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Abstract. Wetlands are generally accepted as being the
largest but least well quantified single source of methane
(CH4). The extent of wetland or inundation is a key fac-
tor controlling methane emissions, both in nature and in the
parameterisations used in large-scale land surface and cli-
mate models. Satellite-derived datasets of wetland extent
are available on the global scale, but the resolution is rather
coarse (>25 km). The purpose of the present study is to as-
sess the capability of active microwave sensors to derive in-
undation dynamics for use in land surface and climate mod-
els of the boreal and tundra environments. The focus is on
synthetic aperture radar (SAR) operating in C-band since,
among microwave systems, it has comparably high spatial
resolution and data availability, and long-term continuity is
expected.

C-band data from ENVISAT ASAR (Advanced SAR) op-
erating in wide swath mode (150 m resolution) were inves-
tigated and an automated detection procedure for deriving
open water fraction has been developed. More than 4000
samples (single acquisitions tiled onto 0.5◦ grid cells) have
been analysed for July and August in 2007 and 2008 for a
study region in Western Siberia. Simple classification algo-
rithms were applied and found to be robust when the water
surface was smooth. Modification of input parameters results
in differences below 1 % open water fraction. The major is-
sue to address was the frequent occurrence of waves due to
wind and precipitation, which reduces the separability of the
water class from other land cover classes. Statistical mea-
sures of the backscatter distribution were applied in order to
retrieve suitable classification data. The Pearson correlation
between each sample dataset and a location specific repre-
sentation of the bimodal distribution was used. On average

only 40 % of acquisitions allow a separation of the open wa-
ter class. Although satellite data are available every 2–3 days
over the Western Siberian study region, the irregular acquisi-
tion intervals and periods of unsuitable weather suggest that
an update interval of 10 days is more realistic for this domain.
SAR data availability is currently limited. Future satellite
missions, however, which aim for operational services (such
as Sentinel-1 with its C-band SAR instrument), may provide
the basis for inundation monitoring for land surface and cli-
mate modelling applications.

1 Introduction

Wetlands and inundated areas are important features of many
landscapes because of their roles in hydrological and biogeo-
chemical cycles. Although the global annual source strength
of CH4 is relatively well constrained (Denman et al., 2007),
wetlands are generally accepted as being the largest but least
well quantified single source of CH4, with emission esti-
mates ranging from 100 Tg yr−1 (Wuebbles and Hayhoe,
2002) to 231 Tg yr−1(Mikaloff Fletcher et al., 2004). Cur-
rent emissions of methane from the wetlands and lakes of
the Boreal region contribute much less than the tropical wet-
lands to the global wetland methane emissions:Walter et al.
(2001) calculate that only 25 % of the wetlands emissions
come from wetlands north of 30◦ North. However, due to
the greater warming expected over high latitudes, they might
increase faster and by a large amount than emissions from
tropical regions. Northern high latitude wetland ecosystems
are also of concern because of their potential to turn from a
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carbon sink to a net carbon source. Large parts are under-
lain by perennially frozen ground and a total of 1672 Pg of
soil carbon is estimated to be stored in northern permafrost
regions (Schuur et al., 2008).

There is currently considerable interest in modelling
methane emissions from wetlands and peatlands on regional
and global scales (e.g.Wania et al., 2009a,b; Petrescu et al.,
2010; Ringeval et al., 2010, 2011; Riley et al., 2011; Hod-
son et al., 2011). Riley et al.(2011) present an overview of
the various biogeochemical processes involved in methane
generation and the challenges of representing these processes
in large-scale model applications. The land surface models
used in these studies typically operate with a gridbox size
of 0.5◦ to 1.0◦ or even larger, and use relatively simple pa-
rameterisations of methane emissions from wetlands based
on key hydrological and biogeochemical variables. The key
hydrological variable is the extent of the methane-producing
wetland or inundated area (and its dynamics). The dynamics
of inundation are also of interest in modelling studies of hy-
drological processes including the generation of runoff and
flooding (e.g.Dadson et al., 2010). These modelling com-
munities require observations of inundation to contribute to
the evaluation of model simulated results and sometimes to
serve as inputs to their models.

