w
)

0

5

10

15

20

25

30

Copper input rate kg/ha/a

L1 L2 L3 L4

S
e
d

im
e
n

t 
C

u
 (

µ
g

/g
 d

w
)

0

5

10

15

20

25

Copper input rate kg/ha/a

L1 L2 L3 L4

S
e
d

im
e
n

t 
C

u
 (

µ
g

/g
 d

w
)

0

5

10

15

20

25

30

35

Copper input rate kg/ha/a

L1 L2 L3 L4

S
e
d

im
e
n

t 
C

u
 (

µ
g

/g
 d

w
)

0

5

10

15

20

25

Copper input rate kg/ha/a

L1 L2 L3 L4

S
u

rf
a
c
e
 w

a
te

r 
d

is
s
o

lv
e
d

 C
u

 (
µ

g
/l

)

0

5

10

15

20

25

Sediments: R2-stream
effect of simulating VFS

Sediments: R3-stream
effect of simulating VFS

Sediments: R4-stream
effect of simulating VFS

Sediments: R1-pond
effect of simulating VFS

Sediments: R1-stream
effect of simulating VFS



Page 56 of 58 
 

Appendix 10: Table and charts of the predicted distribution of 

copper in surface waters in 2030 

The charts show the predicted distribution of copper in surface waters of each scenario in 
2030, in response to a loading rate of 8 kg Cu ha-1 a-1. Four forms of copper are identified in 
the charts: free ion, dissolved inorganic complexes, dissolved organic complexes and in 
suspended sediment. 
  
Free ion: white bars 
Dissolved inorganic complexes: black bars 
Dissolved organic complexes: light grey bars 
Suspended sediment: dark grey bars 
 

Table A10-1. Predictions of the distribution of copper in surface waters in 2030 in 
response to a loading rate of 8 kg Cu ha-1 a-1. 

FI = free ion; DI = dissolved inorganic complexes; DO = dissolved organic complexes; 

SED = suspended sediment-bound. The values are percentages of the total surface water 

copper. 

  
no attenuation 10 m wide VFS 20m wide VFS 

  
  FI   DI DO SED FI DI DO SED FI DI DO SED 

D1 
Ditch <0.1 0.1 49.8 50.1 

        Stream <0.1 0.1 49.9 50.0 
        

D2 
Ditch <0.1 0.3 14.2 85.5 

        Stream <0.1 0.3 14.6 85.1 
        D3 Ditch <0.1 0.5 31.5 68.0 
        

D4 
Pond <0.1 0.2 44.2 55.6 

        Stream <0.1 0.2 44.8 55.0 
        

D5 
Pond <0.1 0.6 11.4 88.0 

        Stream <0.1 0.6 11.4 88.0 
        D6 Ditch <0.1 0.9 4.2 94.9 
        

R1 
Pond <0.1 0.9 7.6 91.8 <0.1 0.5 7.5 92.0 <0.1 0.5 7.4 92.0 

Stream <0.1 3.3 8.9 87.8 <0.1 2.4 8.6 89.0 <0.1 2.0 8.5 89.5 

R2 Stream 0.2 0.4 16.1 83.3 0.1 0.3 15.7 83.8 <0.1 0.3 15.4 84.1 

R3 Stream <0.1 0.3 8.0 91.7 <0.1 0.3 7.9 91.8 <0.1 0.3 7.9 91.9 

R4 Stream <0.1 0.1 7.3 92.6 <0.1 0.1 7.3 92.6 <0.1 0.1 7.3 92.6 
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Figure A10-1. Predictions of the distribution of copper in surface waters in 2030 in 

response to a loading rate of 8 kg Cu ha-1 a-1. 
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