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Abstract 

 

 Massive graphite deposition resulting in volumetrically large occurrences in 

volcanic environments is usually hindered by the low carbon contents of magmas 

and by the degassing processes occurring during and after magma emplacement. In 

spite of this, two graphite deposits are known worldwide associated with volcanic 

settings: Borrowdale, UK, and Huelma, Spain. As inferred from the Borrowdale 

deposit, graphite mineralization resulted from the complex interaction of several 

factors, so it can be considered as an example of self-organised critical systems. 

These factors, in turn, could be used as potential guides for exploration. 

The key factors influencing graphite mineralization in volcanic settings are 1) 

an unusually high carbon content of the magmas, as a result of the assimilation of 

carbonaceous metasedimentary rocks, 2) the absence of significant degassing, 

related to the presence of sub-volcanic rocks or hypabyssal intrusions, acting as 

barriers to flow, 3) the exsolution of a carbon-bearing aqueous fluid phase, 4) the 

local structural heterogeneity (represented at Borrowdale by the deep-seated 

Burtness Comb Fault), 5) the structural control on the deposits, implying an 

overpressured, fluid-rich regime favouring a focused fluid flow, and 6) the 

temperature changes associated with fluid flow and hydration reactions, resulting in 

carbon supersaturation in the fluid, and leading to disequilibrium in the system. This 

disequilibrium is regarded as the driving force for massive graphite precipitation 

through irreversible mass transfer reactions. Therefore, the formation of volcanic-
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hosted graphite deposits can be explained in terms of a self-organized critical 

system. 

 

 

 Graphite mineralization in volcanic environments is related to precipitation 

from carbon-bearing aqueous fluids (Luque et al. 1998). Compared with other 

graphite occurrences formed through precipitation from fluids, volcanic-hosted 

graphite deposits are very uncommon. By contrast, after H2O, CO2 is the second 

most common component of volcanic gases and fluids derived from magmas; other 

carbon species, like CO and CH4, are by far less abundant (Symonds et al. 1994). 

In particular, CO2 is a dominant volatile species in magmatic fluids and gases in 

subduction zones (Wallace 2005) and may originate in the mantle. In high-

temperature volcanic gases there can be contributions from subducted marine 

limestone with slab carbonate and/or sedimentary C, which in some cases may 

constitute the major fraction of the gases (Sano & Marty 1995; Sano & Williams 

1996). The contribution of such subducted materials to the carbon budget of the 

mantle has been recognized by some authors (e.g. Zhu & Ogasawara 2002) and is 

also recorded by the carbon isotopic signature (δ13C) of diamonds (e.g. Deines et al. 

2009; Stachel et al. 2009). Even as magmas rise through the crust, there are 

mechanisms that can add large amounts of CO2, such as the assimilation/melting of 

limestone or carbonaceous sediment (Lentz 1999; Ripley et al. 2002; Pedersen & 

Larsen 2006). Lowenstern (2001) pointed out that CO2 behaves as a highly volatile 

species, both within magmas and in superjacent hydrothermal systems. In addition, 

except for carbonatite magmas, there are no major mineral phases that incorporate 

carbon within their structure and CO2 solubility is generally low in the melt. In 

hydrothermal systems, CO2 is not highly soluble under most conditions and 

precipitates as carbonate minerals at low temperatures. Usually, CO2 therefore 

exsolves from magmas and hydrothermal fluids, escaping to the surface. Although 

significant amounts of graphite (up to 8.8 wt%) have been reported in some volcanic 

rocks from Greenland (Pedersen & Larsen 2006), most magmas readily release their 

carbon along with the volcanic gases and this should account for the lack of graphite 

deposits in volcanic rocks. 

 In spite of the above arguments, there are two examples of large graphite 

deposits in volcanic settings at Borrowdale (Cumbria, UK) and Huelma (southern 

Spain) (Strens, 1965; Barrenechea et al. 1997, 2009; Luque et al. 1998, 2009a, b; 
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Ortega et al. 2009, 2010). The aim of this paper is to discuss the key factors, as 

inferred from recent detailed studies on the Borrowdale deposit, which made possible 

the concentration of a huge amount of graphite in an a priori unfavorable geological 

setting. Such a discussion follows from consideration of the Borrowdale graphite 

deposit as an example of a self-organized critical (SOC) system. This concept was 

firstly proposed by Prigogine (1961) and Prigogine & Nicolis (1977). Complex 

systems consist of a group of individual units existing far from equilibrium, interacting 

among themselves and from this interaction new properties arise. That is, Complexity 

Science studies the way non-equilibrium energy-flow systems spontaneously 

organize themselves, resulting in complex patterns which are not predictable from 

the individual components of the system. Bak et al. (1987) and Bak (1996) developed 

the idea of self-organized criticality applied to different natural systems further. Based 

on these works, Hronsky (2009) suggested that the formation of ore deposits can be 

also explained in terms of SOC systems. 