The wetland maps ofMatthews and Fung(1987) and the
Global Lakes and Wetlands Database ofLehner and D̈oll
(2004) have often been used to study wetlands and other wa-
ter bodies. These datasets provide global information on ex-
tent and types but do not include temporal dynamics. Satel-
lite data have been shown to be of great value for the moni-
toring of wetlands (Davidson and Finlayson, 2007), with ap-
plications ranging from identification of aquatic vegetation
to inundation dynamics. Different type of sensors can be
employed at different scales. Continental to global moni-
toring requires a specific acquisition strategy, including reg-
ular temporal coverage at the highest sampling frequency
possible in order to capture important dynamics such as
precipitation- or snowmelt-induced flooding with timescales
of hours to days. There is always a trade-off between spatial
detail and sampling interval. The best sampling is achieved
using microwave sensors which are cloud and illumination
independent. Passive as well as active sensors have been
shown to be applicable. Passive (SSMI) and active mi-
crowave (ERS C-band scatterometer) information has been
combined with medium resolution optical data (AVHRR)
for a global representation of inundation dynamics (Prigent
et al., 2001, 2007). A combination of a Ku-Band scat-
terometer (Seawinds on QuikScat) and a passive instrument
(AMSR-E) has also been shown to be suitable for detection
of inundation dynamics over Siberia (Schroeder et al., 2010).
Satellite lifetime is limited, what constraints the suitabil-
ity for regular monitoring. Seawinds provided ten years of
global data coverage but stopped operation in 2009 (Bartsch,
2010). AMSR-E acquired data 2002 – October 2011, the
ERS scatterometers 1991 – July 2011.

The information retrieved from these global data has rather
coarse spatial resolution (>25 km resolution), but this res-
olution has been sufficient for use in large-scale or global
modelling studies of methane emissions (e.g.Ringeval et al.,
2010) which, as noted earlier, also use a coarse grid. The
modelling studies ofRingeval et al.(2010, 2011) and Ri-
ley et al.(2011) have all defined the wetland fraction using
the global Earth Observation product ofPrigent et al.(2007),
which gives the area of wetland on a monthly timescale. As
highlighted byRiley et al.(2011), Prigent et al.(2007) ac-
knowledged that their product may not capture small, iso-
lated water bodies in otherwise unsaturated areas (i.e. small
fractional inundations of less than 10 % cover).

Medium resolution satellite data, which are used for land
cover maps (such as from MODIS, 500 m and MERIS,
300 m), generally have low accuracy for high latitude envi-
ronments, since, for example, tundra ponds are mostly below
the resolution of the satellite data (Bartsch et al., 2008; Frey
and Smith, 2007). Synthetic aperture radars (SARs) operat-
ing in ScanSAR mode (e.g. ENVISAT ASAR Wide Swath,
150 m) have shown to be applicable for efficient and accu-
rate mapping of water bodies at high latitudes (Bartsch et al.,
2008). The clear advantage of using SAR is its capability to
resolve smaller water bodies. This also provides a potential
new dataset to validate global products. From a modelling
perspective, the high resolution product needs to be almost
complete in space and time (similar sampling) for the domain
of interest if it is to be used as a driving dataset. The ques-
tion addressed in this study is whether archived ScanSAR
data are suitable for mapping inundation dynamics in tundra
and boreal environments. The issues which need to be con-
sidered are (i) the typically irregular acquisition intervals, (ii)
the constraints arising from the frequency used for the satel-
lite measurements, (iii) classification methods and (iv) data
management issues which arise from the chosen resolution
and location of the area of interest. These issues have been
investigated in this paper using ENVISAT ASAR wide swath
data over a selected site in northern Eurasia. Uncertainties
are quantified and discussed with respect to use in climate
models and future satellite data availability.

