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SUMMARY 

1. The overall aim in freshwater bioassessment is to use biological methods, metrics and 
forms of indices which are precise, in that they give repeatable results between replicate 
samples, but which are also sensitive to changes in environmental impacts and stresses. We 
investigated the effects of excluding taxa with site-specific RIVPACS-type model expected 
probabilities less than (or equal to) a threshold Pt (0.0, 0.1, 0.2,...,0.9) on the value, precision 
and power to detect biological effects of environmental stress using the observed to expected  
ratios (O/E) of biotic indices used to assess the ecological status of UK river sites. 

2. Amongst the 614 high quality GB RIVPACS reference sites, excluding taxa with low 
expected probabilities of occurrence gave less total variation (i.e. lower SD) in the estimates 
O/E for number of taxa (O/ETAXA) and the Average Score Per Taxon (O/EASPT). 

3. A separate analysis of a replicated sampling study of sites from a wide range of physical 
types and qualities found that sampling variances in O/E for reference condition sites 
decreased as more locally-rare taxa were excluded (but only up to Pt = 0.5 for O/EASPT). 
However, for moderately impacted and poor quality sites, estimates of both O/ETAXA and 
O/EASPT based on all (Pt = 0.0), or most  taxa (i.e. Pt ≤ 0.3) had lower sampling variances and 
were more precise. 

4. Within a very large independent set of test sites with a wide range of perceived levels of 
environmental stress, increasing the threshold Pt led to systematic differences in the estimates 
of  both O/E. Compared to using all taxa, high thresholds ( ≥0.5) gave lower O/E values for 
very high quality sites with O/E>1 and higher values for moderate and poor quality sites 
(with the exception of O/EASPT for the most severely stressed sites). 

5. Accuracy and statistical power to detect environmental stress (measured by the 
percentage of stressed sites with O/E below the lower 10-percentile value for reference sites) 
was very similar using O/ETAXA for Pt up to 0.7. Using O/EASPT, power to detect overall 
general stress decreased slower as Pt was increased; the rate of fall in power was slightly 
faster when restricted to sites subject to moderate or severe stress from organic inputs.   

6. Taxa which are more sensitive to (organic) stresses (i.e. have high BMWP scores) tend to 
be naturally less widespread (i.e. amongst reference sites) and thus were found to have 
considerably lower average site-specific expected probabilities; this may explain why the use 
of higher thresholds Pt can exclude more such sensitive taxa and lead to under-estimation of 
the extent of impacts. 

7. The standard UK RIVPACS sampling and sample processing procedures aim to identify 
all taxa with a sample. This may lead to a longer distribution tail of rarer (low probability) 
taxa than sampling methods based on a fixed count sub-sample and influence the practical 
effects of excluding rare taxa with low expected probabilities from bioassessments.
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Introduction 

Empirical predictive models were first applied to the bioassessment of freshwater quality by 

researchers in the UK during the development of the River Invertebrate Prediction and 

Classification System (RIVPACS) (Wright et al., 1984; Moss et al., 1987; Wright, 1995). 

The RIVPACS approach is now well established in the UK (Wright et al., 2000), Australia 

(Smith et al., 1999), Canada (Reynoldson et al., 2000), Sweden (Johnson, 2003) and the 

Czech Republic (Zahrádková et al., 2000), and is currently being developed and evaluated for 

other regions (Joy & Death, 2003; Ostermiller & Hawkins, 2004, Van Sickle et al., 2005). 

 There are a number of steps involved in developing a regional RIVPACS model (Clarke et 

al., 2003, Bailey et al., 2004). First a comprehensive set of reference biological samples from 

high quality, minimally disturbed sites is collected to represent the full range of physical 

stream types present in the region, in terms of variation both between and within catchments. 

The samples are collected and processed using standard protocols. Some form of cluster 

analysis is then used to classify the samples into groups based on the similarity of their 

recorded community composition. The relationships between the measured environmental 

features and biological characteristics of the reference site groups are defined by multiple 

discriminant analysis (MDA). The derived discriminant functions are used to estimate the 

probability of membership to each classification group for any site based on its values for the 

same environmental features. The probabilities of the test site belonging to each classification 

group are combined with the proportional occurrence of each taxon amongst the reference 

sites in each of the groups to calculate (as weighted averages) the expected probabilities of 

capture for each taxon at the test site, if it was also of reference high quality and minimally 

disturbed (Clarke et al., 2003). The observed fauna at the test site (collected using the same 

standardised procedures) can then be compared with the expected fauna to derive a 

bioassessment of the ecological status of the site. 

Although this comparison of observed and expected fauna can be done in a variety of ways 

(Clarke et al.,1996), most assessments around the world based on RIVPACS-type predictive 

models (cited above) concentrate on the use of the ratio of the observed (O) to site-specific 

expected (E) number of taxa at the site (denoted O/ETAXA). However, in the UK, national 

river assessments by government environment agencies using macroinvertebrates are 

currently based on both O/ETAXA and the ratio (denoted O/EASPT) of the observed to expected 

values for the metric ASPT (Average Score Per Taxon) based on the BMWP (Biological 

Monitoring Working Party) system for scoring families (1-10) by their perceived tolerance to 
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organic pollution (Armitage et al., 1983; Hemsley-Flint, 2000). The UK government agencies 

are working towards involving more metrics intended to measure specific types of stress to 

incorporate the best features of the multi-metric and multivariate predictive modelling 

approaches. 

While the process of RIVPACS model development and testing around the world usually 

follows a similar generic path, individual models vary in some aspects e.g. field and 

laboratory procedures, taxonomic resolution, statistical classification method, and whether to 

exclude locally-rare taxa from the calculation of O/E values. Quantification of the variation 

and errors associated with one or more of these aspects has been addressed for a number of 

different regional models (Moss et al., 1999; Clarke, 2000; Hawkins et al., 2000; Cao et al., 

2002; Clarke et al., 2002; Ostermiller & Hawkins, 2004). 

The main topic of this paper concerns whether or not it is best to exclude taxa with low 

expected probabilities of occurrence at a site from its bioassessment. In particular, we 

investigate the effect of only including taxa which have more than a certain threshold (Pt) of 

expected probability of occurrence at a site on the estimation, sampling precision and power 

to detect environmental stress of O/E ratio(s) across a range of types and qualities of site. 

Historically, UK RIVPACS models have included all taxa (i.e. Pt =0) in assessments, in the 

belief that the many locally rare taxa are likely to be the first to disappear as a site becomes 

more stressed. While this assumption has yet to be rigorously tested, there is a suggestion that 

excluding rare taxa can reduce the sensitivity of community-based assessments through its 

differential effects on sites depending on their taxa richness and abundance patterns (Cao et 

al., 1998). This view is contested by others workers who argued that excluding rare taxa leads 

to reduced variance in model predictions and hence more confidence in the assessment of 

quality at a site (Hawkins et al. 2000; Marchant, 2002). 