As a SOC system, the formation of the Borrowdale volcanic-hosted graphite 

deposit comprises many interacting components and the dynamics of the system are 

dependent on their conjunction and complex interaction. The application of 

Complexity Science concepts to this deposit has very important implications not 

included within the current dominant paradigm used to explain mineral systems (i.e.  

source-transport-trap; e.g. Misra 2000), in which Borrowdale would be categorized as 

an “atypical deposit”. By contrast, the SOC concepts allow understanding of this 

mineral system from a fluid-centered perspective as a self-organized fluid-flux 

system. 

 

Geological setting and petrography of the Borrowdale deposit 

 

 The graphite deposit is hosted by andesite rocks belonging to the upper 

Ordovician (Katian) Borrowdale Volcanic Group (BVG), and by a probably 

contemporaneous hypabyssal dioritic intrusion (Fig. 1). This intrusion is in the 

immediate hanging wall of the Burtness Comb Fault which is inferred to lie above a 

repeatedly re-activated, deep-seated basement structure. The Burtness Comb Fault 

was therefore one of the fundamental faults that controlled the accumulation and 

preservation of the BVG (Millward 2002). Within the BVG, volcanism was mainly 

subaerial and corresponded to medium- to high-K calc-alkaline rocks related to 

subduction along a continental margin (Fitton et al. 1982; Beddoe-Stephens et al. 
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1995). The BVG is underlain by anchizonal to epizonal metapelites and sandstones 

of the upper Cambrian to middle Ordovician Skiddaw Group. There is petrological 

and geochemical evidence for assimilation of Skiddaw Group lithologies by the BVG 

magmas (Fitton 1972; McConnell et al. 2002; Ortega et al. 2010).  

 The graphite deposit occupies approximately a 400 m length of a conjugate 

set of normal faults. The richest mineralized bodies are developed at the 

intersections of the faults as steeply inclined pipe-like bodies up to 1 x 3 m in cross-

section and from a few metres to over 100 m in length (Fig. 2a). The mineralized 

breccia pipe bodies suggest a quick upwards transport of overpressured (supra-

lithostatic) fluids, similar to diatreme-like bodies. Graphite in the pipe-like bodies 

mainly occurs within the andesite and diorite wall rocks as subspherical to ellipsoidal 

aggregates (nodules up to 10-15 cm in diameter or major length), along with radiating 

aggregates of elongate epidote crystals [with average composition Ca2 

(Mn0.01Mg0.01Fe3+
0.75Ti0.01Al2.25) (Al0.02Si2.98) O12 (OH)], chlorite, polycrystalline quartz, 

and minor pyrite and chalcopyrite. The wall rocks show an intense hydrothermal 

alteration to an assemblage containing quartz, chlorite, and albite, along with some 

disseminated small aggregates of graphite and late calcite veinlets. These features 

are indicative of an intense propylitic alteration, and provide evidence that the main 

stage of graphite precipitation occurred during this hydrothermal event (Luque et al. 

2009a; Ortega et al. 2009, 2010). In addition to the pipe-like bodies, graphite also 

occurs associated with chlorite along fault planes (Fig. 2b) and as disseminations 

replacing the andesite and diorite (Fig. 2c). Graphite-chlorite veins represent a late 

event of graphite mineralization with respect to that of the pipe-like bodies (Ortega et 

al. 2010). 

 The Borrowdale deposit shows the greatest variety of crystalline graphite 

morphologies recognized to date from a single deposit, including flakes (which are 

the dominant morphology), cryptocrystalline graphite which may display colloform 

texture around quartz or wall-rock fragments, spherulites both within quartz and 

within flaky graphite, discs, and rings. The textural sequence of these graphite 

morphologies indicates that they crystallized from a carbon-bearing aqueous  fluid 