2 Material, methods and study site

Permanent and seasonal inundation are surface phenomena
which can be mapped by means of active microwave sen-
sors. The incident radar beam is reflected by smooth water
surfaces away from the sensor. This specular reflection re-
sults in low backscatter values which can thus be associated
with water pixels (e.g. applied inBartsch et al., 2008; Mat-
gen et al., 2011). This behaviour is very distinct from other
land cover classes, although low backscatter may also result
from (i) the melting of snow and ice surfaces and (ii) radar
shadow caused by steep terrain when viewed by side-looking
sensors. Wave action on the water surface can increase the
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roughness and hence the backscatter signals to those of the
surrounding land surface, depending on wavelength.

The majority of SAR data currently available for civil use
has been acquired by C-band instruments (ERS, Radarsat,
ENVISAT ASAR). Continuation of these records is assured
because of the future plans of the European Space Agency
(ESA) with respect to the Sentinel series of satellites (At-
tema et al., 2007; launch 2013 onwards at time of writing,
www.esa.int). These kinds of sensors are attractive for cli-
mate research applications for which long time records are
required. The wavelength is between 5–6 cm, which means
that even moderate wind action on the water surface can im-
pede the specular reflection. Longer wavelengths such as
L-band (>20 cm) would be preferable but their availability
is limited at present, as well as in the near future. A fur-
ther problem related to the use of C-band radar is the very
limited penetration of the signal through emerging vegeta-
tion, for example along lake shores. Backscatter can also
increase considerably when open water bodies start to freeze
(e.g.Duguay et al., 2002).

Inundation is generally more extensive over flat terrain.
The region of interest for this study is the West Siberian
Lowland, which is a test region of the ESA STSE ALANIS-
Methane project (http://www.alanis-methane.info). This re-
gion lies outside of glaciated terrain and radar shadow of the
spaceborne remote sensing measurements is not expected.
The similarity of the backscatter return from open water to
that from melting seasonal snow and the different backscat-
ter behavior of lakes in winter (due to ice cover) do however
need to be accounted for. This can be addressed by using
auxiliary data, e.g. information on snowmelt timing from
other satellite products (Bartsch et al., 2009). For the purpose
of this study, the analysis was limited to the summer months
(July and August) and data from two consecutive years (2007
and 2008) were used.

A domain within the West Siberian Lowland was investi-
gated, spanning from 68–73◦ East and 63–69◦ North. This
domain was selected because of data availability (see Fig.1)
and the fact that the domain includes part of the largest peat-
land of the world (Keddy and Fraser, 2005). Atmospheric
methane variations over the summer from year to year have
been reported from ENVISAT SCIAMACHY data for this
region (Schneising et al., 2011). The chosen domain ex-
cludes large parts of the Ob River and its floodplain, where
complications from water waves were expected to be com-
mon. Furthermore, in the context of methane modelling,
flooded river valleys can also be excluded as they are not
expected to emit methane (Ringeval et al., 2010). While the
focus of this study is on other areas, a small part of the Ob
River floodplain was also included to enable full characterza-
tion of the inundation dynamics within this environment.

As a first step, the previously tested method of simple
thresholding (Bartsch et al., 2008) is applied for the dif-
ferent environments (flood plain and surrounding wetlands).
The chosen domain comprises the boreal peatland as well as

tundra with thermokarst ponds. The applicability of a uni-
versal threshold is tested in a number of sensitivity analyses.
The problem of wave action is specifically addressed by time
series analyses and comparison with meteorological data.

2.1 ENVISAT ASAR Wide Swath data

The Advanced Synthetic Aperture Radar (ASAR) instrument
onboard the ESA’s ENVISAT platform is a C-Band (centre
frequency at 5.331 GHz) sensor that can operate in different
modes of varying spatial and temporal resolution. In Wide
Swath mode (WS), the instrument has a spatial resolution of
150 m.