Predictive models in the Australian River Assessment Scheme (AUSRIVAS) use Pt = 0.5, 

based on the initially untested assumption that taxa with low probabilities of occurring at a 

site do not contribute reliable information to the bioassessment of site condition (Smith et al. 

1999; Simpson and Norris 2000). Based on a study of 234 references sites and 254 test sites 

(potentially impaired by past logging), Hawkins et al. (2000) found that site assessments 

based on using Pt = 0.0 were more variable than those based on Pt = 0.5 and concluded that 

the inclusion of more taxonomic information from such locally-rare taxa would decrease 

model sensitivity to deterioration in site condition. Marchant (2002) examined the effect of 
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varying Pt on the variability in O/E for number of genera between seven sites immediately 

below large dams in Victoria, Australia. Because the sites were severely impacted with 

average O/E of around 0.5, all sites were classed as impacted (i.e. O/E less than the lower 10 

percentile value of 0.82 for reference sites) regardless of the threshold used, except for one 

site when Pt =0.9, which he took as evidence to support the use of Pt =0.5 in AUSRIVAS. 

However, his main analysis (see Figure 1 in Marchant (2002)) had shown that the variability 

in O/E between the sites was least when all taxa were included (coefficient of variation(CV) 

= 6.2% for Pt =0), or when Pt = 0.1 (CV=8.0%), and increased with the threshold used (CV = 

17.8%, 18.3% and 39.4% for Pt =0.5, 0.7 and 0.9 respectively). This evidence actually 

provides some support for using all taxa in site assessments. Moreover, Turak and Koop 

(2003) examined multiple-year data from two sites in New South Wales, Australia and 

concluded that including all taxa (i.e. with Pt = 0) in AUSRIVAS estimates of O/E enhances 

the ability to detect differences in levels of disturbance compared to using the recommended 

threshold Pt of 0.5.  Johnson & Sandin (2001) investigated the effect of threshold (Pt) values 

of 0.0, 0.1, 0.25 and 0.5 on the strength of the correlation between O and E values and the 

standard deviation (SD) of O/E values for number of taxa with a set in reference sites in 

Sweden predicted using the stream riffle RIVPACS models (SWEPACSRI). They suggested a 

compromise threshold of 0.25.  

Recently, Ostermiller & Hawkins (2004) concluded that it was difficult to determine what 

optimal Pt value would give a precise predictive model, in terms of eliminating noise 

associated with very rare taxa, and at the same time a sensitive model, in terms of 

incorporating as much (biological response) information on the taxa-environment relationship 

as possible. Cao et al. (2001, p149-150) give a clear summary of the problem in terms of the 

two types of error in site bioassessments, namely (i) indicating a non-existing impact or over-

estimating an impact, and (ii) failing to detect an impact or under-estimating its size. They 

conclude that the inclusion or exclusion of rare taxa appears to be mainly related to (ii) in that 

if an assessment based on only abundant (or high probability) taxa does not detect an impact, 

it may be because only the rarer species have been affected (or eliminated from the site).  

In our view, although low probability taxa may individually contribute little, there are often 

many of them, so collectively they may be very informative. The overall aim in any 

bioassessment is to use biological methods, metrics and forms of indices which are precise, in 

that they give repeatable results between replicate samples, but which are also sensitive to 

changes in environmental impacts and stresses. 
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The choice of the optimal Pt has not been comprehensively investigated across a range of 

sites with different levels of impairment. Recent studies on this issue have proved 

inconclusive, in terms of their relevance to RIVPACS-type models for general use, as they 

have generally investigated the effect of excluding rare taxa on limited datasets (Cao et al., 

1998; Marchant, 2002), or on sites drawn only from reference site datasets (Johnson, 2003) or 

have only compared a very restricted number of Pt values (Hawkins et al., 2000; Ostermiller 

& Hawkins, 2004). In their excellent study of the impact of various aspects of a sampling 

methodology, Ostermiller & Hawkins (2004) found that the standard deviation (SD) in O/E 

values for their reference sites was less for Pt =0.5 than for Pt =0.0 for all fixed sub-sample 

sizes tested, from which they concluded that models based on the use of Pt =0.5 were more 

precise. However, in the extreme if you base O/E values only on those taxa which are 

(nearly) always found (Pt ≥ 0.9) at that type of reference site, then the observed and expected 

number of taxa for the reference sites must be almost identical so that O/E values will hardly 

vary about unity. Although sampling precision and repeatability for high quality sites is 

obviously important to minimise the occurrence of type 1 errors, the detection and estimation 

of the extent of impacts will depend on the (potentially different) sampling precision in O/E 

ratios for poorer quality sites and the extent to which they differ from O/E values for 

reference sites. 

We assessed the effect of varying Pt on the values, precision and accuracy of RIVPACS 

model estimates for both O/ETAXA and O/EASPT. In particular the effect of Pt on four factors 

was assessed: (i)  overall variation (SD) in O/E for RIVPACS reference sites, (ii) replicate 

sampling SD in O/E across a wide range of qualities of site and (iii) systematic differences in 

the value of O/E for sites from a range of water qualities and stream types, and most 

importantly (iv) the resulting statistical power to detect biological impacts at independently 

assessed environmentally stressed sites.  

 

Methods 

Relevant aspects of the UK RIVPACS reference sites, sampling and model development 

methodology 

In the UK, there is currently a single RIVPACS prediction and site assessment module for the 

whole of mainland Great Britain (GB) based on 614 reference sites (Moss, 2000); although 

separate modules have recently been developed for Northern Ireland and the Scottish islands. 
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All reference sites have been sampled using standard RIVPACS sampling and sample 

processing procedures (Wright et al., 1984; Environment Agency, 1999). This involves a 3 

minute active kick sample with a pond net plus a 1-min hand search for taxa likely to be 

missed in the kick sample e.g. those adhered to large stones and bedrock. All habitats within 

the site are sampled in proportion to their occurrence. In the laboratory, the entire sample is 

carefully sorted through for macroinvertebrates, with the aim of identifying and recording all 

of the taxa within the sample (but using where appropriate varying degrees of sub-sampling 

(1/2, 1/4, 1/8 sample, etc) purely to estimate the abundance of very common taxa) (Wright, 

2000). The procedure of sorting through the whole sample within the aim of finding all of the 

taxa present is an important difference in the RIVPACS method compared to some other 

methods which only identify a “random” sub-sample and/or a random fixed number of 

individuals in a sample. This could have repercussions for the effect of excluding locally-rare 

taxa from site assessments and is discussed further below.  

Each reference site was sampled once in each of spring (March - May), summer (June - 

August) and autumn (September - November). A single classification of the reference sites 

into groups was derived for the GB module based on the best available biological information 

for each site, namely the three seasons combined fauna based on presence-absence of species 

and log abundance category of families. The MDA functions can then be used to derive both 

site- and season-specific predictions of the fauna to be expected for any single season sample 

or any combined season (e.g. spring+autumn, or spring+summer+autumn) sample, which can 

then be compared with the corresponding observed sample fauna for the same season(s) from 

any site. 