(comprising H2O, CO2, and CH4 as dominant fluid species) with progressively 

decreasing carbon supersaturation (Barrenechea et al. 2009). X-ray diffraction (XRD) 

and Raman data reveal that the graphite is highly crystalline as evidenced by the 

sharp and symmetrical peaks in the XRD patterns (Luque et al. 2009a) as well as by 

the very low intensity and area ratios of the disorder (~1350 cm-1) to the order (~1580 
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cm-1) peak in the first-order Raman spectra (Barrenechea et al. 2009). In the same 

way, the curves of differential thermal analysis of graphite from the Borrowdale 

deposit are also in agreement with its high crystallinity, showing strong exothermic 

peaks at temperatures in excess of 740 ºC (Ortega et al. 2010). Stable carbon 

isotope signatures of individual graphite morphologies and bulk concentrates from 

the Borrowdale deposit are highly negative (δ13C from -34.5 to -24.3 ‰). In particular, 

within the pipe-like bodies, the quite homogeneous carbon isotopic signature both at 

the microscale and at the scale of each single graphite nodule suggests deposition 

between 500° and 400°C at about 2 kbar (Ortega et al. 2010). The highly negative 

δ13C values suggest that the carbon was derived from a biogenic source. As 

mentioned before, there is geological and geochemical evidence of assimilation of 

metapelite and sandstone from the Skiddaw Group by the volcanic host rocks. 

Therefore, these metasedimentary rocks must be regarded as the most probable 

source of carbon in the deposit (Barrenechea et al. 2009; Ortega et al. 2010).  

 The fluid inclusion study carried out on quartz fragments associated with the 

graphite nodules in the mineralized pipes have allowed the characteristics of the 

mineralizing fluids to be established. The studied fluid inclusions are both primary 

and secondary and record the fluids that were circulating during the hydrothermal 

event responsible for the coeval propylitic alteration and graphite mineralization 

(Ortega et al. 2010). The fluid inclusions can be grouped into low-density vapour-rich 

inclusions (V), and more dense liquid-rich inclusions (L). Petrographic, 

microthermometric and Raman data have allowed the definition of four types of 

inclusions (V, VS, L1 and L2; Table 1) revealing an overall fluid evolution 

characterized by: 1) progressive decrease in the XCO2/(XCO2+XCH4) mole ratio 

(#XCO2 hereafter), and 2) progressive increase in the XH2O. Considering the 

composition of the earliest V fluid and the pressure inferred from geological data and 

isochores of V-type inclusions (2 kbar; Ortega et al. 2010), graphite precipitation 

started from CO2-rich fluids during cooling from ~500 ºC to ~400 ºC. The lack of 

isotopic zoning in graphite and the constant epidote composition indicate that fO2 of 

the fluid-rock system remained constant near the Fayalite-Magnetite-Quartz (FMQ) 

buffer during the mineralisation process (Luque et al., 2009a; Ortega et al., 2010). 

The dominant net graphite precipitation reaction in the initial stage of mineralization 

was CO2 + CH4  2C + 2H2O, and driven by hydration of the wall rock as shown by 

the presence of small graphite spherulites intergrown with chlorite in the andesite 

wall rock (Barrenechea et al. 2009). If this reaction had operated throughout the 
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whole mineralizing process, V-type inclusions with higher #XCO2 than actually found 

should have been generated (Ortega et al. 2010). In addition, the composition of the 

graphite-bearing VS inclusions, which contains only CH4, with no CO2, supports the 

involvement of a CO2-consuming reaction during the main stage of graphite 

deposition. The textural relationship between epidote and flaky graphite within the 

pipes strongly suggests that the main graphite precipitation event was dominated by 

the net reaction CO2  C + O2, which took place after hydration of the wall-rock 

ceased. This reaction is supported by the lack of stability of epidote for XCO2>0.2 

(Ferry & Burt 1982; Liou 1993) and type V fluid containing an average bulk XCO2 of 

0.24. Thus, epidote crystallization was likely triggered by the consumption of CO2 in 

the reaction of graphite precipitation. Considering the upper stability limit of the 

propylitic assemblage, the main event of graphite precipitation should have occurred 

at temperatures close to 400 ºC (Ortega et al. 2010). The reduction of CO2 

proceeded until the fluid was so much depleted in CO2 (and thus relatively enriched 

in CH4) that the net reaction CH4 + O2  C + 2H2O became the dominant one 

(Ortega et al., 2010). This reaction prevailed during graphite deposition in the late 

chlorite-graphite veins as supported by the δ13C values (Barrenechea et al. 2009). 

Further details on the characteristics of the fluid inclusions and on the mechanisms of 

graphite precipitation at the Borrowdale deposit can be found in Luque et al. (2009a) 

and Ortega et al. (2009, 2010). 