WS data are only acquired on request, restricting their
availability in general to archived material. Figure1 shows
the data coverage for higher latitudes of the Northern Hemi-
sphere. Data were almost exclusively taken in HH (horizon-
tal emitted and horizontal received) polarisation. A mini-
mum of five acquisitions per month have been acquired for
the summers of 2007 and 2008 for the domain of interest.
The ENVISAT ASAR WS data are distributed via the ESA
rolling archive at Level 1b. These data require preprocessing
before the actual inundation classification can be made. This
is done using the IPF’s SAR Geophysical Retrieval Toolbox
(SGRT), which is a scripting chain developed in house that
calls the commercial SARscape or the free NEST software,
allowing for the automatisation of the entire preprocessing
procedure. Radiometric calibration and geocoding follow the
Range-Doppler approach. The backscatter coefficient (σ 0) is
modelled as a function of the local incidence angle and is
expressed in units of decibel (dB). The ASAR WS data are
adjusted to a reference incidence angle of 30◦ (Sabel et al.,
2011).

The northern location of the domain and the large amount
of data required need to be taken into consideration for the
processing and database setup. Oversampling needs to be
avoided so as to reduce storage needs. All data were there-
fore geocoded to a polar stereographic projection. The pro-
jection chosen was the conformal conic type used by the
National Snow and Ice Data Center (NSIDC) in the United
States for polar datasets.

The surface water fraction is eventually derived for 0.5◦ x
0.5◦ grid cells, which is broadly comprarable with the spatial
resolution of land surface and climate models. Only data
from scenes which cover complete grid cells were considered
for further analysis. The classification results are aggregated
to this grid size.

2.2 Inundation mapping

The backscatter value distribution of a SAR image over lake-
abundant terrain is of a bimodal nature. This is the result
of diffusive (surroundings) and specular (water bodies) re-
flection. Diffusive scatter is the dominant mode if the wa-
ter fraction is below approximately 50 %, which is expected
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Fig. 1. ASAR Wide Swath data availability (number of scenes per month) for HH polarisation at high
latitudes: July and August 2007/2008.

20

Fig. 1. ASAR Wide Swath data availability (number of scenes per month) for HH polarisation at high latitudes: July and August 2007/2008.

over the region of interest. Therefore, a straightforward clas-
sification procedure for open water mapping can be estab-
lished by setting a simple threshold value. Any normalized
backscatter value that falls below this threshold is attributed
to specular reflection and hence is classified as an open water
body. Alternative methods consider (i) flooding below vege-
tation, what can be studied by using L-band SAR and optical
data, and (ii) the random forest approach (Schroeder et al.,
2010; Whitcomb et al., 2009). Changes in the roughness
of the water result in changes in the maximum of the wa-
ter peak and the minimum between the peaks. Adaptive ap-
proaches describe the mode (backscatter distribution) of wa-
ter as Gamma-distributed, which can serve as input for classi-
fication algorithms. The overlap of the two modes/landcover
types (larger values than threshold) can then be integrated via
region growing (Matgen et al., 2011).

The threshold value between the modes was found to be
approximately−14 dB in the case of normalization ofσ0 to
30◦ in tundra (Bartsch et al., 2009). This value was tested
in the automated classification procedure. A Gaussian func-
tion was fitted to the backscatter value distribution for fur-
ther verification of the empirically determined threshold. It
is approximately within 3 standard deviations of the mean
of the dominant mode. Figure2a shows a normalized im-
age scene and histogram of the WS data. The water bodies
can be clearly distinguished from their surroundings. In this
caseµdm− 3σdm = −14.4 dB, whereµdm and σdm are the
mean and the standard deviation of the dominant mode, re-
spectively.