Clarke et al. (1996) pointed out that the reference sites used in any RIVPACS-type model 

will not all be of the same biological quality. In practice, they usually represent the top class 

of sites, and are likely to be very variable in quality. The variation and distribution of the 

sample O/E values for a set of reference sites is therefore due to both sampling variation and 

methodological errors, but also due to real variation in their true quality - albeit unknown. 

Therefore, some variation in O/E values amongst references sites is always to be expected.  

 

BAMS study sites used to estimate sampling variation in O/E  

The analysis of replicate sampling variation was based on the 16 sites used by Clarke et al. 

(2002) to assess patterns of sampling variation in BMWP-based indices. These study sites 
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were selected from a listing of over 5000 sites sampled during the 1990 national river quality 

survey (RQS) throughout England and Wales. Based on their environmental characteristics, 

the study sites were selected from four site groups (Table 1a), chosen to encompass the four 

major site divisions and site types within the RIVPACS II hierarchical classification (Wright, 

1995). Next, within each of the four site groups, one study site was selected at random from 

the list of RQS sites in each of the four quality grades (Table 1b), giving a total of 16 sites, 

referred to as the BAMS (Biological Assessment Methods Study) sites, 

Each BAMS site was sampled in each of the three RIVPACS seasons using the standard 

RIVPACS sampling procedures. On each sampling occasion and at each site, three 

macroinvertebrate samples were collected, the first and third were taken by an Institute of 

Freshwater Ecology (now CEH) biologist and the second by a local Government environment 

agency biologist. Care was taken to minimise the possibility of re-sampling the same 

locations within the site in order to avoid progressive depletion of the fauna. At any given site, 

the same biologists took the samples in each of the three seasons, but the personnel varied 

between sites and regions. The macroinvertebrate samples were all sorted and identified by 

experienced IFE/CEH biologists using the standardised RIVPACS protocols (Wright et al., 

1984; Environment Agency, 1999). Three people also made independent estimates of the 

RIVPACS environmental predictor variables and hence expected fauna at each site - leading 

to three independent estimates of O/E values. 

 

GQA (General Quality Assessment) sites and their anthropogenic stresses 

The third sets of sites involved in the analyses reported here (in addition to the 614 

RIVPACS reference sites and the 16 BAMS sites) are 5752 sites from the Environment 

Agency (EA)’s General Quality Assessment (GQA) national survey of river sites throughout 

England and Wales in 1995 (Murphy & Davy-Bowker, 2005). Samples were taken in both 

spring and autumn. The results of our analyses are presented for spring samples, but similar 

results were obtained for autumn samples.  

This large dataset was used to test for systematic dependence of O/E on the threshold 

probability Pt. and, most importantly, to assess the effect of the choice of Pt on the statistical 

power of the resulting O/Es to detect the biological impacts of anthropogenic stress operating 

at the site. The severity of  each of 12 major types of anthropogenic stress acting on each site 

was recorded by local EA biologists from their detailed knowledge of sites and catchments in 
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their area (Table 2) (Murphy & Davy-Bowker, 2005). EA catchment management plans were 

also consulted by biologists where more information was needed. We derived an overall 

measure of stress intensity by dividing the sum (S) of the levels of the 12 stress types into 

four classes (Table 2). 

 

Calculating O/E for different threshold expected probabilities 

If taxon i (species or family) occurs in rij of the nj reference sites in group j, then the 

RIVPACS expected probability, pi, of finding a particular taxon i  at a particular test site, if 

the site is unstressed, is estimated from the proportion qij = rij/nj of reference sites in each 

group j with taxon i present, weighted by the test site’s probabilities Gj of belonging to each 

group j, namely (Clarke et al., 2003): 

  ∑=
j

ijji qGp

The expected number of taxa (ET) for a site is simply the sum of the site-specific expected 

probabilities of the individual taxa, namely: 

          (1) ∑=
i

iT pE

The observed value (OA) of ASPT for a site is calculated as the sum (OS) of the individual 

BMWP scores (Bi) of the OT BMWP-scoring taxa present, divided by OT. Calculation of the 

expected value, EA, of ASPT is more complex as it is a ratio of variables, but a very good 

approximation (from Clarke et al., 1996) is given by: 

23 /// TSTTSTTTSA EvEEvEEE −+=       (2) 

where  = expected value of total BMWP score ,  ∑=
i

iiS pBE

∑ −=
i

iiTT ppv )1(  and  ∑ −=
i

iiiST ppBv )1( .

(Note: Equation (2) is the same as equation (11) in Clarke et al. (1996) except that the last 

term  should be subtracted not added; the term is minor, the effect is negligible and 

importantly, the correct formula has always been used in all versions of RIVPACS software 

code). 

2/ TST Ev

The O/E ratios for number of taxa and ASPT are then given by: 
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When the O/E ratios for a site are to be based on only those taxa with site-specific expected 

probabilities of occurring {pi} greater than a threshold probability Pt, then only those taxa for 

which pi > Pt are included in the calculation of both the observed (O) and expected (E) and 

hence O/E values of each metric; in our case, ‘number of taxa’ and ASPT based on equations 

(1)-(3). In our study, the effect of a wide range of threshold probabilities was assessed, using 

Pt = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, where Pt = 0.0 is equivalent to including all 

of the taxa in the calculation of O/E ratios and site assessments. 

 

Results 

Illustration of the potential effect of using different thresholds 

To illustrate the effect of using different threshold probabilities on O/E values, a detailed 

comparison of the observed and expected fauna was made for a replicate sample from one of 

the moderately impacted BAMS sites (Table 3). In general, as more taxa are excluded so both 

the observed and expected number of taxa can only decrease, but their ratio O/ETAXA can, in 

theory, go up or down. In this example O/ETAXA increased as the threshold probability for 

exclusion was increased from 0.0 to 0.9. This was also true for the two other replicate spring 

samples from this site (Fig. 1). 

 

Effect of threshold on distribution and SD  of O/E values for RIVPACS reference sites 

We assessed the effect of using each threshold probability on the distribution of O/E values 

for the 614 RIVPACS reference sites for mainland Great Britain (Table 4, Fig. 2). Results are 

shown for spring samples, but similar patterns were obtained with samples from other 

seasons. The overall mean value of O/ETAXA was always around one, but the distribution 

became less variable as the threshold was increased (Figure 2a). In particular, the standard 

deviation (SD) started to decline considerably once the threshold Pt was above 0.2 or 0.3 

(Table 4(a)). Hawkins et al. (2000) and Ostermiller & Hawkins (2004) also found smaller 

overall SD in the O/E values of reference sites when based on a threshold probability of 0.5 

compared to when including all taxa (Pt = 0.0). However, as seen in Figure 2a, the biggest 

cause of the reduction in overall SD is that excluding taxa expected to be locally rarer reduces 

the frequency and extent of high O/E values well above 1. In the extreme, with a threshold of 
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0.9, all of the observed taxa must have at least a 90% expected probability of occurring, so it 

is mathematically impossible to get an O/ETAXA value greater than 1/0.9, namely 1.111. The 

median (but not mean) value of O/ETAXA was slightly above unity for high values of Pt 

(Figure 2(a)). 