 

The Borrowdale deposit as a self-organized critical (SOC) system 

 

 According to Hronsky (2009) most ore-forming systems can be considered as 

examples of complex, SOC systems. To understand these systems, the combination 

and interaction of the components and their feedbacks within the system must be 

considered, rather than the individual components by themselves. In addition, SOC 

systems require a separation of timescales between energy input and output. This 

seems to be critical to the capacity of the system to self-organize. Otherwise, the 

behaviour of the system is completely dominated by the external applied force and 

no interesting behaviour emerges. The keys to ore formation are the dynamic 

processes that concentrate their mass flux. 

 As previously mentioned, volcanic environments are unlikely for the location of 

graphite deposits, because carbon species are released as magmas rise up. Thus, 

several conditions must occur together to provide a suitable scenario for massive 
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graphite deposition in such environments. The graphite deposit at Borrowdale shows 

all these conditions and is a good example to understand the dynamic variables 

involved in the development of an ore deposit from the perspective of a SOC system. 

The key factors which controlled the formation of the Borrowdale graphite 

deposit were 1) the unusually high carbon content of the magma, 2) the presence of 

the diorite intrusion, 3) the exsolution of a carbon-bearing aqueous fluid phase, 4) the 

local structural heterogeneity represented by the Burtness Comb Fault, 5) the 

focused fluid-flow regime, and 6) the temperature changes associated with fluid flow 

and hydration reactions that resulted in carbon supersaturation in the fluid. The 

combination of these factors concurred for the formation of this singular deposit as 

shown in Fig. 3. 

 Carbon content in magmas is usually low. About 1.5% CO2 is soluble in 

silicate melts at 1400 ºC and 20 kbar (Mattey 1991), although higher CO2 solubilities 

have been reported in mantle magmas (Wyllie & Huang 1976; Eggler et al. 1976). It 

also has been shown that CO2 solubility increases with increasing pressure, oxygen 

fugacity and magma alkalinity (Pawley et al. 1992; Jendrzejewski et al. 1997; 

Lowenstern 2001). However, magmas generally degas quite strongly when their 

ascent slows down or stops at constrictions in conduits and, eventually, in magma 

chambers (Sarda & Guillot, 2005). Giggenbach (1996) pointed out that the volatile 

contents of andesitic magmas related to subduction zones (like the BVG) are likely to 

be high enough to allow a separate, volatile-rich phase to be present during all 

stages of magma generation and migration. However, most of the andesite rocks 

lack graphite even as an accessory phase. Evidence suggests therefore that such 

carbon contents and conditions of degassing do not favour the formation of 

significant amounts of graphite in volcanic rocks. Furthermore, if degassing does not 

operate, carbon behaves as an incompatible element and it therefore concentrates in 

the residual fluids during magma crystallization.  

 A critical factor, therefore, in originating both the volumetrically large volcanic-

hosted graphite occurrences at Borrowdale and Huelma, southern Spain 

(Barrenechea et al. 1997; Luque et al. 2009b) is the assimilation of carbonaceous 

pelitic material during evolution of the magmas (Fig. 3). Similarly, magmatic 

contamination by pelitic material has been invoked to explain the significant graphite 

content of andesites in western Greenland (Pedersen and Larsen, 2006) and dacites 

in the Erland Complex of the Faroe-Shetland Basin (Kanaris-Sotiriou 1997). At 

Borrowdale, geochemical, mineralogical, and isotope data implicate 



 8

metasedimentary rocks of the underlying Skiddaw Group in the BVG magmas (Fitton 

1972; Fitton et al. 1982; Beddoe-Stephens et al. 1995; McConnell et al. 2002). The 

stable carbon isotope ratios of graphite in the Borrowdale deposit, with light δ13C 

values ranging from -34.5 to -24.3 ‰, clearly point to the biogenic origin of the 

carbon (Weis et al. 1981; Barrenechea et al. 2009; Ortega et al. 2009, 2010) and 

support this contention. The carbon content of the mudstones and siltstones of the 

Skiddaw Group ranges from 0.4 to 1 wt% (Bebout et al. 1999; Ortega et al. 2010). 