The maximum frequency of the dominant mode occurs at
higher backscatter values for taiga than for tundra (Fig.2)
due to the typical higher contribution of vegetation to the
backscatter. The backscatter distribution for non-water sur-
faces was relatively stable over time compared to the water
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Fig. 2. Examples from summer 2007: backscatter value distribution and corresponding ASAR WS backscatter images (dB) for(a) tundra
(20 August 2007) and(b) taiga (12 July 2007).

surfaces represented in the minor mode (Fig.3). Wind and
rain events increase the roughness considerably which results
in the loss of the bimodal distribution and thus separability
of the land cover classes. The overlap of the water backscat-
ter signal with that from surrounding land cover is generally
larger for tundra than for boreal environments. Previous anal-
yses have demonstrated classification accuracies ofκ greater
than 0.8 in the tundra-taiga transition zone (Bartsch et al.,
2009).

Other thresholds were tested in order to assess the impact
of the predefinition of a universal threshold for separation
of water surfaces from all other land cover classes. It was
assumed that values below the defined backscatter limit cor-
responded to specular reflection from open, calm water sur-
faces, outside of mountainous regions, during snow-free pe-
riods and without glaciation. More crucial however is the
higher backscatter, which may correspond to mixed pixel re-
sponse along the shorelines. This has been assessed by in-
creasing the threshold to−13 dB and−12 dB.

2.3 Derivation of dynamics

The number of scenes during the two summer months varies
between 20 and 30. This reduces the available samples from
one every two/three days to approximately one scene per
week.

A test for the presence of the bimodal distribution was nec-
essary as a preprocessing step in order to account for rough-
ness variation and loss of separability. A location specific
reference distribution has been derived for each 0.5◦

× 0.5◦

grid cell. It is extracted from the acquisition with the maxi-
mum water fraction within the time series. The Pearson cor-
relation between this reference and the backscatter distribu-
tion of each scene with full coverage was calculated. Positive
correlations indicated separability of the water class.

3 Results

The maximum water fraction per 0.5◦
× 0.5◦ grid cell

reached 35 % in some areas of the chosen domain but in gen-
eral was below 10 % (Fig.4). Large variations of open water
extent occurred in the region of the Ob Estuary, but also at
some locations within the tundra region. Thermokarst lakes
overflow in early summer and slowly drain through the sea-
son and/or vegetation emerges. This can be seen in Fig.5
which also demonstrates the persistence of lake ice on large
lakes well into the summer. More than 2300 samples (sin-
gle scenes distributed over 133 cells; areas with coastal over-
lap were excluded) were used for threshold testing and the
results are shown in Fig.6. 95 % of samples showed an in-
crease of water fraction of less than 0.07 when the threshold
was increased by 2 dB (Fig.6a). There is a linear relationship
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Fig. 3. Backscatter time series showing loss of bimodal distribution over tundra: top normalized
backscatter images, bottom: histograms of backscatter distribution [dB]. All images cover an indeitcal
area.
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Fig. 3. Backscatter time series showing loss of bimodal distribution over tundra: top normalized backscatter images, bottom: histograms of
backscatter distribution [dB]. All images cover an indeitcal area.

between the increase in the water fraction and the threshold
value (Fig.6b). An increase of 2 dB results in a change in
water fraction that is approximately twice as large as that for
a 1 dB increase. The majority of the additional water fraction
could be attributed to lake shores, as seen in Fig.6c for an
example from the tundra region.

Figure7shows the water fraction for example areas in both
boreal (taiga) and tundra environments. Distinctive decreases
during short periods can be attributed to the effects of wave
action and precipitation, as discussed below. A bimodal dis-
tribution is only available for on average 40 % (range 20 to
80 %) of the acquisitions for areas with indundation fraction
above 5 %.