A similar pattern was observed for the distribution of O/E for ASPT for the same RIVPACS 

reference sites (Fig. 2b). Again, the SD changed very little up to a threshold of 0.3, but 

thereafter decreased (until Pt = 0.9) (Table 4(a)). However, unlike for O/ETAXA, at high 

thresholds, there is increased likelihood of occasional very high or low values of O/EASPT, 

because the ASPT metric is an average (score per taxon present) and its value can change 

dramatically and erratically when dependent on the chance presence-absence of only a few 

taxa. 

 

Effect of threshold on sampling precision of O/E across a range of site qualities 

The precision of O/E estimates based on different threshold probabilities Pt was assessed 

using the BAMS sites data for which there were three replicated samples and three 

independent estimates of O/E values for each of three sampling seasons across a wide range 

of types and qualities of river sites in the UK. 

In order to summarise the replicate sampling SD robustly for each expected probability 

threshold Pt, the data were grouped into three quality classes according to the replicate mean 

value of O/ETAXA (Fig. 3(a)). Using Pt =0, the sampling SD of O/ETAXA increased with site 

quality (Table 5(a)); this is not unexpected as Clarke et al. (2002) found that replicate 

sampling SD of the observed number of taxa in a sample increased with site taxa richness.  In 

contrast, when very high expected probability thresholds were used, sampling variability in 

O/ETAXA was highest at intermediate site quality For the high quality class of sites with 

replicate mean O/ETAXA greater than 0.9, the sampling SD decreased as Pt was increased, as 

was found previously for reference sites. The only exception was for the extreme threshold Pt 

= 0.9, but this was because the class lower limit for replicate mean O/E was sufficiently low 

to encompass one of the mildly stressed sites for which O/E was more variable when based 

on such a high threshold probability and thus only a few taxa. For intermediate quality mildly 

stressed sites with replicate mean O/ETAXA in the range 0.6-0.9, the general pattern was 

reversed - assessments involving all or most taxa had the lowest SD and greatest precision 

(Fig. 3(a)). Using high thresholds leads to only relatively few taxa being involved, which may 
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or may not still be present (and counted), giving rise to more variable O/E values. At poor 

quality sites with replicate mean O/ETAXA less than 0.6, all thresholds gave similar, relatively 

low, sampling SD in the range 0.058-0.079 (Table 5(a)). One-way ANOVA was used to 

estimate the overall average replicate sampling variance across all site and season 

combination for each threshold. The overall average replicate SD was about the same (0.072-

0.074) for expected probability thresholds up to 0.4, but thereafter increased (“overall” 

column in Table 5(a)). 

In similar analyses for O/EASPT, sampling SD of O/EASPT for high quality sites was 

marginally highest for Pt = 0.0 (Table 5(b), Fig 3(b)). However, at intermediate and poor 

quality sites with replicate mean values of O/EASPT less than 0.9, assessments based on using 

either all the taxa (Pt = 0.0), or an expected probability threshold of no more than 0.3, had the 

lowest sampling SD (Fig. 3(b)). All thresholds (except Pt = 0.9) gave slightly higher sampling 

SD once replicate mean O/EASPT dropped below 0.7, mainly because fewer taxa were 

involved in determining the observed ASPT. Averaged over all sites and seasons, the overall 

average sampling SD was about the same (0.046-0.050) for thresholds up to 0.5, but 

thereafter increased (Table 5(b)). 

 

Effect of threshold on value of O/E 

To obtain a reasonably precise estimate of  any systematic differences in average value of 

O/E arsing from using different thresholds, the O/E values based on each threshold Pt were 

calculated for all of the spring samples from the 5752 GQA sites. For each sample, the O/E 

value based on Pt = 0.0 was subtracted from the O/E based on each non-zero threshold to 

give the differences in O/E. The samples were then grouped into classes according to their 

O/E based on Pt = 0.0. The median differences in O/E values for each threshold for each class 

of site are given in Figure 4.  

A threshold Pt of 0.1 gave negligible systematic difference in O/ETAXA for qualities of sites 

except those with the very highest values when based on all taxa (Fig. 4(a)). When the value 

of O/ETAXA based on all of the taxa was around unity (i.e. observed and expected number of 

taxa agree), then the median difference in O/ETAXA value using any non-zero threshold was 

relatively small, indicating that such O/ETAXA values were roughly equally likely to be higher 

or lower than those based on all taxa (Fig. 4). However for poorer quality sites (i.e. those with 

O/ETAXA values <0.9), the median difference was always positive and the difference 
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increased with the value of the threshold Pt, indicating that there was a systematic tendency 

for the estimate of O/ETAXA for stressed sites to increase as more of the lowest probability 

taxa were excluded from the site assessments (Fig. 4). For sites with values of O/E well 

above unity when based on all taxa, the O/E estimates tended to be less when based solely on 

the taxa with higher expected probabilities of occurrence at the sites(Fig. 4). 

The pattern of systematic differences in O/EASPT resulting from increasing the threshold 

probability were largely similar to those for O/ETAXA (Fig. 4). For both O/E indices, the 

differences using any of the non-zero threshold probabilities was greatest for sites of 

intermediate-poor quality. However, in contrast to O/ETAXA, values of O/EASPT for the very 

poorest quality sites with O/EASPT less than 0.5 did not show any systematic change with 

threshold Pt (Fig. 4(b)).  

Overall, our analyses show a systematic tendency for O/E values for a site to become closer 

to unity as the threshold of expected probability is increased. In other words, using higher 

thresholds makes it more difficult (or even impossible) to obtain O/E values far above or, 

more importantly, far below unity. We were concerned that these results might be an artefact 

due to grouping the GQA sites on the basis of their O/E values calculated using all of the taxa 

(i.e. Pt = 0.0). Therefore, the GQA sites were re-grouped into classes on the basis of their O/E 

values calculated using a threshold of Pt = 0.5. For each sample, the O/E value based on Pt = 

0.5 was subtracted from the O/E values based on each other threshold (including Pt = 0.0) to 

give the differences in O/E. The patterns of median differences in O/E values for each 

threshold for each class of site are shown in Fig. 5. Thresholds less than 0.5 (included Pt = 

0.0) show a tendency to give lower values of O/ETAXA when the O/E for Pt = 0.5 is less than 

unity and higher values when O/E for Pt = 0.5 is greater than unity. Also O/ETAXA values for 

thresholds greater than 0.5 showed the same pattern as before, giving values of O/E closer to 

unity than those based on a threshold of Pt = 0.5. For sites of intermediate quality (in the 

sense of having O/EASPT values for Pt = 0.5 in the range 0.5 – 0.9), thresholds less than 0.5, 

on average give lower values of O/EASPT, and vice versa. The median differences are less for 

very poor quality sites (i.e. with O/EASPT < 0.5). 