In this way, the magmas incorporated substantial amounts of carbon through 

the assimilation of these rocks. It is difficult to estimate how much carbon the 

magmas assimilated, since the exploitation of the graphite deposit goes back to the 

16th century. Tyler (1995) provided some figures for the tonnage of graphite 

production at the Seathwaite mine along its history (from 1597 to 1876). Considering 

all grades he quoted, a total amount close to 1023 tonnes of graphite results. Much 

of the grades (e.g. inferior, rock rubbish) probably do not correspond to pure 

graphite. So, we must accept that by using the raw figures we are overestimating the 

recorded C percentage mined. If we assume an average density of 2.77 g/cm3
 (Lee 

1986) and an average carbon content of 0.5 wt% for the Skiddaw metapelites, then 

the volume of assimilated metapelites would be close to 75,000 m3. Such estimation 

involves the assumption that all the assimilated carbon from the Skiddaw Group 

lithologies was later transferred as graphite to the deposit. Despite the uncertainty in 

these figures, they appear small in the context of models for the magmatic evolution 

of the BVG by AFC processes, as envisaged by Beddoe-Stephens et al. (1995) and 

McConnell et al. (2002). Thus, McConnell et al. (2002) suggested fractional 

crystallization/assimilation ratios of 0.4 to 1.5. Unpublished O18 values from some of 

the more contaminated BVG lavas require incorporation of up to about 40% bulk 

Skiddaw Group whilst some of the least contaminated rocks require 7-13% (MF 

Thirlwall, pers. comm.). These data would mean that a large proportion of the 

assimilated carbon was probably outgassed during the subaerial volcanism of the 

rocks of the BVG. In any case, the assimilation of carbon from the metasediments of 

the Skiddaw Group by the magmas of the BVG, constituted the first key factor for the 

massive graphite mineralization at Borrowdale to be formed. 

The assimilation of such a huge amount of carbon poses an interesting 

question about the genesis of large graphite occurrences in igneous rocks 

considering the low solubility of carbon in silicate melts (only up to 12 wt.% of CO2 

can be dissolved in melts at pressure >4.5 GPa and at temperature between 950-
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1000 ºC; Hermann & Green 2002). In addition to experimental data, it has been 

shown that even in ultra-high pressure metamorphic rocks carbon can be hardly 

dissolved in silicate melts, but the reaction of silicate melt with carbonates could 

liberate some carbon (Korsakov et al. 2004, 2010; Korsakov & Hermann 2006). 

Although there is no evidence of carbonate assimilation at Borrowdale and, taking 

into account that assimilation of carbonaceous metasediment occurred at much 

shallower levels as inferred from the conditions of crystallization of garnet in the 

andesitic rocks (P<5-7 kbar; Fitton et al. 1982; Beddoe-Stephens & Mason 1991), it 

is unlikely that carbon was present only as a dissolved species in the melt. Therefore, 

a fluid phase could have coexisted with the melt, but was never dissolved in it (i.e., 

the fluid phase was immiscible). Evidence at Borrowdale points to graphite 

precipitation from a carbon-bearing aqueous fluid containing CO2 and CH4, rather 

than from pure CO2. The solubility of such a fluid in the melt is unknown and 

additional studies would be needed to address this in detail. However, whether 

carbon coexisted as an immiscible phase with the melt, or was dissolved (or both) 

does not diminish the importance of metasediment assimilation as a key factor 

involved in massive graphite precipitation in volcanic environments discussed in this 

paper. 

In the context of the SOC model, an essential element of ore-forming systems 

is a localized threshold barrier to flow (Hronsky 2009). At Borrowdale this barrier is 

represented by the dioritic intrusion. The key role of the hypabyssal dioritic intrusion 

in the emplacement of the Borrowdale graphite deposit was firstly recognized by 

Strens (1965). As previously mentioned, the BVG represents subaerial, subduction-

related andesitic volcanism and associated high-level intrusions. In the volcanic 

environment, the carbonic species derived from the assimilation would be released 

during magma ascent, and transferred to the surface, probably through the fault 

network (Giammanco et al. 1998). By contrast with the high-level volcanic setting, the 

crystallization of a batch of magma under subvolcanic-hypabyssal conditions at 

Seathwaite (i.e. the dioritic intrusion) provided a completely different scenario (Fig. 

3). Such a scenario can also be recognized at Huelma where graphite mineralization 

is restricted to a sill within a submarine volcanic sequence (Barrenechea et al. 1997; 

Luque et al. 2009b). In the case of the Borrowdale deposit, the volatiles exsolved 

from the magma remained concealed, resulting in a carbon-rich aqueous fluid phase.  