There are no meteorological stations with wind records in
the WMO network in the selected domain. The closest sta-
tion is at Salehard (66.53◦ N, 66.53◦ E), west of the Ob es-
tuary near to the Ob River and ASAR data were processed
for the corresponding 0.5◦ which lies outside the main study
area (distance 1.5◦). The water fraction in this area is also
expected to be affected by wave action on the river. Wind
speed data are available every three hours and the wind mea-
surements closest in time (06:00 a.m. and 03:00 p.m.) to the
acquisition time of ASAR data were extracted together with

daily precipitation. These data are also shown in Fig.7a. In
this cell the maximum water fraction is approximately 23 %.
High wind speed and precipitation are often found at times
when when the estimated water fraction decreases sharply
(with decreases of 50 % and above). The relationship be-
tween these decreases and weather is likely partly obscured
by the fact that the weather data do not refer to the exact time
of ASAR acquisition and a single weather station is used to
represent a 0.5◦ square. Figures7b and8 show that these
weather-related decreases in the estimated water fraction of-
ten affect many cells at the same time, reflecting the large
scale nature of the weather systems. The periods of unsuit-
able weather can exceed the theoretical weekly interval of
data availability (scenes with bimodal distribution), suggest-
ing that a 10-day period represents the minimum update in-
terval achievable in this area.

Grid cells with a maximum water fraction above 10 % ex-
hibit different absolute values and dynamics for the tundra,
taiga and floodplain, as seen in Fig.9. In the tundra, the open
water fraction increases by up to 3 % in 2007 and decreases
by a similar amount in 2008 (Fig.9a and d). This may relate
to the seasonality of lake ice. Very few grid cells have a large
amount of lakes in the taiga area (Fig.9c and f) and although
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Fig. 4. Water fraction maps (in %) from ASAR Wide Swath in
July/August 2007 and 2008: (left) average and (right) maximum.

there are small variations during the summer and between
years these are again small. A clear evolution over the sum-
mer and in both years is only seen along the Ob floodplain
and estuary (Fig.9b and e) where the inundated area steadily
decreases after the spring snowmelt maximum.

4 Discussion

The present study tested the use of an empirical universal
threshold with C-band SAR. The characteristic bimodal dis-
tribution in regions with open water mixed with other land
cover is similar for both tundra and taiga environments. The
threshold lies within 3 to 4 standard deviations (Gaussian fit)
of the main mode. The impact of an increase of the threshold
is very low with up to 0.15 % for a 1 dB increase, and 0.25 %
for 2 dB. This may be significant for applications where the
exact borders of inundation are of interest, but was less im-
portant in this study which aimed to develop an efficient de-
tection method for use across large regions.

Having suitable weather conditions is more important than
the details of the classification approach since the derived
water fraction often decreased by more than 50 % when the
weather was unsettled. It was not easy to explore this re-
lationship because of the very sparse nature of the meteo-
rological network in the study area. Further, the available
weather data are not frequent enough to quantify conditions

at the time of satellite acquisition and are limited to a single
location. Nevertheless, the impact was clearly visible in the
classified datasets. Pre-selection of the satellite dataset is re-
quired so as to avoid unsuitable weather. This could be done
by using meteorological data that are representative of the ac-
quisition time and area, but these are not available for many
regions. Backscatter statistics were applied instead. The ex-
istence of a bimodal distribution was the major requirement
when active microwave data alone were used. This could
therefore be used as an indicator in regions with a sufficient
open water fraction. A further constraint was the possible
presence of ice on larger lakes until well into July, which is
an increasingly important factor the further north one goes.

The observed magnitude of inundation fraction agrees
with previous analyses with coarser sensors. The study by
Schroeder et al.(2010) which covered the Spring to the
end of July also reports fractions below 30 % for the cho-
sen domain. Apart from the Ob floodplain, no changes over
time were reported byPapa et al.(2008), including none
in the Yamal peninsula. The SAR analyses in the present
study showed that this region was characterized by seasonal
changes that overlap with the dynamics of thermokarst lakes.
Satellite data are often used to show long-term surface water
variations (over the study area e.g.Smith et al., 2004). The
SAR results (Fig.5) suggest that the seasonal dynamics of
inundation must be considered in any analysis of long-term
changes in surface water or permafrost degradation.