Together these results indicate that increasing the expected probability threshold Pt for taxa 

to be involved in the calculation of O/E values leads to systematic changes in the estimates of 

O/E. Most importantly, increasing the threshold Pt leads to a compression of the whole scale 

of O/E towards unity, which may have repercussions for the ability to detect the impact of 

stress.  
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Effect of threshold on statistical power to detect biological impacts of anthropogenic stress 

We have shown that the variability in O/E for reference sites, the sampling variation of O/E 

for impacted sites and the extent of changes from unity in O/E values are all affected by the 

choice of the threshold expected probability Pt. However, it is the combination and interplay 

of these factors which determines the statistical power to detect the biological effects of 

environmental and anthropogenic stress. Using a higher threshold may lead to less reduction 

in O/E for stressed sites, but providing the natural variability in O/E for high-quality 

reference sites (based  on the same  Pt) is lower and the sampling variability for stressed sites 

is not (much) greater, then using the higher threshold may provide greater statistical power to 

detect departure from reference conditions. An O/E value of, for example, 0.7, does not have 

the same interpretation in terms of extent of any biological impact for all values of Pt. We 

assessed the statistical power to detect impacts using each threshold Pt using the large GQA 

dataset for which we had independent assessments of the intensity of anthropogenic stresses 

operating at each site (Table 2). 

Clarke et al. (1996) suggested using some lower percentile of the distribution of O/E values 

for the reference sites/samples as the lower limit of O/E for which any test site would be 

classified as of “reference” quality class. Van Sickle et al. (2005) treated test sites as 

impaired if their O/E values were outside the interval (mean ± 2 SD) determined from the 

O/E for the reference samples. Ostermiller and Hawkins (2004) considered a test site as 

significantly different from reference if its O/E value was outside the 10th to 90th percentiles 

of reference site O/E values. We used the lower 10-percentile values of O/ETAXA and O/EASPT 

for the RIVPACS GB reference sites to set the critical value for deciding whether test sites 

should be classified as “stressed” (lower O/E) or “reference” (higher O/E). Using this type of 

rule ensures that a known fixed percentage of the RIVPACS model reference sites/samples 

would be incorrectly classified as “impaired” (i.e. the overall type 1 error equals 10%). 

The GQA sites were classified into four stress intensity classes according to their score S 

representing their overall loading of anthropogenic stresses (Table 2, Table 6). A GQA site 

was classified as “impacted” if its O/E value based on a particular threshold Pt was less than 

the critical O/E value for the reference sites based on the same Pt. Using O/ETAXA, the 

statistical power to detect biological impacts among sites subject to “moderate” or “severe” 
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levels of  overall stress was very similar for all thresholds up to 0.7; although the marginally 

highest power occurred for Pt equal to 0.1 or 0.2 (Table 6). 

 When based on O/EASPT, the statistical power to detect the biological impacts of 

“moderate” or “severe” levels of stress was marginally highest (72%) when all taxa were 

involved in the calculation of O/EASPT, but only declined slowly with increasing threshold up 

to Pt of 0.6, and was lowest for Pt ≥ 0.7 (Table 6). The percentage of “unstressed” GQA sites 

incorrectly classified as being impacted (i.e. type 1 error) was similar for all values of the 

threshold Pt for both O/E indices with the exception of higher mis-classification rates for 

O/EASPT based on Pt = 0.9. 

The ASPT metric was originally intended to provide a measure of the biological response of  

freshwater macroinvertebrate communities to stress resulting from organic inputs (e.g. from 

agriculture or effluent). Therefore, we also assessed the effect of varying Pt on the statistical 

power to detect biological impacts using O/EASPT amongst the GQA classified according to 

their perceived level of stress from organic inputs only (Table 6). The statistical power of 

O/EASPT for each threshold Pt was higher when the analysis was restricted to detecting severe 

levels of stress specifically from organic inputs (Table 6). Although still highest (79%) for Pt 

= 0, statistical power of detecting severe organic input stress was similar (74-79%) for all 

thresholds up to Pt = 0.5.  

It was encouraging to find that the percentage of sites classified as impacted on the basis of 

their O/E values increased with the perceived intensity of anthropogenic stress operating at a 

site, as one would hope. In addition, the percentage of sites with no known significant overall 

stress loading (i.e. “unstressed” sites) which were mis-classified as impacted on the basis of 

their O/E values was only 11-20% for both metrics based on thresholds up to 0.7 (Table 6); 

this is not enormously greater than the 10% type 1 error expected from reference 

sites/samples. 

 

Discussion 

The aim of this study was to investigate the effects of excluding taxa with low site-specific 

expected probabilities (based on RIVPACS-type models) on the precision and accuracy of 

O/E ratios of biotic indices and on their statistical power to detect the biological impacts of 

anthropogenic stresses in bioassessments of the ecological status of sites. In particular, we 

have assessed the previously-unknown effects of changing probability threshold Pt on 

 15



bioassessments based on the use of the standard RIVPACS sampling and sample processing 

procedures, as used by the government environment agencies (and CEH) throughout the UK 

(Environment Agency, 1999). The conclusions can be summarised as follows: 

(i) Excluding taxa with low expected probabilities of occurrence results in less 

variation (i.e. lower SD) in the O/E estimates for reference sites;  

(ii) Estimates of O/E based on all, or most  taxa (i.e. using a low Pt) give the lowest 

sampling variances at moderately impacted and poor quality sites; 

(iii) Increasing the threshold probability Pt for excluded taxa causes systematic 

compression of the realised O/E scale towards unity, in that O/E values >1 are on 

average reduced, while O/E values <1 have a tendency to be higher and closer to 

unity. 

(iv) The combined effect of these factors was that statistical power to detect the overall 

biological impacts of anthropogenic stresses based on O/ETAXA was similar for 

thresholds Pt up to 0.7 (and marginally optimum at Pt  of 0.1 or 0.2); 

(v) When based on O/EASPT, power to detect impacts from both overall stress and 

specifically organic impacts was similarly high for Pt ≤ 0.5 (and marginally 

optimum using Pt = 0), although the power to detect effects of organics was greater  

(74-79%). 

Our results show that, at least for UK RIVPACS samples, the estimate of O/E ratio for 

number of taxa at moderately impacted sites has a tendency to increase as an increasing 

proportion of the least expected taxa are excluded from site assessments. Systematic changes 

in O/E with Pt were also found by Hawkins et al. (2000), who concluded (p1466) that for 

their non reference quality test sites “on average O/E50 overestimated O/E0 with the amount 

of bias greatest at low O/E50 values” [O/E50 and O/E0 equate to Pt = 0.5  and Pt = 0.0]. As 

sites become stressed so sensitive taxa will become less abundant and eventually disappear 

from the site and samples. The taxa with the highest RIVPACS expected probabilities of 

being found in a sample will generally also be the most abundant at the site (if unstressed). 

Therefore, on average, the taxa with relatively low site-specific expected probabilities are 

generally likely to disappear first from the site and our sample counts as environmental stress 

increases. This may be why ignoring and excluding such taxa from the calculation of O/E 

ratios by using a higher threshold Pt leads to values of O/ETAXA declining less from unity. 