 It should be emphasized that although a significant number of hypabyssal 

mafic bodies of similar composition mapped throughout the Skiddaw Group outcrop 
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to the north of Borrowdale (Fortey et al. 1994), yet none of these is known to have 

associated graphite deposits, nor have the few intrusions of this type that occur 

within the BVG outcrop. The reason for the Borrowdale graphite deposit to occur in 

its location is most probably related to the fact that the associated diorite intrusion is 

in the immediate hanging wall of the Burtness Comb Fault (Fig. 1). This E- to ENE-

striking fault is inferred to lie above a repeatedly re-activated, deep-seated basement 

structure, and hence was one of the fundamental faults that controlled the 

accumulation and preservation of the BVG (Millward 2002). The fault may in part also 

mark the northern margin of the Scafell Caldera, a major piecemeal, hydrovolcanic 

system within the BVG (Branney & Kokelaar 1994). This active fault system would 

have provided the necessary channel ways for the ascent of both magma and fluids 

(Ortega et al. 2010). Therefore, there is a close relationship between the location of 

the graphite deposit and zones of structural heterogeneity along its host rock that 

focused fluid flow (Fig. 3). The Burtness Comb Fault likely acted as a preferential 

weakened zone for failure caused by fluid pressure increase. Such spatial 

association of ore deposits with zones of localized complexity along long-lived, large-

scale structures and the relationship between fluid conduits and low-bulk strain 

fracture networks are also addressed in the SOC model (Hronsky 2009). 

 SOC systems are typically characterized by situations where the driving 

energy flux is added slowly relative to the episodes of energy release from the 

system. Thus, a final useful prediction of the SOC ore-system concept is that ore 

formation is likely to be associated with specific favourable periods in the evolution of 

a terrane and that the formation of a deposit can represent either multiple fluid 

discharge events that are focused through the same rock volume, or a single major 

event (Hronsky 2009). The evidence from the graphite deposit at Borrowdale is that a 

single episode of large volume fluid-flow occurred and this represents another major 

factor controlling its formation. The importance of tectonic control on the 

mineralization is demonstrated by the concentration of graphite within near-vertical 

pipe-like bodies developed at the intersection of conjugate normal fractures which 

are also mineralized. These types of structure, especially the breccia pipes, imply an 

overpressured, fluid-rich regime which favoured the transport of andesitic and dioritic 

rocks and/or melts upwards, fracturing of wall-rock and eventually resulted in the 

precipitation of huge amounts of graphite from the fluids involved (Fig. 3). The 

structural features indicate therefore that the main mineralization event in Borrowdale 

was catastrophic, that is, it occurred in a geologically very short period of time 
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(Ortega et al. 2010). Once again, this episode of sudden energy change from the 

system is in good agreement with the predictions of “avalanche events” in the SOC 

model.  

 The fracturing and brecciation of the wall-rock by the supra-lithostatic 

pressured fluid results in a sudden (near) adiabatic expansion of the fluid phase and, 

consequently, in a drop of the fluid temperature due to a drop in the internal energy 

of the fluid system. This temperature drop (T) can be calculated from the isochoric 

heat capacity of the fluid (CV) and the molar volume change of the fluid phase that 

occurs during the fluid pressure drop as a result of the expansion (V): T = CV V. 

The isochoric heat capacity CV can be calculated from its thermodynamic relation 

with the isobaric heat capacity (CP): CP – CV = T V, where  and  denote the 

expansion coefficient and the isothermal compressibility, respectively. For the 

calculation of the temperature drop, it is assumed that the fluid pressure decreases 

from lithostatic to hydrostatic, which can be calculated using the relation Phydrostatic = 

fluid/rock Plithostatic, (Sibson 1996), i.e. in this case the fluid pressure will drop from 2 to 

1 kbar using a value of 0.5 for  fluid/rock. Using thermodynamic data by Shi & Saxena 

(1992), this temperature decrease is estimated to be 100°C. This instantaneous 

cooling effect will be counteracted by exothermic hydration reactions, i.e. the 

formation of chlorite (e.g. Haack & Zimmermann 1996). An additional effect of 

chlorite formation is the associated overall reduction in volume, resulting in increased 

permeability of the rock (Haack & Zimmermann 1996).  

The increase in rock permeability, combined with the fluid pressure drop will 

increase the fluid flow to the sites of low fluid pressure. The fast fluid decompression 

(throttling) associated with the flow from a high-pressure to a low-pressure site may 

occur thermodynamically under near adiabatic-isenthalpic conditions (Wood & Spera, 

1984). Alternatively, this may also occur at a slower pace under near adiabatic-

isentropic conditions (Wood & Spera 1984).  