The present study was undertaken as part of a project
that aims to use Earth Observation data to evaluate (and in
some cases drive) estimates of methane emissions from a
land surface model, the Joint UK Land Environment Sim-
ulator (JULES;Best et al., 2011; Clark et al., 2011). The
question arises as to the accuracy required from the Earth
Observation data if they are to be used for model evaluation
and driving. Wetland emissions of methane in JULES follow
the parameterisation developed byGedney et al.(2004), in
which the methane emissions from wetlands scale linearly
with the wetland fraction. Gedney et al.(2004) assumed
that only the fraction of the grid box where the water table
was at or above the surface resulted in net emission of CH4,
otherwise methanotrophic bacteria in the aerobic soil com-
pletely oxidise all the CH4 produced by the methanogenic
bacteria. The methane-producing area calculated by and re-
quired by JULES is thus the inundated area that can be de-
termined from e.g. ASAR. As such there is no minimum or
threshold wetland fraction that would need to be detected by
the satellite, but there is clearly a value below which the
emission flux would be insignificant in terms of its effect
on atmospheric methane concentrations. Alternatively, at-
mospheric measurements potentially provide a constraint on
the minimum wetland fraction that should be represented in
a wetland product.Gerilowski et al.(2011) are developing
a successor to the SCIAMACHY instrument – the methane
mapper (MAMAP). They considered a number of potential
sources, including wetlands, which could be monitored by
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Fig. 5. Example for seasonal changes of open water extent in tundra (within a 0.5 degree cell): left – 7
July 2007 to 28 August 2007, right – 6 July 2008 to 21 August 2008.
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Fig. 5. Example for seasonal changes of open water extent in tundra (within a 0.5 degree cell): left – 7 July 2007 to 28 August 2007, right –
6 July 2008 to 21 August 2008.
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Fig. 6. Differences of water fraction between different thresholds:(a) histogram with black – 1 dB increase, grey – 2 dB increase,(b) scat-
terplot of fraction difference in comparison with a−14 dB threshold and(c) example of classification results differences in tundra.

the MAMAP instrument. They defined an accumulation dis-
tance over which the emissions from diffuse sources (such
as wetlands) would need to be integrated to give a measur-
able change in the atmospheric CH4 column. They derived a
value of 86 km for a strong summertime emission flux from
wetlands of 200 mg CH4 m−2 d−1. Thus the sensitivity of
satellite measurements of atmospheric methane concentra-
tion would not impose a tight constraint on the required ac-
curacy of a wetland or inundation product. SAR based mea-
surements could however indicate possible biases from un-
der/overestimation of the wetland extent.

Data on wetland and inundation extent are also important
in relation to the thawing of permafrost in a warming climate.
Permafrost, defined as ground (soil or rock) that remains at
or below 0◦C for at least two consecutive years, accounts for
approximately 22 % of the exposed land area in the Northern
Hemisphere and is globally a significant store of organic car-
bon (Schuur et al., 2008). O’Connor et al.(2010) considered
the water saturation status of the thawing permafrost to be
the most important factor in determining whether the release
of the frozen carbon occurred as CO2 or CH4. Depending on
the conditions, thawing may lead to enhanced soil drainage
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Fig. 7. Variation of water fraction from ASAR WS in summer 2007
in cells with on average at least 10 % water:(a) the region of Sale-
hard in % (squares), wind speed from meteorological data (+=

06:00 a.m.,× = 03:00 p.m.) in m s−1, total daily precipitation in
mm (vertical bars)(b) cells of the floodplain (66–67◦ N).
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Fig. 8. Variation of water fraction from ASAR WS in summer 2007
in cells with on average at least 10 % water:(a) all cells north of
67◦ N, (b) all cells south of 66◦ N.

and therefore a lowering of the water table (i.e. more CO2),
or the opposite, whereby landscape collapse leads to impeded
drainage and a raised water table (i.e. more CH4). The evo-
lution of areas of saturation also exerts a strong control on
the exchanges of heat and moisture between the land surface
and the atmosphere, which are of critical importance to land
surface and climate models. Thus there are several areas of

land surface modelling that require information about the ex-
tent and characteristics of inundation, such as were derived
in this study from SAR data.