This may be true as a generality, but the rate of loss of individual taxa depends on the 
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tolerance to stress (or more specifically the actual type(s) of stress operating). Cao and 

Hawkins (2005) used field data on reference and impacted test sites to derive stress tolerance 

values (TV) for individual taxa which they then used to simulate “true” changes in the 

abundances and occurrence of individual taxa with increasing levels of stress. They found 

from repeated simulations of  fixed count sub-samples, the true reduction in total taxa 

richness at a site with stress was under-estimated; this was especially true for counts of 300 or 

less individuals. Cao and Hawkins (2005) cleverly explained this by showing that the 

evenness of the (simulated) abundances of taxa at a site increased with the level of stress, so 

that a relative higher proportion of the taxa still present at a stressed site would be captured in 

a fixed count sample. However, changes in evenness of taxa abundance with stress would not 

have such an obvious impact on the observed sample taxa richness obtained by area- or time-

based sampling methods such as RIVPACS which aim to identify and include all of the taxa 

in a sample. This is discussed further below. 

It is less obvious why O/EASPT also tends to be higher at moderately stressed sites when 

based on higher expected probability thresholds. One explanation could be that the families 

most susceptible to organic pollution (with high BMWP scores) have, on average, much 

lower expected probabilities of occurrence than more tolerant families with low scores. 

Ignoring taxa with low expected probabilities would then tend to ignore the loss of these 

sensitive families and lead to higher estimates of O/EASPT. To assess this, the BMWP families 

were assigned to three classes (1-4, 5-7, 8-10) based on their BMWP score (1-10). Zero (i.e. 

to three decimal places) expected probabilities were excluded from the subsequent analyses 

because some families are naturally restricted to particular types of stream and hence 

naturally excluded from a large proportion of the sites. In addition, only families with non-

zero expected probabilities are involved in the calculation of the expected ASPT for a site. 

Including the large numbers of zero values would distort the frequency distributions. In the 

first approach the average expected probability of occurrence ( ip ) of each individual family i 

across the 5752 GQA sites was calculated and then the (boxplot) distributions of the ip  for 

families within each BMWP class were compared (Fig. 6). The median of the ip  for high-

scoring (8-10) families was only 0.13, much lower than the median of 0.46 for the low-

scoring organic-stress-tolerant families (Incidentally, not excluding zero expected 

probabilities leads to a lower median ip  of 0.07 for the 8-10 scoring families and no change 

(to 2 d.p.) in the median for 1-4 scoring families). A second approach was based on 
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comparing the frequency distribution within the same dataset of all non-zero expected 

probabilities of occurrence for all families within each BMWP class. Within each class of 

BMWP score, the percentages of all non-zero values of expected probability occurring in 

each of four classes of expected probability (<0.2, 0.2-0.5, 0.5-0.8, >0.8) were calculated and 

compared (Table 7). For pollution sensitive families (BMWP scoring 8-10), 57% of all non-

zero expected probabilities are less than 0.2, compared to only 27% for pollution tolerant 

families (BMWP scoring 1-4). At the other extreme, only 5% of the expected probabilities for 

pollution sensitive families were greater than 0.8, compared to 35% for the most tolerant 

class of families (Table 7). Similar patterns in the expected probabilities were obtained when 

the analysis was based on the RIVPACS reference sites. 

It is clear that the families with high BMWP scores, considered to be the most sensitive to 

organic stress, do tend to have far lower expected probabilities of occurrence than the 

pollution tolerant families with lower BMWP scores. The effect of this naturally occurring 

phenomenon is that site bioassessments involving O/EASPT which exclude all families with 

low site-specific expected probabilities tend to ignore the loss of these sensitive families and 

hence, give values of O/EASPT which deviate less from reference. This effect is greatest at 

moderately stressed sites because, at very poor quality sites with O/EASPT less than 0.5, most 

of the families still present and found must be low scoring families, which generally have 

relative high expected probabilities and thus are much less affected by the exclusion of 

families with low site-specific expected probabilities. Similar effects of excluding taxa with 

low expected probabilities may occur in other O/E type indices based on other metrics 

including those designed to measure specific types of stress. 

One possible explanation for the difference between our conclusions and those of some 

other studies (Hawkins et al., 2000; Ostermiller & Hawkins, 2004) on the perceived value of 

excluding taxa with low site-specific expected probabilities could be the sampling method 

and, perhaps more importantly, the sample processing procedures used. In the UK RIVPACS 

standardised procedures (Environment Agency, 1999), a 3 minute active kick sample with a 

pond net of all habitats in proportion to their estimated occurrence is supplemented by a 1-

min hand search for taxa likely to be missed in the kick sample; this will extend the sample 

taxa list and generally add less abundant taxa. Then in the laboratory, the whole sample is 

carefully sorted with the aim of finding all of the taxa in the sample. In contrast, most other 

studies of the factors influencing bioassessment accuracy have been based on sampling 

protocols which involve sub-sampling, identifying and counting a ‘random’ fixed number of 
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individuals from the field sample. The AUSRIVAS procedure involves taking a random sub-

sample and counting 200 individuals regardless of the total number of individuals in the field 

sample (Simpson & Norris, 2000). In their study, Ostermiller and Hawkins (2004) used fixed 

counts of  random sub-samples of 50, 100, ... , 450 individuals. The abundance frequency 

distributions of such random fixed count sub-samples are likely to have shorter tails (i.e. 

include proportionally fewer rare taxa present in low numbers) than the distributions obtained 

by searching through the whole sample to try to find all of the taxa present. One way to 

assess this idea would be to compare sampling/processing protocols in terms of the relative 

frequencies of  rare taxa in the sample counts (akin to the study of Cao and Hawkins (2005)). 

With RIVPACS-type models, the percentage of all (non-zero) expected probabilities which 

are less than some small value could be calculated. For example, for the UK RIVPACS 

sampling protocol, 42% of all non-zero (to 3 d.p.) RIVPACS expected probabilities of 

occurrence are less than 0.2 (Table 7). We suggest that RIVPACS-type models based on 

sampling methods involving random sub-sampling of a fixed number of individuals are likely 

to contain a lower equivalent percentage of low expected probabilities because they tend to 

include less of the locally-rare taxa. In an analysis of 7-20 yr surber sample surveys of 

benthic macroinvertebrates from 10 sites, Resh et al. (2005) found that 17-33% of taxa were 

‘rare’ in that they only incurred in one year at any particular site. The abundance frequency 

distribution (and more obviously, taxa richness) for a site, the field sample from it and the 

subsequent laboratory (sub-)count can be quite different – this could have implications for 

metric calculation and biases in estimates of changes in O/E with stress. 

This study has highlighted that the choice of expected probability threshold Pt influences both 

the variability and effective scaling of O/E indices above and below unity. Therefore O/E 

indices based on different thresholds need to be treated as separate indices with different 

effective scales from the point of view of setting appropriate critical values of O/E as quality 

or ecological status class boundaries. You need to compare like with like. 