In the first scenario above, the fluid can either heat or cool, depending on the 

Joule-Thompson coefficient of the fluid system. The Joule-Thompson coefficient (JT 

= T/P at constant enthalpy) can be calculated from the relation JT = V(T – 1)/ CP 

(Wood & Spera 1984). It must be noted that a vertical fluid flow will decrease the 

temperature change caused by the Joule-Thompson effect due to the effect of 

gravitation (e.g., Ramberg, 1971). The calculations demonstrate that a flow of pure 

H2O from 2 to 1 kbar will result in fluid temperature drop of 10°C, whereas a pure 
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CO2 fluid will heat up with 50°C. These temperature changes become less as JT 

decreases as the fluid heats or cools, i.e. they are maximum estimates. The H2O-rich 

nature of the Borrowdale fluid system implies that the cooling effect of the fluid was 

probably not more that 10°C.  

In the second scenario (slow fluid flow), the fluid will always cool during 

decompression. This cooling effect, (T/P)S, can be calculated using the relation  

(T/P)S = TV/CP. For both CO2 and H2O, adiabatic-isentropic fluid flow will result in 

cooling of the fluid by 70°C. 

 The thermodynamic effects that took place, i.e. wall rock fracturing, chlorite 

formation, and fluid flow from high- to low-pressure sites explain the fluid cooling from 

500° to 400°C. At this point it is important to note that graphite deposition from 

carbon-bearing aqueous fluids is sensitive to P, T, fO2, and fluid composition. Both 

the fluid pressure and temperature decrease cause the opposite effect on the 

precipitation potential of graphite, since the stability field of graphite + fluid is 

enlarged with decreasing temperature whereas it will be reduced with increasing 

pressure (Luque et al. 1998; Luque & Rodas 1999; Pasteris 1999). 

Figure 4 shows the iso-carbon lines (in mol%) for a H2O-CO2-CH4 dominated 

fluid system in which the fluid fO2 is buffered by FMQ (Fig. 4a), FMQ-0.3 (Fig. 4b), 

and FMQ+0.3 (Fig. 4c) in PT space. The arrows in Figure 4 indicate a PT change 

from 2 kbar and 500 ºC (the conditions calculated for the beginning of graphite 

precipitation; Luque et al. 2009) to 1 kbar and 400 ºC (the temperature estimated for 

the main stage of graphite deposition; Ortega et al. 2010). It is important to note that 

the carbon content variation for the given PT change depends on the oxygen 

fugacity. For a fluid-rock system buffered by FMQ, the carbon content of the fluid 

hardly changes (Fig. 4a). In other words, any carbon precipitation that takes place 

under these circumstances cannot be explained by a PT change, and only water 

removal (i.e. changes in the fluid composition) due to hydration reactions can cause 

carbon supersaturation of the fluid phase. The same is true for a reduced redox state 

(relative to FMQ) (Fig. 4b). Here, the PT change may actually result in graphite 

consumption and carbon supersaturation can only occur, again, if H2O is removed 

from the fluid. However, for an oxidised (relative to FMQ) fluid-rock system the PT 

change will result in carbon supersaturation and H2O removal is thus not required 

(Fig. 4c). In the case of the Borrowdale deposit, massive graphite precipitation was 

most probably related to the initially high carbon content in the fluids, and also to the 

hydration reactions during the coeval propylitic alteration that accompanied graphite 
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deposition. Such H2O-consuming reactions would have driven and maintained the 

fluid composition into the stability field of graphite. Carbon supersaturation was a 

crucial factor to bring the system into disequilibrium, which was the driving force for 

massive graphite precipitation through irreversible mass transfer reactions (Fig. 3; 

Ortega et al. 2010). Both the disequilibrium and the irreversible processes define a 

complex system (Prigogine & Nicolis 1977). The carbon supersaturation is evidenced 

by textural features at different scales, i.e. graphite spherulites at the microscale 

(Barrenechea et al. 2009) and graphite nodules at the mesoscale (Fig. 3). Nodular 

textures and spherulitic morphologies resulting from disequilibrium have been 

reported from other mineral systems (e.g. Archean volcanic rocks; Fowler et al. 

2002). This scale invariance of disequilibrium textures (fractal behaviour) is also a 

common feature of complex systems. Similarly, the formation of chlorite and smectite 

after olivine in the sub-volcanic host rocks to the Huelma deposit has been reported 

(Barrenechea et al. 1997; Luque et al. 2009b), thus pointing to the important role 

played by hydration reactions in the massive precipitation of graphite in such 

environments. 