5 Conclusions

The major known problems for application of SAR data for
inundation monitoring are data availability and the wave-
lengths used. A series of European satellites (ERS, EN-
VISAT and the upcoming Sentinel 1) have SAR instruments
operating in C-band. The suitability of data acquired at this
wavelength is limited by the sensitivity to roughness changes
of water surfaces. The major advantages over L-band sensors
are the improved coverage and continuity, which are impor-
tant for monitoring purposes. A region with relatively good
data availability and with important inundation features was
chosen in order to investigate these constraints further. In
particular, the issues of the classification method and the im-
pact of weather phenomena have been studied.

Although SAR data are independent of cloudiness and
daylight availability, meteorology has a significant effect for
this kind of application. On average, more than 60 % of the
data are affected by wind and rain in the tundra and taiga ar-
eas of Western Siberia. Detection results cannot be used on
a single day basis. Update intervals need to be selected tak-
ing account of the possible persistence of rainy and windy
weather conditions and the actual sampling interval. A min-
imum of 10 days is suggested for the Western Siberia region
for the summer periods 2007 and 2008. This is still a shorter
interval than in satellite data products that have been used
previously in climate model studies (Ringeval et al., 2010,
2011; Riley et al., 2011).

The classification method is robust when the water class
can be separated from other land cover. A universal threshold
can be used so long as the bimodal backscatter distribution is
maintained. Variations in the threshold do not significantly
impact the resulting water fraction. The increase is less than
1 % and the locations that are affected are mainly lake rims.

Quantification of any long-term (e.g. multi-year) trends in
inundation requires that seasonal dynamics be accounted for,
for example through the use of maximum inundation extent
within each interval. Seasonal changes can be also observed
outside of the Ob river floodplain in the boreal and tundra
biome but at a much lower level. There are single lakes which
drain and refill especially in tundra regions where seasonal
overflowing of thermokarst lakes occurs. This seasonal be-
haviour needs to be considered when remotely sensed data
are used for analyses of thermokarst as part of permafrost
monitoring schemes.

Coarse scale products (such asPrigent et al., 2007) do
not distinguish between flooded vegetation or open water.
C-band SAR data can be utilized to separate these inun-
dation types. This suggests that in future the combined
use of such complementary data types might offer the best
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Fig. 9. 10 day maximum water fraction of grid cells with overall maximum>10 % water fraction from ASAR Wide Swath in summer 2007
for (a) all cells north of 67◦ N, Tundra,(b) cells of the floodplain,(c) all cells south of 66◦ N , Taiga/boreal;(d–f) 2008, respectively.

characterisation of wetlands and inundation. Parameters
such as wetland structure (e.g. fragmentation, tundra pond
density (Bartsch et al., 2008)), which are of interest for eco-
logical applications are also retrievable.

The effects of wetland and inundation features on fluxes
into the atmosphere generally occur at scales much smaller
than those of a typical model grid box and as such have to
be parameterised. The development and testing of model
parameterisations, and the long-term monitoring of these
changes in the environment, require information about the
sub-grid scale distribution of wetlands and inundation over
large areas, which is exactly the sort of information that a
SAR product could provide. As part of the space compo-
nent of the Global Monitoring for Environment and Security
(GMES) programme, the European Union and the European
Space Agency are preparing the next generation of imaging
Synthetic Aperture Radars (SARs): the Sentinel-1 mission.
The Sentinel-1 satellites will provide all-weather, day-and-
night observations (Attema et al., 2007). In order to full-
fil user requirements for operationally sustainable services,
the mission is based – in contrast to the ERS-1, ERS-2 and
ENVISAT missions – upon an operational concept (Attema,
2005). This would allow for frequent mapping of inundation
dynamics.
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