Finally, for UK RIVPACS, using a threshold expected probability Pt for exclusion of 

between 0.0 and 0.2 appears to provide the best overall compromise solution and marginally 

highest statistical power to detect impacts; although power was very similar for thresholds up 

to 0.5. Moreover, our analyses provide no support for switching the standard assessment of 

river sites based on the UK RIVPACS model and UK RIVPACS sampling procedures from 

the current approach of basing O/E values on all of the taxa (i.e. Pt =0) to a system based on 

only involving taxa with site-specific expected probabilities of 0.5 or more. 
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Table 1 Characteristics of the stratified random selection of BAMS sites in terms of (a) 
RIVPACS site group and (b) ecological quality grades as defined by the range of O/E values in 
the previous national river quality survey. 
(a) 

 RIVPACS site group 
Mean value of  

environmental variable 
3a 5b 8a 9b 

Distance from source (km) 15.3 8.2 11.3 33.0 
Width (m) 7.5 4.8 4.8 13.1 
Depth (cm) 19.8 21.7 32.5 77.5 
Altitude (m) 74 40 40 5 

Alkalinity (mg l-1 CaCO3) 81 153 229 170 
Predominant substratum cobbles/pebbles gravel gravel/sand silt 
Regions of England and 

Wales 
SW, NE,  

Wales 
central south + 

midlands 
east Wales to East 
Anglia + southern 

chalk streams 

SE + East 
Anglia 

 
(b) 

 quality grade 
Range of O/E values 

based on: 
A 

“best” 
B C D 

“worst” 

number of taxa 0.94 - 1.06 0.64 - 0.72 0.41 - 0.53 < 0.30 
ASPT 0.97 - 1.03 0.80 - 0.85 0.68 - 0.74 < 0.60 

 
 
 
 
 
 
 
Table 2 Twelve types of anthropogenic stress estimated at each of 5752 GQA sites and the 
derived measure of overall stress intensity for each site. The level (0-3) of each stress type 
was recorded for each site  (0 = no stress, 1 = light, 2 = moderate, 3 = severe stress). 
 
Organic input Acidification Agricultural chemical inputs 
Reduced discharge Canalisation Riparian habitat modifications 
Sedimentation Urban run-off Industrial discharge and run-off 
Intensive arablisation Consolidated banks Excessive instream plant growth 
   
Overall stress intensity based on categories of the sum (S) of the levels of all stress types 
Unstressed S = 0  
Light S = 1-2  
Moderate S = 3-5  
Severe S = >5  
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Table 3 Comparison of the observed and expected BMWP families for a replicate sample 
taken in spring from the BAMS site at Swarkestone on Cuttle Brook, together with the effect 
of using various thresholds probabilities Pt on O/ETAXA. BMWP families arranged in 
decreasing order of expected probability of capture (pi). 
 

BMWP Family Observed pi  BMWP Family Observed pi 

Chironomidae * 1.000  Piscicolidae  0.286 
Oligochaeta * 1.000  Goeridae  0.273 
Sphaeriidae * 0.999  Sericostomatidae  0.266 
Gammaridae (incl. Crangonyctidae) * 0.887  Nemouridae  0.235 
Glossiphoniidae * 0.883  Coenagriidae * 0.232 
Hydrobiidae (incl. Bithyniidae) * 0.879  Psychomyiidae (incl. Ecnomidae)  0.227 
Limnephilidae  0.877  Calopterygidae  0.226 
Baetidae  0.840  Dendrocoelidae  0.190 
Asellidae * 0.823  Gyrinidae  0.179 
Elmidae  0.819  Heptageniidae  0.155 
Erpobdellidae * 0.808  Molannidae  0.133 
Planariidae (incl. Dugesiidae)  0.699  Hydrophilidae (incl. Hydraenidae)  0.130 
Dytiscidae (incl. Noteridae) * 0.692  Lepidostomatidae  0.102 
Planorbidae * 0.669  Odontoceridae  0.079 
Caenidae  0.583  Notonectidae  0.076 
Simuliidae  0.580  Neritidae  0.075 
Haliplidae  0.556  Scirtidae (=Helodidae)  0.072 
Lymnaeidae * 0.551  Perlodidae  0.060 
Tipulidae  0.511  Dryopidae  0.036 
Leptoceridae  0.499  Beraeidae  0.023 
Physidae  0.495  Hirudinidae  0.021 
Ancylidae (incl. Acroloxidae) * 0.478  Phyrganeidae  0.021 
Valvatidae  0.472  Brachycentridae  0.020 
Hydropsychidae  0.470  Aphelocheiridae  0.019 
Hydroptilidae  0.426  Gerridae  0.019 
Ephemerellidae  0.413  Viviparidae  0.019 
Sialidae  0.402  Platycnemididae  0.018 
Corixidae  0.377  Nepidae  0.016 
Polycentropodidae  0.364  Leuctridae  0.008 
Ephemeridae  0.363  Taeniopterygidae  0.003 
Rhyacophilidae (incl. Glossosomatidae)  0.338  Unionidae  0.003 
Leptophlebiidae  0.334     

 
Threshold Pt 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

O 13 13 13 12 12 11 10 8 8 3 
E 23.3 22.2 21.8 20.1 18.3 14.7 11.9 9.8 9.8 3 

O/ETAXA 0.56 0.57 0.60 0.60 0.66 0.75 0.84 0.82 0.82 1.00 
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Table 4  Distribution of O/ETAXA and O/EASPT values for the 614 RIVPACS reference sites 
(spring samples) in terms of (a) standard deviation (SD) and (b) lower 10-percentile value.  
 

 Threshold Pt 
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(a) SD(O/E)           
O/ETAXA 0.214 0.209 0.202 0.194  0.182 0.168 0.141 0.129 0.106 0.094 
O/EASPT 0.085 0.083 0.079 0.075 0.072 0.065 0.057 0.052 0.051 0.103 

           
(b) Lower 10%           

O/ETAXA 0.747 0.775 0.775 0.772 0.777 0.804 0.811 0.848 0.871 0.883 
O/EASPT 0.892 0.884 0.893 0.905 0.906 0.917 0.931 0.936 0.944 0.983 

 
 
 
 
 
Table 5  Average replicate standard deviation (SD) in O/E across all sites and seasons and for 
classes of replicate mean value of O/E, using a range of expected probability thresholds Pt for 
(a) O/ETAXA and (b) O/EASPT based on all single season samples from the BAMS sites. 
 