 

Conclusions 

 

 Volcanic-hosted graphite deposits are unusual, because volcanic 

environments are unfavourable for volumetrically large graphite occurrences due to 

the low carbon contents of magmas and common degassing processes during and 

after magma emplacement. 

 Several geological factors must concur for these deposits to be formed, so it 

can be considered as an example of a self-organized critical system. The key factors 

influencing graphite mineralization in volcanic settings, as inferred from the detailed 

study of the Borrowdale deposit, are 1) the unusually high carbon content of the 

magma, resulting from the assimilation of carbonaceous metasedimentary rocks 

(Skiddaw Group metapelites in the Borrowdale deposit), 2) the absence of significant 

degassing, related to the presence of sub-volcanic or hypabyssal intrusions, acting 

as barriers to flow, 3) the  exsolution of a carbon-rich aqueous fluid phase, 4) the 

presence of structural heterogeneities (Burtness Comb Fault) as suitable weakened 

zones for rupturing the barrier to fluid flow, 5) the structural control of the deposits, 

implying an overpressured, fluid-rich regime which favoured focused fluid discharge, 

and 6) temperature changes associated with fluid flow and hydration reactions that 
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led to carbon supersaturation of the fluid phase which brought the system into 

disequilibrium. The combination of all these factors eventually resulted in the 

precipitation of huge amounts of graphite from the fluid phase through irreversible 

mass transfer reactions. Therefore, the system behaved as a self-organized critical 

system. 

It must be emphasized that graphite from the two known volcanic-hosted 

deposits is as highly crystalline as the highest quality graphite currently mined in 

vein-type deposits associated with granulite terranes (e.g. Sri Lanka or India; Luque 

et al. 1998). Therefore, volcanic-hosted deposits constitute potential sources of 

graphite for new technological applications which demand high-quality graphite. Their 

exploration should take into account the above mentioned key factors. 
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Captions of figures 

 

Fig. 1 Location and simplified geological map showing the context of the Borrowdale 

graphite deposit. Geological data from the British Geological Survey 1:50 000-

scale geological series sheet 29, Keswick (1999), with volcanotectonic faults 

from Branney and Kokelaar (1994). CW - Crummock Water (metasomatic) 

aureole 

Fig. 2 a: View down the “Grand Pipe” excavated along the largest mineralized pipe-

like body in the Borrowdale graphite deposit. Note the breccia of wall rock and 

quartz fragments. Photograph by Jeff Wilkinson. b: Chlorite-graphite vein 

along fault plane in andesite. c: Disseminated graphite patches and flakes in 

hydrothermally altered andesite 

Fig. 3 Diagram illustrating the relationship between rocks, melts, fluids, and 

processes (in italics) involved in the formation of the Borrowdale graphite 

deposit. a: Graphite nodules in altered andesite from a breccia-pipe body. b: 

Photomicrograph (transmitted light, crossed polars) showing a radiating 

aggregate and crystals of epidote (epd) within a graphite (gph) nodule in 

hydrothermally altered andesite. Key factors influencing massive graphite 

deposition in volcanic environments are labelled KF1 to KF6. See text for 

further explanation 

Fig. 4 Pressure-temperature diagram showing the iso-carbon lines for a carbon 

saturated COH fluid system (Huizenga, 2011) in which the oxygen fugacity is 

controlled by FMQ (a), FMQ-0.3 (b), and FMQ+0.3 (c) (in log10 units). The 

calculations were done following the procedure described in Ortega et al. 

(2010) 
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Type V Type VS Type L1 Type L2 
VCO2-CH4 + 

LH2O 
VCH4 + LH2O + 

SC 
LH2O + VCO2- 

CH4 
LH2O + VCH4 

#XCO2 = 0.6-0.8 #XCO2 = 0 #XCO2 = 0.03-0.6 #XCO2 = 0 

XH2O = 0.65   XH2O = 0.93 

TH = 295-340 °C 
(V or C)   TH = 290-380 °C 

(L) 
TH = 120-205 °C 

(L) 
 
 

Table 1. Characteristics of the different types of fluid inclusions recognized in 

quartz associated with graphite in the Borrowdale deposit. V: Vapor, L: Liquid, C: 

Critical, SC: Solid carbon (graphite), X: mole fraction, #XCO2: 

XCO2/(XCO2+XCH4), TH: Temperature of homogenization. 
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