 (a) Replicate mean of O/ETAXA 

Threshold <0.6 0.6 - 0.9 >0.9 Overall 
Pt SD n SD n SD n SD 
0.0 0.063 29 0.074 15 0.115 4 0.072 
0.1 0.066 29 0.073 16 0.113 3 0.072 
0.2 0.070 28 0.071 16 0.109 4 0.074 
0.3 0.073 26 0.069 18 0.087 4 0.073 
0.4 0.058 22 0.087 22 0.080 4 0.074 
0.5 0.060 19 0.102 19 0.083 10 0.084 
0.6 0.078 19 0.096 19 0.088 10 0.087 
0.7 0.072 17 0.102 20 0.065 11 0.084 
0.8 0.079 16 0.112 20 0.064 12 0.091 
0.9 0.074 12 0.133 12 0.091 14 0.109 

        
 (b) Replicate mean of O/EASPT 

Threshold <0.7 0.7 - 0.9 >0.9 Overall 
Pt SD n SD n SD n SD 
0.0 0.049 17 0.043 22 0.058 9 0.048 
0.1 0.051 17 0.041 22 0.045 9 0.046 
0.2 0.055 18 0.048 21 0.042 9 0.050 
0.3 0.056 16 0.044 20 0.048 12 0.049 
0.4 0.059 14 0.043 20 0.039 14 0.047 
0.5 0.063 12 0.049 19 0.039 19 0.050 
0.6 0.066 10 0.055 19 0.042 19 0.053 
0.7 0.094 9 0.065 17 0.041 22 0.063 
0.8 0.097 10 0.077 14 0.049 24 0.070 
0.9 0.067 11 0.138 11 0.050 26 0.082 
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Table 6 Percentage of the n GQA sites with each intensity of overall (and organic) 
environmental stress which were assessed as being biologically impaired (i.e. site O/E < 
lower 10-percentile O/E of reference sites) using O/E based on each threshold probability Pt. 
 

  Threshold Pt 
 n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

O/ETAXA             
Overall stress            

Unstressed 1373 16 20 20 18 17 18 17 20 21 20 
Light 1944 35 39 38 36 34 35 32 35 36 33 

Moderate 1724 55 59 58 56 55 56 53 55 56 51 
Severe 711 66 69 68 66 65 66 64 66 64 60 

            
O/EASPT            

Overall stress            
Unstressed 1373 12 11 12 13 12 12 14 13 15 22 

Light 1944 33 32 33 34 33 32 32 29 28 34 
Moderate 1724 57 54 56 56 54 53 53 47 46 48 

Severe 711 72 70 70 69 69 68 66 62 59 60 
Organic inputs            

Unstressed 2700 24 22 23 25 24 24 26 23 24 31 
Light 1008 35 33 35 36 35 34 33 29 30 33 

Moderate 1401 57 54 55 55 53 52 51 45 43 43 
Severe 643 79 78 77 78 75 74 72 69 65 68 

 
 
 
 
 
 
 
 
 
Table 7  Percentage of all non-zero expected probabilities of occurrence amongst all GQA 
sites in each expected probability class (<0.2, 0.2-0.5, 0.5-0.8, >0.8), separately for all of the 
families in each class (1-4, 5-7, 8-10) of BMWP score. 
 

Expected probability BMWP 
score 

Number of 
families <0.2 0.2-0.5 0.5-0.8 >0.8 

1-4 15 27% 21% 17% 35% 

5-7 35 39% 23% 19% 19% 

8-10 32 57% 27% 11% 5% 

Overall 82 42% 24% 16% 18% 
 

 27



Figure legends 
 
Fig. 1  Illustration of the change in O/E for number of taxa in relation to the threshold 
expected probability Pt for three replicate spring samples (●, ▲and ■) from the BAMS site at 
Swarkestone on Cuttle Brook. 
 
Fig. 2  Boxplot distributions of the O/E values for the 614 RIVPACS reference sites (spring 
samples) using a range of expected probability thresholds Pt for (a) O/ETAXA and (b) O/EASPT. 
Boxes denote inter-quartile ranges, horizontal bars denote medians and solid circles denote 
mean values. 
 
Fig. 3  Average replicate standard deviation (SD) in O/E for classes of replicate mean value 
of O/E, using expected probability thresholds Pt of 0.0, 0.1, 0.3, 0.5, 0.7 and 0.9 for (a) 
O/ETAXA and (b) O/EASPT based on all single season samples from the BAMS sites. 
 
Fig. 4  Median difference in O/E (i.e. O/E using a threshold Pt minus O/E for Pt = 0.0) for 
classes of n GQA sites grouped by 0.1 intervals of their O/E value for Pt = 0.0. Thresholds Pt: 
0.1 (*), 0.3 (○), 0.5 (●), 0.7 (■), 0.9 (▲) for (a) O/ETAXA and (b) O/EASPT based on spring 
samples from the GQA sites.  
 
Fig. 5  Median difference in O/E (i.e. O/E using a threshold Pt minus O/E for Pt = 0.5) for 
classes of n GQA sites grouped by 0.1 intervals of their O/E value for Pt = 0.5. Thresholds Pt: 
0.0 (●), 0.1 (*), 0.3 (○), 0.7 (■), 0.9 (▲) for (a) O/ETAXA and (b) O/EASPT based on spring 
samples from the GQA sites.  
 
Fig. 6 Boxplots of the distribution of the average expected probability of occurrence for each 
BMWP family across all 5752 GQA sites, for families grouped by their BMWP score (1-4, 5-
7, 8-10). Boxes denote inter-quartile ranges, horizontal bars denote medians (value indicated) 
and circles denote average expected probabilities for individual families. 
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Fig. 1  Illustration of the change in O/E for number of taxa in relation to the threshold 
expected probability Pt for three replicate spring samples (●, ▲and ■) from the BAMS site at 
Swarkestone on Cuttle Brook. 
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Fig. 2  Boxplot distributions of the O/E values for the 614 RIVPACS reference sites (spring 
samples) using a range of expected probability thresholds Pt for (a) O/ETAXA and (b) O/EASPT. 
Boxes denote inter-quartile ranges, horizontal bars denote medians and solid circles denote 
mean values. 
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Fig. 3  Average replicate standard deviation (SD) in O/E for classes of replicate mean value 
of O/E, using expected probability thresholds Pt of 0.0, 0.1, 0.3, 0.5, 0.7 and 0.9 for (a) 
O/ETAXA and (b) O/EASPT based on all single season samples from the BAMS sites. 
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Fig. 4  Median difference in O/E (i.e. O/E using a threshold Pt minus O/E for Pt = 0.0) for 
classes of n GQA sites grouped by 0.1 intervals of their O/E value for Pt = 0.0. Thresholds Pt: 
0.1 (*), 0.3 (○), 0.5 (●), 0.7 (■), 0.9 (▲) for (a) O/ETAXA and (b) O/EASPT based on spring 
samples from the GQA sites.  
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Fig. 5  Median difference in O/E (i.e. O/E using a threshold Pt minus O/E for Pt = 0.5) for 
classes of n GQA sites grouped by 0.1 intervals of their O/E value for Pt = 0.5. Thresholds Pt: 
0.0 (●), 0.1 (*), 0.3 (○), 0.7 (■), 0.9 (▲) for (a) O/ETAXA and (b) O/EASPT based on spring 
samples from the GQA sites.  
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Fig. 6 Boxplots of the distribution of the average expected probability of occurrence for each 
BMWP family across all 5752 GQA sites, for families grouped by their BMWP score (1-4, 5-
7, 8-10). Boxes denote inter-quartile ranges, horizontal bars denote medians (value indicated) 
and circles denote average expected probabilities for individual families. 
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